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ABSTRACT A diffusion model ofthe modification of mutation
rates at a heterotic locus in a finite population is examined. An
asymptotic analysis assuming strong selection and weak linkage
shows that selection can operate on mutation rates in this setting.
There exists a favored mutation rate which is a function only of
the equilibrium allele frequency of the heterotic locus and the
population size. It is independent of the strength ofselection at the
heterotic locus. Computer simulations are also provided to show
that this form of natural selection can occur.

The evolution of mutation rates has been actively investigated
for many years. Early theoretical studies by Kimura (1, 2) and
Levins (3) based their arguments on optimization principles;
later studies by Leigh (4, 5), Karlin and McGregor (6), and
Gillespie (7) utilized modifier theory. All of these studies tried
to capture the idea that mutation has a positive and a negative
aspect. The positive aspect is to provide genetic variation for
evolutionary responses to a changing environment. The nega-
tive aspect is the genetic load caused by the production of del-
eterious mutations. I have shown (7) that selection can move
mutation rates toward a maximal, a minimal, or an intermediate
value, depending on the parameters of the model, when the
primary locus is subjected to selection in a fluctuating
environment.

In this paper, a novel approach to the study of selection of
mutation rates is presented which does not involve a changing
environment. I postulate that the primary locus is undergoing
heterotic selection in a finite population and that the modifier
locus affects the mutation rate at the primary locus. In this sit-
uation, if there is no mutation at the primary locus it will even-
tually become monomorphic. This is clearly a suboptimal state
for the population. One might expect an allele at the modifier
locus which causes mutation at the primary locus to be favored.
I will show that this is indeed the case. Furthermore, I will show
that selection will always move the mutation rate toward an in-
termediate value which depends only on the equilibrium fre-
quency of the heterotic locus.

THE DIFFUSION MODEL
Consider a diploid species with two alleles segregating at the
primary locus. Let the fitnesses of the genotypes A1A1, A1A2,
and A2A2 be 1 - sl, 1, and 1- s2, respectively. Define m =
S2J(S1 + S2) as the deterministic equilibrium of the heterotic
locus and define s = 2N(sl + s2) in which N is the effective pop-
ulation size. Let the mutation process between A1 and A2 be
symmetric at the rates ul, (ul + u2)/2, and u2 when in the pres-
ence of the MAM1, M1M2, and M2M2 genotypes at the modifier
locus. Define vi = 2Nui. Let R be the probability of a recom-
binational event between the A andM loci, and define r = 2NR.
With these assumptions and definitions, ifwe fix r, s, m, vi, and

v2 and allow N to increase, we obtain the following diffusion
model for the frequency of the A1 allele (Pl), the frequency of
the M1 allele (P2), and the linkage disequilibrium (D):

E(dpl) = [plqls(m-pl) + 2t5(1/2-p1) + D(v2-vl)]dt
E(dp2) = [Ds(m-pl)]dt
E(dD) = {D[s(ql-pI)(m-p1) - r - 1

- (VI+V2)] + P2q2(1/2-Pl)(vl-v2)}dt
[1]E(dpi2) = plqidt, i = 1,2

E(dD2) = [plp2qlq2 + D(1-2pj)(1-2p2) - D2]dt
E(dpidD) = D(1-2p*)dt

E(dpldp2) = Ddt.

In this system, qj = 1-pi and v = p2v1 + q2v2.
We wish to obtain the fixation probability of the M1 allele,

given an arbitrary initial condition for the diffusion. This prob-
ability will indicate the direction of selection for a given set of
parameters. Calculation of the fixation probability requires the
solution of the backward equation corresponding to [1]. I have
been unable to obtain the solution so an asymptotic approxi-
mation will be presented for large r and s.

As r and s increase, P, -* m and D -- 0 in probability. It is
reasonable, therefore, to approximate their dynamics with a
two-dimensional Ornstein-Uhlenbeck process obtained by lin-
earizing (p1,D) around (m,o). Because the autocovariance of
both D and Pi will approach zero for a fixed time lag as s and
r increase while that of P2 remains essentially unchanged, we
can view P2 as a parameter in the Ornstein-Uhlenbeck approx-
imation to (p1,D). The approximation may be written

E(dpl) = {sm2(1-m) + v

- [sm(1-m) + 26]ip, + (v2-v1)D}dt

E(dD) = {P2q2(Vl-V2)/2
- (r+1+vl+v2)D -P2q2(Vl-V2)Pl}dt [2]

E(dpl2) = m(l-m)dt

E(dD2) = p2q2m(1 -m)dt

E(dpldD) = 0.

We could, ofcourse, obtain the complete solution to this lin-
earized process. However, we only require the expectation of
sD(m-pl) with respect to the stationary distribution of the lin-
earized system. This is because the dynamics of D and Pi are
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enough faster than those ofP2 that P2 experiences D and Pi only
through their mean values. A straightforward analysis ofsystem
2 yields

[~21 2t3(1/2 rn)2]
E[sD(m-p1)] p2q2 (- - dt. [3

The diffusion for P2 thus becomes, as r and s get larger,

E(dP2) p- v dt

r [2 0m m)]
[4]

E(dp22) = p2q2dt.

This diffusion has a small drift coefficient (of order 1/r), so

we can approximate the fixation probability given an initial fre-
quency for the Ml allele of P2 as

H(p2) = P2 + (vj-v2)[1/2 - a(v1+v2+&l] [5]

where

a = 2(1/2-M)2/[m(1_m)]

V = P2Vl + q2V2-

This is the main result.

DISCUSSION
The asymptotic analysis yields an expression for the fixation
probability of the M1 allele. If selection could not operate on

the modifier locus, we would expect HI(P2) = P2 as for a neutral
allele. This is clearly not the case. The main property of this
model is that there exists a mutation rate toward which selection
always moves. This rate is

v* = m(1-m)/4(1/2_M)2, [6]

or, in terms ofthe actual, rather than the scaled, mutation rates,

U rn(1-rn) [7]

8*=2N *4(1/2-M)2[7
This is easily verified by setting v2 = v* in Eq. 5 and noticing

that Hl(P2) is always less than P2. Thus, any allele with a mutation
rate different from v* is selected against. This favored mutation
rate is highest when m = 1/2. When m = 1/2 the favored rate
is the highest achievable rate. This follows from the fact that the
mutation process is symmetric so that increasing the rate pushes
the allele frequency of the primary locus toward 1/2. As m ap-

proaches 0 or 1, the favored mutation rate decreases. In this
instance we are approaching the case of mutation-selection bal-
ance where we know (6) that selection will always decrease the
mutation rate.

Diffusion process 4 and the fixation probability 5 are both
independent of the strength of selection, s, on the primary lo-
cus. This appears to be because of two conflicting influences of
s on the process. On the one hand, s is going to affect the total
selection in the system, so increases in s should lead to increased
selection at both the primary and modifier loci. However, as

s increases, the allele frequency Pi is held more closely to m so

that the term (pi-rm) in E(dp2) becomes smaller. It just so hap-
pens that this term is exactly of order l/s, so s times this term
becomes independent of s.

Notice that the favored (unscaled) mutation rate u* is pro-

portional to 1/2N. As population size increases, the favored
mutation rate becomes quite small. Because selection on mu-

tation rates in the case ofmutation-selection balance always tries

to minimize mutation rates (6) and because in the present model
we have u* = 0 (1/2N) (except for the special case m = 1/2)
we might expect mutation rates in nature to be of order 1/2N
or smaller if most ofthe selection were in response to heterotic
and deleterious alleles. It would be impossible to check this
prediction accurately without a fairly exact estimate ofeffective
population sizes and the relative amounts of heterotic versus

deleterious allele selection. Nonetheless, it does seem implau-
sible that mutation rates would be adjusted to values that are

independent of population size as assumed by various versions
of the neutral allele theory.
A simple calculation shows that the favored mutation rate v*

is also the mutation rate that maximizes the mean value of the
population mean fitness to the same order of approximation as

the other results. It should be cautioned that several of these
qualitative results may be due to the nature of the approxi-
mations or the symmetry of the mutation process.

Finally, it should be noted that this form of selection is very
weak. However, if the modifier locus affects not one but a large
number ofprimary loci, we might expect selection on the mod-
ifier locus to be cumulative and thus to be much stronger than
in the single primary locus example.

COMPUTER SIMULATIONS
Some effort has been made to document this form of selection
as well as to check the approximations presented in this paper
by using computer simulations. Simulating this model turns out
to be quite time-consuming for a number of reasons. The
strength of selection is quite small, so a large number of rep-
lications are needed to see any effect at all. Because the aim is,
in part, to check the approximate analysis, simulations with
large values of r and s but with large enough population sizes
so that the parameters si and R are small enough to expect rea-

sonable agreement with a diffusion model are required. The
time required to complete these simulations increases not as

N but as N2 because it takes on the order of N generations to
reach fixation, starting from a moderate allele frequency. We
cannot expect to get better agreement with the approximations
by increasing r and s without also increasing N. Increasing N
beyond about 250 makes the simulations intolerably slow.
Nonetheless, some results are presented which illustrate that
the qualitative features ofthe approximate analysis are certainly
borne out although the quantitative agreement is not always as

good as we would hope, for the reasons cited above.
The simulations were performed on a Z-80, S-100 based

microcomputer with a 4-MHz clock. The parts of the program
concerned with selection and drift were written in assembly
language to achieve maximal speed. Furthermore, a hardware
pseudorandom number generator was constructed based on a

32-stage maximal-length sequence-generator using TL shift
registers to provide pseudorandom numbers as quickly as the

Table 1. Simulation results for fixation probabilities
m r s N Observed Expected

0.5 10 20 128 0.537 ± 0.015 0.550
0.5 20 10 128 0.518 ± 0.015 0.525
0.5 20 20 128 0.525 ± 0.015 0.525
0.5 20 30 128 0.538 ± 0.015 0.525
0.3 20 50 128 0.515 ± 0.015 0.501
0.3 20 50 256 0.507 ± 0.015 0.501
0.1 20 100 128 0.480 ± 0.015 0.341
0.1 20 100 256 0.459 ± 0.015 0.341

For each case, uv = 4.0 and v2 = 0.01 with 4000 replicates. The initial
frequency of the modifier allele was P2 = 0.5.
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microprocessor could utilize them. Because the individuals
were represented as locations in memory, no floating point op-

erations were required and the simulations proceeded at a
speed as fast as all but the largest computers. Nonetheless, a
single simulation ofa population of size 256 with 4000 replicates
took about 80 hr to complete.

In all of the simulations, the initial conditions were Pi = P2
= 0.5 and D = 0. The values for the parameters which are not
listed in Table 1 are v1 = 4.0 and v2 = 0.01. Each simulation
involved 4000 replicates. The 95% confidence limits of the es-

timated fixation probabilities are provided. Under these con-

ditions if H(0.5) > 0.5, selection tends to increase the mutation
rate whereas if H1(0.5) < 0.5, selection tends to decrease the
rate.

As Table 1 illustrates, the selection is quite weak but the
agreement with the approximate fixation probabilities is ac-

ceptable except for the very asymmetric case m = .0.1 where
the agreement is not very good. The problem for this case is

probably that we require sm(1-m) to be large to get agreement
with the approximations yet, when we make sm(l-m) large, the
absolute values of the selection coefficients are too large to pro-

vide good agreement with the diffusion equation. Notice that
the agreement with the predictions improves in both m = 0.1
and =0.3 cases when the population size is doubled. The sim-
ulations illustrate that selection shifts from increasing the mu-

tation rate to decreasing the rate as m shifts from 0.5 to 0.1.
I am very grateful to Gordon Ellis for his help in programming the

Z-80 and for assistance in the construction ofthe hardware random num-
ber generator.
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