

SUPPLEMENTARY ONLINE DATA

A new principle of oligomerization of plant DEG7 protease based on interactions of degenerated protease domains

Holger SCHUHMANN, Ulrike MOGG and Iwona ADAMSKA1

Department of Physiology and Plant Biochemistry, University of Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany

Table S1 DEG7 orthologues and their accession numbers (SwissProt Protein Database)

*JGI protein ID, no entry in SwissProt Database; **GenBank® accession number, no entry in

Organism	Accession number
Arabidopsis thaliana	Q8RY22
Aspergillus nidulans	Q5B1Z4
Aspergillus niger	A5AB13
Aspergillus oryzae	Q2TYB1
Aureococcus anophagefferens	322*
Candida albicans	Q5A946
Chlamydomonas reinhardtii	A8JH35
Chlorella sp. NC64A	37665*
Emiliania huxleyi (1)	452178*
Emiliania huxleyi (2)	245118*
Gibberella zeae (1)	UPI000023D1E1
Gibberella zeae (2)	UPI000023F481
Glycine max	AK287315**
Magnaporthe grisea	A4RJH4
Micromonas pusilla	35996*
Neosartorya fischeri	A1DP85
Neurospora crassa	Q7S9D2
Oryza sativa	B9F2C1
Penicillium marneffei	B6QAL6
Phaeosphaeria nodorum	Q0UY70
Physcomitrella patens (1)	A9TIB2
Physcomitrella patens (2)	A9RQ61
Phytophtora capsici	27218*
Phytophtora soja (1)	133655*
Phytophtora soja (2)	199402*
Podospora anserina	B2ASP9
Populus trichocarpa (1)	B9GV35
Populus trichocarpa (2)	B9H390
Populus trichocarpa (3)	B9H391
Pyrenophora tritici-repentis	B2WNT3
Saccharomyces cerevisiae	P53920
Schizosaccharomyces japonicus (1)	B6K3R7
Schizosaccharomyces japonicus (2)	B6JWG1
Schizosaccharomyces pombe (1)	Q9P7S1
Schizosaccharomyces pombe (2)	074325
Sclerotinia sclerotiorum	A7E9G4
Selaginella moellendorffii	165477*
Solanum lycopersicum	AK321684**
Sorghum bicolor	5004613*
Vanderwaltozyma polyspora	A7TGI3
Volvox carteri	79278*

Table S2 List of oligonucleotides used as PCR primers

Name	Sequence $(5' \rightarrow 3')$
0724	GGTACTAAAGGTGGTTCAGCTGGTTCTCCCGTCATTG
0725	CAATGACGGGAGAACCAGCTGAACCACCTTTAGTACC
0734	TATGTCGACTTACTGCAAGGCTTTC
0740	CACCATGGGAGATCCGTTGGA
0747	GCGCCGCGGTTACTGCAAGGCTTTC
0765	GCGTTACTTATCCGTCCGCGAGTC
0767	GCGTTATGAGTGTAAATCTTGTACTGATA
0771	GCGTTATTGTTTCTTTGCTTCTGAGCC
0774	CACCTCCGTTGCCACCGCTGAAGATTG
0775	CACCGATAAGCCAAAAGCAGTTCATATTC
0776	CACCTCAAAAGCCCGGAGTTTTGGTC
0777	CACCGAACCCATGCATGAAGTGAATG
0793	CACCGGCAGTGAATTTAAATCTGATG
0797	CGCTTATCCATTTCCACCGGTTATGATT
0799	CGCTTAATCTTGTTTCAGAGTCAATACTC

¹ To whom correspondence should be addressed (e-mail iwona.adamska@uni-konstanz.de).

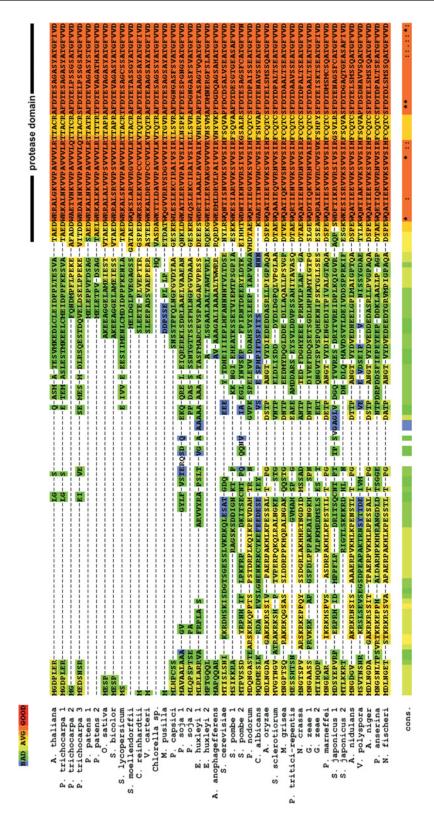


Figure S1 M-Coffee multiple sequence alignment of the amino acid sequences of the DEG7 orthologues used in the present study

The approximate position of the domains (as determined by using the InterProScan and HHpred prediction servers) are indicated by black bars on top of the alignment. Conserved residues of catalytic triad are shown as blue letters above the alignment. For full names of organisms, see Supplementary Table S1. cons., conserved; *, identity; *, conserved replacement*, ., non-conserved replacement*.

Continues...

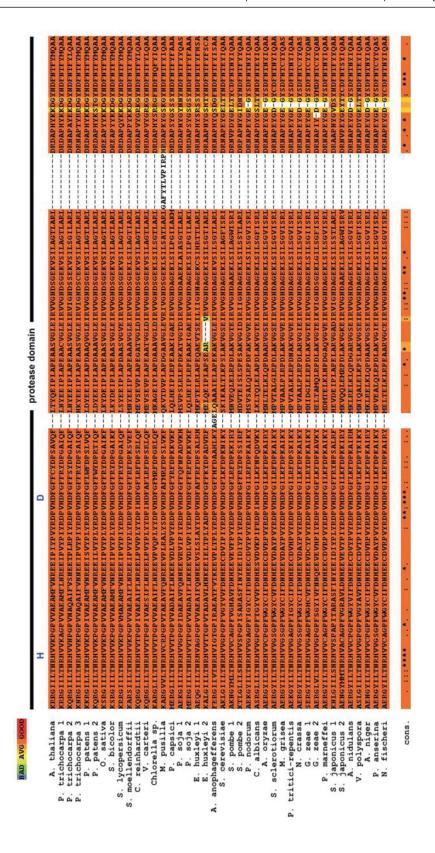


Figure S1 Continued

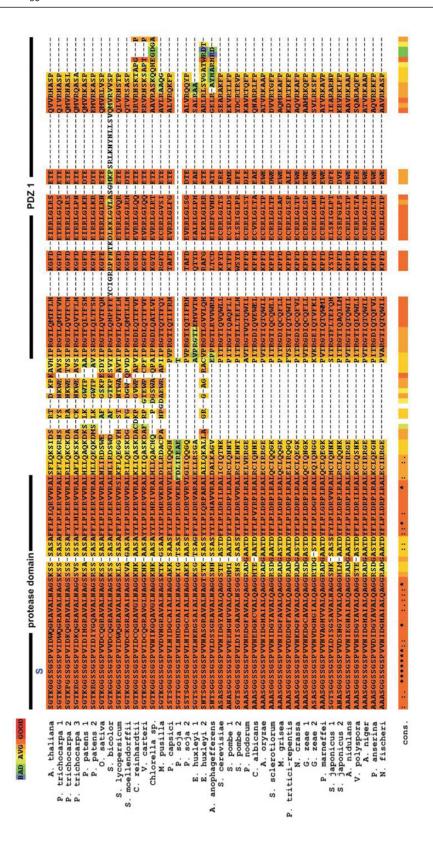


Figure S1 Continued

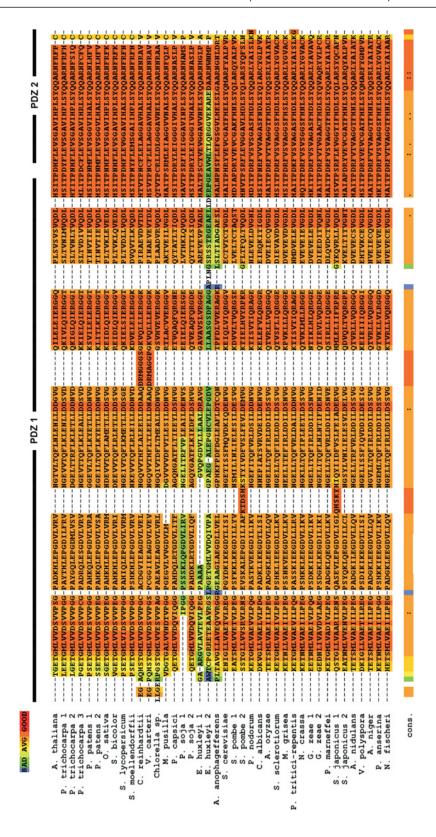


Figure S1 Continued

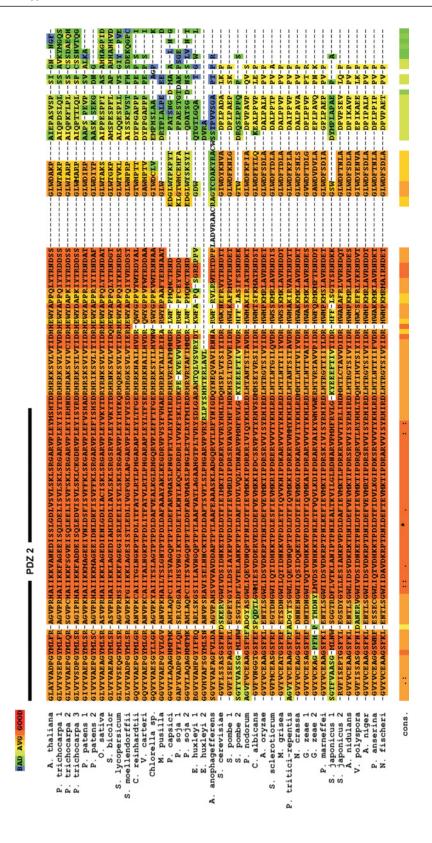


Figure S1 Continued

Figure S1 Continued

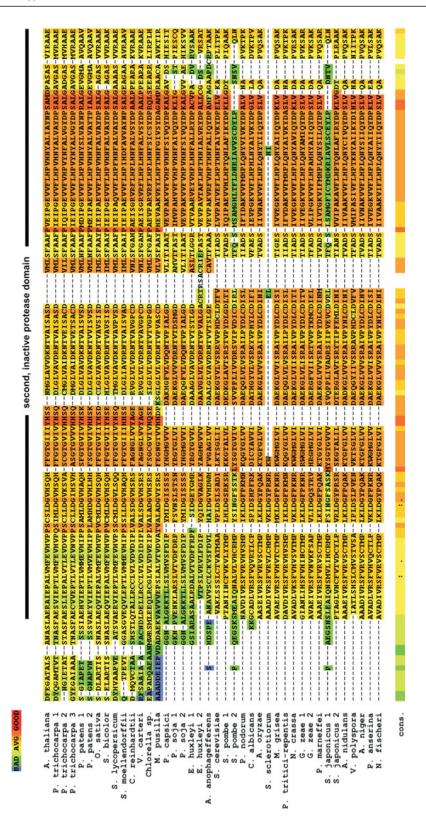


Figure S1 Continued

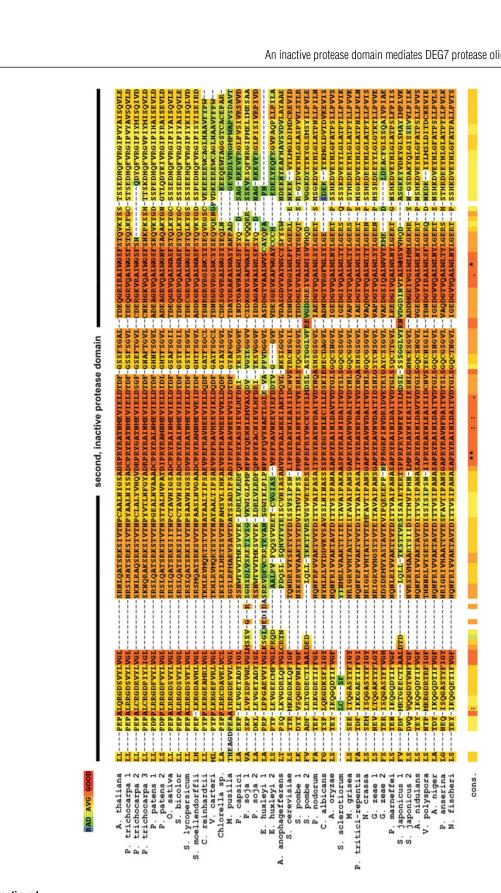


Figure S1 Continued

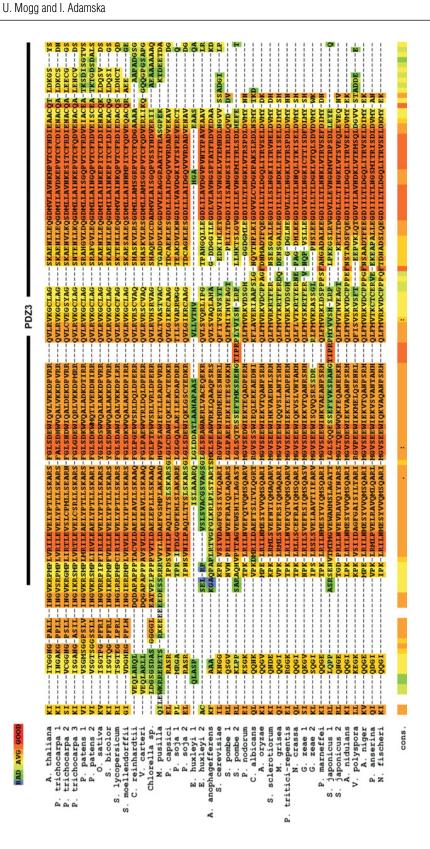


Figure S1 Continued

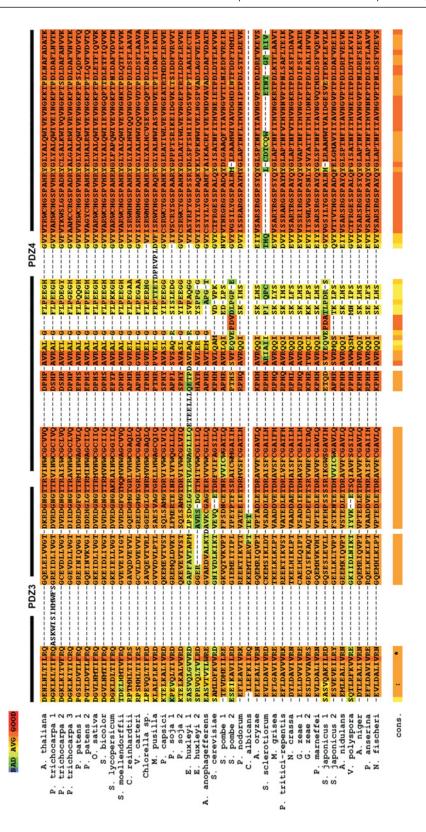


Figure S1 Continued

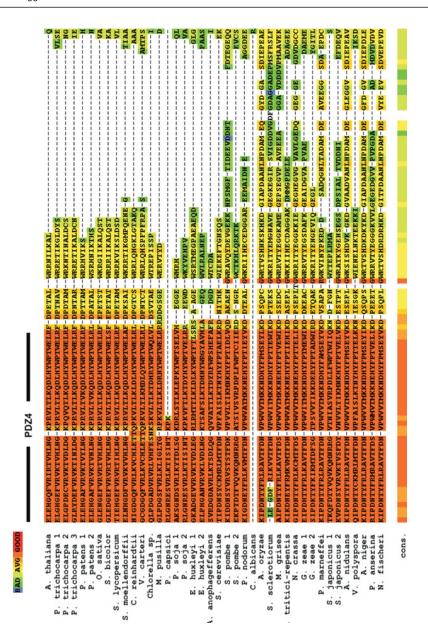


Figure S1 Continued

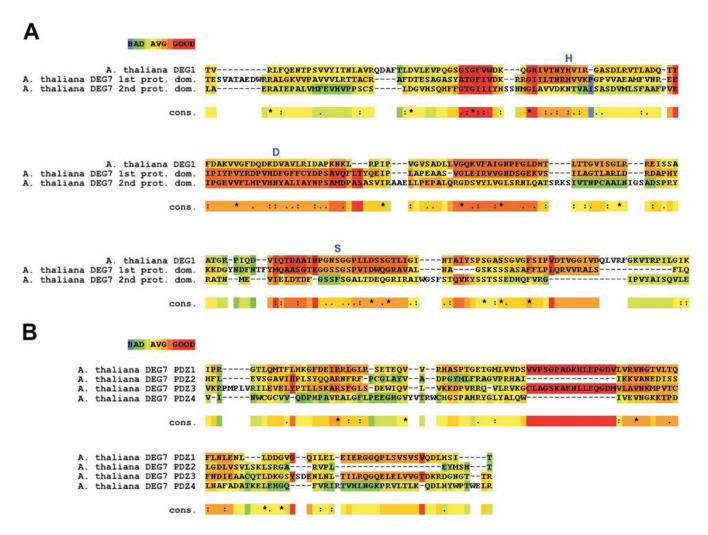


Figure S2 M-Coffee multiple sequence alignment of the amino acid sequences of protease domains and PDZ domains of A. thaliana DEG7

(A) Alignment of the first (active) protease domain (A. thaliana DEG7 1st prot. dom.) and the second (degenerate) protease domain (A. thaliana 2nd prot. dom.). The sequence of the protease domain of A. thaliana DEG1 is included to facilitate identification of catalytic side chains (shown in blue above the alignment). (B) Alignment of the PDZ domains. PDZ1 and PDZ3 both contain a stretch of additional amino acids not present in PDZ2 and PDZ4, indicating a whole-gene-duplication event as presented in Figure 1 of the main text. cons., consensus: *, identity; :, conservative replacement; ., non-conservative replacement.

A. thaliana	AEDWR-RALGKVVPAVVVLRTTACRAFDTESAGASYATGFIVDKRRGIILTN
G. max	AEDWR-KALNRVVPAVVVLRTTATRSFDTESAAASYATGFIVDKRRGIILTN
P. trichocarpa 1	AEDWR-KALNKVVPAVVVLRTTACRAFDTESAGASYATGFVVDKRRGIILTN
P. trichocarpa 2	ADDWA-ETVNKVVPAVVVLQTTTCRAFDTELPSSGSATGFVVDKQRGIILTN
P. trichocarpa 3	TDDWR-DAINKVVPAVVVLQTTACRSFDTELPSSGSATGFVVDKNRGIILTN
S. lycopersicum	AEDWR-KALSKVVPAVVVLRTTACRTFDTESAGCSSATGFVVDKRRGIILTN
P. patens 1	AEDWR-KALNKVVPAVVVLRTTATRAFDTEVAGASYSTGFVVDKKRGILLTN
P. patens 2	AELWR-KALKKVVPAVVVLRITTTRTFDTEVAGATHATGFVVDKQRGIILTN
O. sativa	AEDWR-RALALVVPSVVVLRTTAPRAFDTEVAGASYATGFVVDKSRGIILTN
S. bicolor	AEDWR-RALSRVVPSVVVLRTTAPRAFDTEVAGASYATGFVVDKSRGIILTN
S. moellendorffii	AEDWQ-KSLARVVRGVVVLRTTACRAFDTETASSGYATGFVVDKARSIILTN
C. reinhardtii	PEDWK-RSLEKVVPCCVVLKVTQTRAFDTEAAGSAYATGFIVDKQRGLILTN
V. carteri	TEDWK-KALDRVVPCCVVLKVTQTRAFDTEAAGSAYATGFIVDKQRGLILTN
M. pusilla	DATWQ-GVVRRVSDGVVVIKTTGVRAFDTESAGSAYATGFVVDKARGVVLTN
Chlorella sp. NC64A	SDAWK-TTLDAVVPAVVVLKVTQTRAFDTESAGSSYATGFVVDKARGLILTN
P. capsici	SKRWL-ESLEKCIRAIVSIRILSVRAFDGNGASFSVATGFVVDMERGLILTN
P. soja 1	KLDWK-ATLERVVPAIVSLKLNSPKFFDTESPGNGSATGFVVDAEKGIILTN
P. soja 2	SKRWL-QSLEKCIRAIVSIRLLSVRAFDGNGASFSVATGFVVDMERGIILTN
E. huxleyi 1	EESWD-RTIAAALPAVVAIKVNRVRAFDTASAGTVQATGFVVDAEQGIILTN
E. huxleyi 2	EKGWE-ETLERVAKGVVVVRVNSVMAFDMNERGFSLATGFVVDKALGIILTN
A. anophagefferens	RDVWE-RMLDRVLPAIVVIRVNYVKPFDGDQAGSAHATGFVVDFERGIIVTN
S. cerevisiae	YLRWQ-NTISNVVKSVVSIHFSQVAPFDCDSALVSEATGFVVDAKLGIILTN
S. pombe 1	SKKWK-ESIARVVKSVVSIRFSQVAAFDTDESGTGEASAFVVDAKNGYMLSN
S. pombe 2	HHTWD-NTIKNVVRSIVSIKGSALRSFDTESAGSFCATGFVVNKTLGLILSN
S. japonicus 1	QPSWD-FTIKRVVRSIVSIRGSVLRSFDTENAGSFCATGFVVDKNLGIILTN
S. japonicus 2	SGKWK-ESISRVVKSVVSIRFSQVASFDTDGAQTGEASAFIVDAENGYMMTN
P. nodorum	TAEWQ-KTIEGVVKSVVSIHFCQTCSFDTDPAISSEATGFVVDAEKGYILTN
C. albicans	NNKWA-ETITNVVNCVVSIHFSHVAPFDTENAVSSEATGFVVDASRGLILTN
A. oryzae	SPEWQ-ATIEEVVKSVVSIHFCQTCSFDTELSMSSQATGFVVDAERGYILTN
A. nidulans	SPEWQ-ATIEEVVKSVVSIHFCQTCSFDTELSMSSQATGFVVDAERGYILTN
A. niger	SPEWQ-ATIEEVVKSVVSIHFCQTCSFDTELSMSSQATGFVVDAENGYILTN
S. sclerotiorum	TAEWQ-AAIEQVVRNVVSIRFCQTCSFDTDPALTSEATGFVVDAERGYILTN
M. grisea	TVEWQ-ATIQKVVSNVVSIRFCQTCSFDTDAALTSEATGFVVDAERGYILTN
P. tritici-repentis	TAEWQ-RTIENVVKSVVSIHFCQTCSFDTDAAVSSEATGFVVDAEKGYILTN
N. crassa	TAEWQ-ATIENVVRNVVSIRFCQTCSFDTDPALTSEATGFVVDAERGYILTN
G. zeae 1	LGEWQ-DTIQKVVRNVVAIRFCQTCSFDTDAALTSEATGYVVDSERGYILTN
G. zeae 2	SEAWQ-RAIEKVVRCVVSVKFSHPYSFDTEISKTSEATGFIVDAERGLVLTN
P. anserina	TAEWQ-ETIQRVVRNVVSIRFCQTCSFDTDPALTSEATGFVVDAERGYILTN
N. fischeri	SPEWQ-ATIEKVVKSVVSIHFCQTCSFDTDLSMSSQATGFVVDAERGYILTN
P. marneffei	SPEWQ-ATIESVVKSVVSIHFCQTCSFDTDMSMCSQATGFVVDAERGYILTN
V. polyspora	YLKWQ-NTIAKVVKSVVSIHFSQVAPFDSDNAVVSQATGFVVDASLGIILTN
EcDegP	DSPFCQEG-SPFQSSPFCQGGQGGGGGQQQKFMALGSGVIIDADKGYVVTN
HsHtrA2	QYNFIADVVEKTAPAVVYIEILDRHPFLGREVPISNGSGFVVAAD-GLIVTN
AtDEG1	TVRLFQENTPSVVYITNLAVRQDAFTLDVLEVPQGSGSGFVWDKQ-GHIVTN
	.:.:*

Figure S3 Alignment of the amino acid sequences of the active protease domains of DEG7 proteins from higher plants, mosses, algae and fungi

Amino acid sequences of DEG7 active protease domains were aligned with those of the protease domains of DegP from *Escherichia coli* (EcDegP), human HtrA2 (HsHtrA2) and Deg1 from *Arabidopsis thaliana* (AtDEG1) as described in the Experimental section of the main text. For full names of organisms, see Supplementary Table S1. Identical residues are indicated by asterisks. Active-site residues of the catalytic triad are in bold. Conservative replacements are indicated by : symbols; non-conservative replacements are indicated by . symbols.

Continues...

2 11 11	D				a	
A. thaliana		PVVAEAMFVNRE				
G. max		PVVAEAMFLNRE				
P. trichocarpa 1		PVVAEAMFLNRE				
P. trichocarpa 2		PVNAQAIFVSNE				
P. trichocarpa 3		PVVAQAIFVNNE				~
S. lycopersicum		PVMAEAMFVNRE				~
P. patens 1		PIVAEAMFVNRE				
P. patens 2		PVVAEAMFVNRE				~
O. sativa		PVVAEAMFVNRE				
S. bicolor		PVVAEAMFVNRE				
S. moellendorffii		PVVAEAIFLNRE				
C. reinhardtii		PIVAEAIFLNRE				
V. carteri	R H VVTPG	PIVAESIFLNRE	ELPVYPLYYDP	IH D FAFLE	RFDPSR	LQFMEV
M. pusilla	R H VCRPG	PVTAEAVFQNRE	EVPLRALYSDP	VH D FAFMI	RFDPSL	VKFQKV
Chlorella sp NC64A	R H VVTPG	PVVAEAIFLNRE	EVPVQPLYYDP	VH D FGFMI	RFDPGR	LQFMKA
P. capsici	R H VVTPG	PVVADAIFLNKE	EVDLVPVYRDP	VH D FGFYI	RFDPKK	VKFLQL
P. soja 1	R H VVGPG	PIDAEAVFQNNE	EVRVIPIYRDP	VHDFGFF	QFNPAD	VKHMSV
P. soja 2	R H VVTPG	PVVADAIFLNKE	EVDLVPIYRDP	VH D FGFFI	RFDPKK	VKFLQL
E. huxleyi 1	R H VAGPG	PVVAEAIFQNNE	EVSLSLAYYDP	VH D FAFFI	RFDPSA	LRHMKP
E. huxleyi 2	R H VVTTG	PVTADAVLHNKE	EIELTPLYADP	VH D FGFF	KYDPAD	VRFMEL
A. anophagefferens	RHVIGTG	PIRAEATFVTKE	EVPLTPLYRDP	VH D FGFFI	HFDAAH	LKYAGELQA
S. cerevisiae	R H VVGPG	PFVGYVVFDNHE	ECDVIPIYRDP	VH D FGFLI	KFDPKN	IKYSKI
S. pombe 1	R H VVCAG	PFVGHAVFDNHE	EVEVFPVYRDP	VH D FGFLI	RFDPKK	IRYMNV
S. pombe 2	R H VVSPG	PISARASFINYE	EIDIYPIYRDP	VH D FGFFI	RYDPSS	IRFHDV
S. japonicus 1	RHVVSPA	PITARASFINYE	EIDIYPLYRDP	VH D FGFFI	RYNPSA	LRFHEV
S. japonicus 2	RHVACAG	PFVGRAVLDNHE	EVEVYPIYRDP	VH D FGILE	KFDPKK	IRYMKV
P. nodorum	R H VVGAG	PFIGYCIFDNHE	ECDVYPVYRDP	VH D FGILE	RFDPKA	IKYMSV
C. albicans	R H VVGPG	PFTGYVVFDNHES	SVDVKPIFRDP	IHDFGILE	KFNPQE	VKYLKL
A. oryzae	RHVVCPG	PFWGYCIFDNHE	ECDVRPVYRDP	VH D FGIL	KFDPKA	IRYMNL
A. nidulans	R H VVCPG	PFWGYVIFDNHE	ECDVYPVYRDP	VH D FGFL	KFDPKA	IRHMKL
A. niger	R H VVCPG	PFWGYCIFDNHE	ECDVRPVYRDP	VH D FGILE	KFDPKA	IRYMKL
S. sclerotiorum	R H VVGSG	PFWGYCVFDNHE	EVDAYPVYRDP	VH D FGILE	RFDPKA	IKYMPV
M. grisea	R H VVGSG	PFWGYCIFDNHE	EVDAYPVYRDP	VH D FGILE	KFDPKA	IKYMPV
P. tritici-repentis	R H VVGAG	PFIGYCIFDNHE	ECDVHPVYRDP	VH D FGILE	RFDPSK	IKYMPV
N. crassa		PFWGYCIFDNHE				
G. zeae 1		PFWGHCVFDNHE				
G. zeae 2		PFSGYIVFNNQE				
P. anserina		PFWGYCVFDNHE				
N. fischeri		PFWGYCIFDNHE				
P. marneffei		PFWGYCIFDNHE				
V. polyspora		PFVGYAVFDNHE				
EcDegP		ATVIKVQLSDGR				
HsHtrA2		RRRVRVRLLSGD'				
AtDEG1		ASDLRVTLADQT'				
	**	:		*		

Figure S3 Continued

A. thaliana	QEIPLAPEAA-SVGLEIRVVGNDSGEKVSILAGTLARLDRD
G. max	EEIPLAPEAA-CVGLEIRVVGNDSGEKVSILAGTLARLDRD
P. trichocarpa 1	EEIPLAPEAA-CVGLEIRVVGNDSGEKVSILAGTLARLDRD
P. trichocarpa 2	EEIPLAPEAA-SVGLEIRVIGNDSSEKVSILSGILARLDRN
P. trichocarpa 3	EEIPLAPEAA-SVGLEIRVIGNDSCEKVSILAGTLARLDRN
S. lycopersicum	EEIPLAPDAA-SVGVEIRVVGNDSGEKVSILAGTLARLDRD
P. patens 1	EEIPLAPDAA-QVGLEIRVVGNDSGEKVSILAGTLARLDRD
P. patens 2	EEIPLAPDAA-AVGLEIRVVGNDSGEKVSILAGTLARLDRD
O. sativa	DEIPLAPEAA-SVGLEIRVVGNDSGEKVSILAGTLARLDRE
S. bicolor	DEIPLAPEAA-SVGLEIRVVGNDSGEKVSILAGTLARLDRE
S. moellendorffii	EEIPLAPEAA-AVGLEIRVVGNDSGEKLSILAGTIARLDRD
C. reinhardtii	SEVPLAPEGA-TVGLDIRVVGNDSGEKVSILAGTLARLDRD
V. carteri	SEVPLAPEAA-TVGLDIRVVGNDSGEKVSILAGTLARLDRD
M. pusilla	TDVPLAPDGA-AVGLEVRIVGNDSGEKLSILSATLARLGAFYTLVPIRPHRD
Chlorella sp. NC64A	GEIPLAPDAA-AVGLDIRVVGNDSGEKLSILSGTLARLDRD
P. capsici	HEIPLRPEAA-KIGAEIRVVGNDAGEKLSILPGILAKMDRD
P. soja 1	PSLRLEPDKA-TVGTDIRVVGNDAAEKLAIASGTLARLDRD
P. soja 2	HEIPLRPEAA-KIGAEIRVVGNDAGEKLSILPGILAKLDRD
E. huxleyi 1	TELRLAPEQA-EVTSEILIIGNNAGEKCSIHRTTLARLDRN
E. huxleyi 2	QEIPLAPSEA-RVRVVGNDAGEKISILSGTIARLDRA
A. anophagefferens	AAIELAPEKA-KVGLEIRVVGNDAGEKVSILSGTLARLDRN
S. cerevisiae	KALTLKPSLA-KVGSEIRVVGNDAGEKLSILAGFISRIDRN
S. pombe 1	EQLELRPDLA-KVGTEIRVVGNDAAEKLSILAGWISRIDRN
S. pombe 2	TEISLSPESA-KVGIDIRIIGNDAGEKLSILSSTLARLDRP
S. japonicus 1	DEIPLAPELA-RVGADIRVIGNDAGEKLSILSSTLARLDRA
S. japonicus 2	QQLEMRPDLA-KVGKEIRVVGNDAAEKLSILAGWISRVDRN
P. nodorum	SALQLRPDFA-KVGVEIRVVGNDAGEKLSILSGVISRLDRN
C. albicans	TQLELAPDLA-KVGTEIRVVGNDAGEKLSILSGFISRLDRN
A. oryzae	TELKLQPDAA-RVGSEIRVVGNDAGEKLSILSGVISRLDRN
A. nidulans	RELKLQPDGA-RVGSEIRVVGNDAGEKLSILSGVISRLDRN
A. niger	RELKLQPDAA-KVGSEIRVVGNDAGEKLSILSGVISRLDRN
S. sclerotiorum	TALGLRPDLA-KVGSEIRVVGNDAGEKLSILSGVISRLDRN
M. grisea	AALPLRPDLA-KVGVEIRVVGNDAGEKLSILSGVISRLDRN
P. tritici-repentis	TALKLRPDNA-KVGVEIRVVGNDAGEKLSILSGVISRLDRN
N. crassa	AALPLRPDLA-RVGIEIRVVGNDAGEKLSILSGVISRLDRN
G. zeae 1	DGLELRPDLA-KVGTEIRVVGNDAGEKLSILSGIISRLDRN
G. zeae 2	TAMQLRPDLA-KVGTEIKVIGNDSGEKLGILSGFISRLDRN
P. anserina	EALQLRPDLA-KVGIEIRVVGNDAGEKLSILSGVISRLDRN
N. fischeri	TELKLRPEAA-RVGCEIRVVGNDAGEKLSILSGVISRLDRN
P. marneffei	TELKLNPDGA-QVGVEIRVVGNDAGEKLSILSGVISRLDRN
V. polyspora	QALELKPSLA-KVGSEIRVVGNDAGEKLSILSGFISRLDRN
EcDegP	TAIKMADSDALRVGDYTVAIGNPFGLGETVTSGIVSALGRS
HsHtrA2	PTLPLGRSADVRQGEFVVAMGSPFALQNTITSGIVSSAQRP
AtDEG1	RPIPVGVSADLLVGQKVFAIGNPFGLDHTLTTGVISGLRRE
	::. :*. ::: *

Figure S3 Continued

A. thaliana	APHYKKDGYNDFNTFYMQAASGTKGGS S GSPVIDWQGRAVALNAGSKSS-SA
G. max	${\tt APHYKKDGYNDFNTFYMQAASGTKGGS} \textbf{S} {\tt GSPVIDWQGRAVALNAGSKSS-SA}$
P. trichocarpa 1	APHYKKDGYNDFNTFYMQAASGTKGGS S GSPVIDWQGRAVALNAGSKSS-SA
P. trichocarpa 2	${\tt APAYEKDGYNDFNTFYLQAASGTKPGS} {\tt S} {\tt GSPVIDKQGRAVALNAGSSSS-SS}$
P. trichocarpa 3	${\tt APTYRRDGYNDFNTFYMQAASGTKRGS} \textbf{S} {\tt GSPVIDKQGRAVALNAGGSVS-SS}$
S. lycopersicum	APQYKKDGYNDFNTFYMQAASGTKGGS S GSPVIDWQGRAVALNAGSKLS-SA
P. patens 1	APHYKKDGYNDFNTFYMQAASGTKGGSSGSPVIDIHGRAVALNAGSKSA-SA
P. patens 2	APHYKSTGYNDFNTFYMQAASGTKRGSSGSPVIDIYGQAVALNAGSRSS-SA
O. sativa	APYYKKDGYNDFNTFYMQAASGTKGGSSGSPVVDCQGRAVALNAGSKSS-SA
S. bicolor	APYYKKDGYNDFNTFYMQAASGTKGGS S GSPVVDCQGRAVALNAGSKSS-SA
S. moellendorffii	APPYKKDGYNDFNTFYMQAASGTKGGSSGSPVVDCKGRAVAINAGSKVA-GA
C. reinhardtii	APVYGRKGYNDFNTFYLQAASGTKGGSSGSPVIDCQGRAVGLNAGGKNK-AA
V. carteri	APVYGRKGYNDFNTFYLQAASGTKGGS S GSPVIDCQGRAVGLNAGGKNK-AA
M. pusilla	APKYGSKGYNDFNTFYIQAASGTKGGS S GSPVVDVNGRAVALNAGSKTK-GS
Chlorella sp. NC64A	APHYSRRGFNDFNQFYIQAASGTKGGS S GSPVVNIKGQAVGLNAGGKNK-AA
P. capsici	APSYGSSSYNDFNTFYFAAASSTSGGS S GSPVLNIDGCAIALNAGGAKK-SA
P. soja 1	APNYGYNNYNDFNTFYYQASSGTTGGS S GSPVLNHDGDAIALNAGGKIG-TS
P. soja 2	APSYGSGSYNDFNTFYFAAASSTSGGS S GSPVLNIDGCAIALNAGGAKK-AA
E. huxlevi 1	APHYSRSSYNDFNTFYFHSASGTSGGS S GSPVLNKRGSAIALNAGGKSG-TS
E. huxleyi 2	APNYGSHTYNDFNTFYFSCASNTSGGS S GSPVVNASGRAVALNAGTSTK-SA
A. anophagefferens	APHYQSDGFNDFNTFYISAASNTSGGS S GSPVLDSSGRAVALNAGGSNN-SS
S. cerevisiae	APEYGELTYNDFNTEYIQAAASASGGS S GSPVVNIDGYAVALQAGGSTE-AS
S. pombe 1	VPDYGELTYCDFNTNYIQAAANASGGS S GSPVVERNGNVVALQAGGHMI-AA
S. pombe 2	APNYGIDNYNDFNTFYYQAASGTSGGS S GSPVLDISGAAVALNSGGSNS-SA
S. japonicus 1	APNYGVDSYNDFNTFYYQAASGTSGGS S GSPVLDISGSAVALNAGGSNK-SA
S. japonicus 2	VPEYGEYTYCDFNTSYIQAAANASGGS S GSPVVDSNGYVVALQAGGHLM-AA
P. nodorum	APEYGE-GYSDFNTNYIQAAAAASGGS S GSPVVNRDGFAVALQAGGRADGAA
C. albicans	APDYGSLTYNDFNTEYIQAAAAASGGS S GSPVVNEDGKCVALQAGGHTE-AA
A. oryzae	APEYGE-GYSDFNTNYIQAAAAASGGS S GSPVVNIDGHAIALQAGGRADGAA
A. nidulans	APEYGD-GYSDFNTNYIQAAAAASGGS S GSPVVNIEGNAIALQAGGRADGAA
A. niger	APEYGD-GYSDFNTNYIQAAAAASGGS S GSPVVNIDGHAIALQAGGRADGAA
S. sclerotiorum	APEYGD-GYCDFNTNYIQAAAAASGGS S GSPVVNIDGYAVALQAGGRSDGAA
M. grisea	APEYGE-GYSDFNTCYYQASAAASGGS S GSPVVNIDGFAVALQAGGRADGAS
P. tritici-repentis	APEYGE-GYSDFNTNYIQAAAAASGGS S GSPVVDRDGFAVALQAGGRADGAA
N. crassa	APEYGD-GYSDFNTCYYQASAAASGGS S GSPVVNKDGFAVALQAGGRADGAS
G. zeae 1	APEYGE-GYSDFNTCYYQANAAASGGS S GSPVVNKDGCAVALQAGGRSDGAS
G. zeae 2	APIY-D-GYMDFNTCYYQANASASGGS S GSPVVNVDGHGIALQAGGRTD-GS
P. anserina	APEYGE-GYSDFNTCYYQASAAASGGS S GSPVVDIDGYAVALQAGGRSDGAS
N. fischeri	APEYGD-GYCDFNTNYIQAAAAASGGS S GSPVVNIDGHAIALQAGGRADGAA
P. marneffei	APEYGE-GYSDFNTNYIOAAAAASGGS S GSPVVNVAGHVVALOAGGRADGAA
V. polyspora	APDYGELTYNDFNTEYIQAAAAASGGS S GSPVVNSDGYAVALQAGGSTE-AS
EcDegP	GLN-AEN-YENFIOTDAAINRGNSGGALVNLNGELIGINTAILAPDGG
HsHtrA2	ARDLGLPQTNVEYIQTDAAIDFGN S GGPLVNLDGEVIGVNTMKVT
AtDEG1	ISSAATGRPIQDVIQTDAAINPGNSGGPLLDSSGTLIGINTAIYSPSGA
	: *. * *::: * :.:::

Figure S3 Continued

A. thaliana		SAFFLPLQRVVRALSFLQKS	
G. max		SAFFLPLERVVRALRFLQKGS	
P. trichocar		SAFFLPLERVVRALEFLQK	
P. trichocar	pa 2	SAFYLPLERVVRALRLLQKC	K
P. trichocar	pa 3	SAFYLHLERVVRALAFLQKS	K
S. lycopersi	cum	SAFFLPLERVVRSLKFLQE	
P. patens 1		SAFFLPLERVVRALHLLQAQ	K
P. patens 2		SAFFLPLERVVRALHLLQEQ	
O. sativa		SAFFLPLERVVRALNLIRD	
S. bicolor		SAFFLPLERVVRALNLIRDS	
S. moellendo	rffii	SAYFLPLDRVVRALRILQES	K
C. reinhardt	ii	SAYYLPLERVVRALKLIQAS	K
V. carteri		SAYYLPLERVVRALKLIQASKDAFRPGTEWP-CPF-	-IP
M. pusilla		AAYYLPLHRVKRALDLLRDACPA-	-NP
Chlorella sp	. NC64A	SAYYLPLHRIVRALHLLQACHQPDGSWA-QPA	-IP
P. capsici		ASFYLPLDRVVRVLRLIQQGNP	-VP
P. soja 1		ASFYLPLDRVKRAFDLIREAET	-IP
P. soja 2		SSFYLPLDRVVRVLGLIQQGQP	-VP
E. huxleyi 1		AGFFLPLDRVARALELLRSGAA	-VP
E. huxleyi 2		SSYYLPLQRPARALALLQKALLAGRGAGRAC-	
A. anophagef	ferens	ASYYLPLHAVVRALDALKAG	V
S. cerevisia	е	TDFFLPLDRILRALICIQTNKP	-IT
S. pombe 1		TDYFLPLDRPLRALRCLQNNTP	-IT
S. pombe 2		SSFYLPLDRVVRALRCIENNTP	-IT
S. japonicus	1	SSFYLPLDRVVRALHCIQNNKS	-IT
S. japonicus	2	TDYFLPLDRPLRALRCLQQNKP	-ТТ
P. nodorum	_	TDYFLPLDRPLRALELVRRGEA	-VT
C. albicans		TDYFLPVYRPLRALRCIQNNEP	-IT
A. oryzae		TDYFLPLDRPLRALECIRRGEP	-VT
A. nidulans		TDYFLPLDRPLRALECIRRGEP	-VT
A. niger		TDYFLPLDRPLRALECIRRGEP	-VT
S. sclerotio	rum	TDYFLPLDRPLRALQCIQQGKP	-ТТ
M. grisea	Lan	TDYFLPLDRPLRALQCLQQGKP	-тт
P. tritici-r	enentis	TDYFLPLDRPLRALELIRQGQF	-VS
N. crassa	срепеть	TDYFLPLDRPLRALKCLQEGKP	- T T
G. zeae 1		TDYFLPLDRPLRALQCIQNGKP	т.т
G. zeae 2		TDYFLPLDGPLRALKQIQNGGK	-VK
P. anserina		TDYFLPLDRPLRALKCLQEGNP	_ T T
N. fischeri		TDYFLPLDRPLRALECIRRGEP	_777
P. marneffei		TDYFLPLGRPLRALQCLQEGKP	_VA
V. polyspora		TDFFLPLDRILRALKCLQSNKP	_ T T
EcDegP		NIGIGFAIPSNMVKNLTSQMVEYGQVKRG-ELGI	MCT
HsHtrA2		-AGISFAIPSDRLREFLHRGEKKNSSGISGSQRRYIG-	
AtDEG1		SSGVGFSIPVDTVGGIVDQLVRFGKVTRP-ILG-	
VCDEGI		2204.01.401.4001.4001.4004.1Kb-1FG-	TIV

Figure S3 Continued

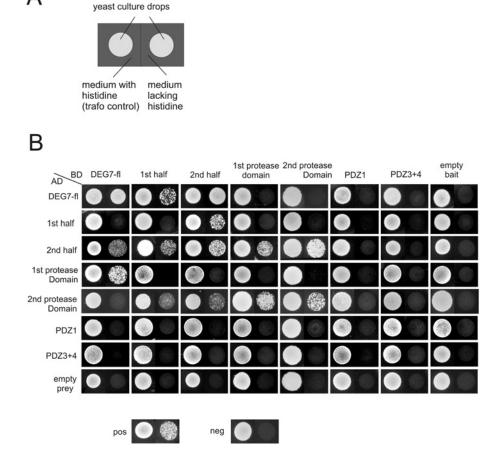


Figure S4 Y2H assay shows that oligomerization of DEG7 is mediated by the second (degenerated) protease domain (extended version)

(A) Schematic outline of the experiment. Yeast drop cultures on medium containing histidine, but lacking tryptophan and leucine were used as transformation controls, indicating that the strain contains both the AD and the BD vector. (B) Y2H assay as summarized in Table 1 and Figure 4 of the main text. Empty AD and BD vectors were used as autoactivation controls. Every yeast strain growing on histidine-free medium contains the second protease domain in at least one construct. The AD-first half, BD-first half, AD-active protease domain, and BD-active protease domain constructs respectively mediated growth on histidine-free medium in at least some combinations, indicating that lack of gene expression in the combinations first half/first half and active protease domain/active protease domain is not due to a lack of protein expression. pos, positive control; neg, negative control.

Received 1 October 2010/19 January 2011; accepted 19 January 2011 Published as BJ Immediate Publication 19 January 2011, doi:10.1042/BJ20101613