C-ring requirement in flagellar type III secretion is bypassed by FlhDC upregulation

1 Supporting information

2

3 Supplemental Figure 1

4

Number of hook-basal-body (HBB) complexes as analyzed by C-ring-GFP microscopy and
hook immunostaining.

7 (A) Number of C-ring complexes as analyzed by FliG-GFP microscopy. A strain harboring a functional FliG-GFP fusion as well as the *flhDC* operon under arabinose control was grown in the 8 9 presence or absence of arabinose and analyzed by fluorescence microscopy. Upper panel: 10 distribution of C-rings per cell and exemplary images of cells expressing FliG-GFP in the absence 11 of arabinose (wildtype *flhDC* levels). Non-linear fitting of the Gaussian distribution was 12 employed (red line) and the average number of C-rings per cell is 5.2 ± 1.3 (n = 117). Lower 13 panel: distribution of C-rings per cell and exemplary images of cells expressing FliG-GFP in the 14 presence of arabinose (increased *flhDC* levels). Non-linear fitting of the Gaussian distribution was 15 employed (red line) and the average number of C-rings per cell is 7.8 ± 2.2 (n = 115). Scale bar is 16 2 µM.

17 (B) Number of C-ring complexes as analyzed by FliM-GFP microscopy. A strain harboring a 18 functional FliM-GFP fusion as well as several *flhD* promoter mutations was analyzed by 19 fluorescence microscopy. Upper panel: distribution of C-rings per cell and exemplary images of a 20 strain expressing FliM-GFP with a wildtype *flhD* promoter. Non-linear fitting of the Gaussian 21 distribution was employed (red line) and the average number of C-rings per cell is 5.6 ± 2.2 (n = 22 266). Middle panel: distribution of C-rings per cell and exemplary images of a strain expressing FliM-GFP with a perfect -10 box of the P1 *flhD* promoter. Non-linear fitting of the Gaussian distribution was employed (red line) and the average number of C-rings per cell is 8.0 ± 2.0 (n = 138). Lower panel: distribution of C-rings per cell and exemplary images of a strain expressing FliM-GFP with a perfect -10 box of the P1 + P4 *flhD* promoter. Non-linear fitting of the Gaussian distribution was employed (red line) and the average number of C-rings per cell is 8.9 ± 2.2 (n = 197). Scale bar is 2 μ M.

7 (C) Number of assembled hook-basal-body (HBB) complexes as analyzed by hook 8 immunostaining. A strain harboring a functional FlgE::3xHA mutation as well as *flhDC* under 9 arabinose control was grown in the presence or absence of arabinose and analyzed by 10 fluorescence microscopy. Upper panel: exemplary images of cells with immunostained hooks in the absence of arabinose (wildtype *flhDC* levels). Lower panel: exemplary images of cells with 11 12 immunostained hooks in the presence of arabinose (increased *flhDC* levels). Green: HBB 13 complexes (FlgE::3xHA tag) labeled with anti-hemagglutinin antibodies coupled to Alexa Fluor 14 488. Red: cell membrane stained with FM-64. Blue: DNA stained with Hoechst. Scale bar is 2 15 μM.

16

17 Supplemental Figure 2

Schematic of the *flhD* promoter region. The DNA sequence of the *flhD* promoter region of *S*. *enterica* and the six described transcriptional start sites (Yanagihara *et al.*, 1999) of the *flhD*promoter are displayed. A red box annotates the wildtype -10 box sequence, whereas the black
box annotates the respective consensus -10 box mutation. A black arrow displays the
transcriptional start site (+1) of the respective promoter.

23

1 Supporting Table 1

2 Salmonella enterica serovar typhimurium strains used and constructed in this study.

Strains	Relevant characteristics	Source or reference ⁴	
TH437	LT2 Wild-type for motility and chemotaxis	J. Roth	
TH7420	fliM5978::GFPmut2	lab stock	
TH9857	ecnR::T-POP ecnR3::MudJ	C. E. Wozniak	
TH9949	flgE6554::bla AflgBC6557	(Lee & Hughes, 2006)	
TH10068	ecnR3::MudJ	(Wozniak <i>et al.</i> , 2008)	
TH12470	flgE6569::bla \flgBC6557 \fliMN7392		
TH12731	ΔflgBC6557 flgE6569::bla ΔfliP7457		
TH14156	$\Delta araBAD1007::flhD^+C^+$		
TH14525	flgE7742::3xHA (HA-tag after AA241)	F. F. V. Chevance	
TH14680	ΔflgBC6557 flgE6569::bla PflhDC7460 (-38G:A from AUG) STM1911::Tn10dTc ΔfliG7388 ΔflgBC6557 flgE6569::bla PflhDC7461 (-152C:T		
TH14681	from AUG) STM1911::Tn10dTc ΔfliMN7392		
TH14683	$\Delta flgBC6557$ flgE6569::bla zec-3521::Tn10dCm $\Delta fliMN7392$ fliA7463 (Ap ^{5R})		
TH14684	ΔflgBC6557 flgE6569::bla zec-3521::Tn10dCm ΔfliMN7392 fliA7464		
TH14781	PflhDC7776 (P1 -10 TATAAT promoter)	C. E. Wozniak	

	fliM5978::GFPmut2	
	PflhDC7777 (P5 -10 TATAAT promoter)	
TH14782	fliM5978::GFPmut2	C. E. Wozniak
TH14815	PflhDC7790 (P3 -10 TATAAT) fliM5978::GFPmut2	C. E. Wozniak
TH14902	$\Delta araBAD1007::flhD^+C^+ \Delta flgBC6557 flgE6569::bla$	
	$\Delta araBAD1007::flhD^+C^+ \Delta flgBC6557 flgE6569::bla$	
TH14903	ΔfliF7387	
	$\Delta araBAD1007::flhD^+C^+ \Delta flgBC6557 flgE6569::bla$	
TH14905	ΔfliHIJ7398	
	$\Delta araBAD1007::flhD^+C^+ \Delta flgBC6557 flgE6569::bla$	
TH14906	ΔfliG7402 ΔfliMN7392	
	$\Delta araBAD1007::flhD^+C^+ \Delta flgBC6557 flgE6569::bla$	
TH14909	ΔfliMN7392 fliG7780::GFPmut2	
	<i>PflhDC7793</i> (P1 + P4 -10 TATAAT)	
TH14924	fliM5978::GFPmut2	
TH14980	PflhDC7797 (P2 -10 TATAAT) fliM5978::GFPmut2	C. E. Wozniak
TH14981	PflhDC7798 (P6 -10 TATAAT) fliM5978::GFPmut2	C. E. Wozniak
TH15184	$flgE7742::3$ xHA $\Delta araBAD1007::flhD^+C^+$	
	PflhD7776 (P1 -10 TATAAT) flhC5213::MudJ	
TH15413	fliM5978::GFPmut2	
	<i>PflhD7793</i> (P1 + P4 -10 TATAAT <i>flhC5213</i> ::MudJ	
TH15414	fliM5978::GFPmut2	
TH15415	PflhD7797 (P2 -10 TATAAT) flhC5213::MudJ	

	fliM5978::GFPmut2	
	<i>PflhDC7793</i> (P1 + P4 -10 ТАТААТ) <i>ΔflgBC6557</i>	
TH15434	flgE6569::bla ΔfliP7457	
TH15461	<i>fliL5100</i> ::MudJ <i>fliD7879</i> ::TPOP	
TH15462	fliL5100::MudJ lrhA2::TPOP	
TH15463	<i>fliL5100::</i> MudJ <i>STM1856-1::</i> TPOP	
TH15464	fliL5100::MudJ slyA1::TPOP	
TH15466	fliL5100::MudJ ddg/yfdZ1::TPOP	
TH15467	<i>fliL5100</i> ::Mu <i>dJ STM2011-2</i> ::TPOP	
TH15468	<i>fliL5100</i> ::Mu <i>d</i> J <i>fliD7881</i> ::TPOP	
TH15469	fliL5100::MudJ ecnR6::TPOP	
TH15470	<i>fliL5100</i> ::MudJ <i>STM1856-2</i> ::TPOP	
TH15471	fliL5100::MudJ ecnR7::TPOP	
TH15496	ecnR3::MudJ ecnR7::TPOP	
	$\Delta araBAD1007::flhD^+C^+$ flgE6569::bla $\Delta flgBC6557$	
TH15497	Δ <i>fliG73</i> 88	
	$\Delta araBAD1007::flhD^+C^+$ flgE6569::bla $\Delta flgBC6557$	
TH15498	ΔfliMN7392	
TH15567	flgE7742::3xHA PflhDC7776	
TH15568	flgE7742::3xHA PflhDC7793	
TH15569	flgE7742::3xHA PflhDC7797	
TH15589	flgE6569::bla AflgBC6557 AfliMN7392 lrhA1	
TH15590	flgE6569::bla AflgBC6557 AfliMN7393 lrhA2	
1		1

TH15591	flgE6569::bla AflgBC6557 AfliMN7394 lrhA3
TH15592	flgE6569::bla AflgBC6557 AfliMN7395 lrhA4
TH15593	flgE6569::bla AflgBC6557 AfliMN7396 lrhA5
TH15594	flgE6569::bla ΔflgBC6557 ΔfliMN7397 ecnR6
TH15595	flgE6569::bla ΔflgBC6557 ΔfliMN7398 ecnR7
TH15596	flgE6569::bla AflgBC6557 AfliMN7399 slyA1
TH15597	flgE6569::bla AflgBC6557 AfliMN7400 rcsB131
TH15598	flgE6569::bla \flgBC6557 \fliMN7401 rcsB132
TH15599	flgE6569::bla AflgBC6557 AfliMN7402 yojN253
TH15600	flgE6569::bla AflgBC6557 AfliMN7406 clpP71
TH15601	flgE6569::bla \flgBC6557 \fliMN7403 ydiV254
TH15602	flgE6569::bla AflgBC6557 AfliMN7404 ydiV255
TH15603	flgE6569::bla \flgBC6557 \fliMN7405 ydiV256
TH15604	flgE6569::bla ΔflgBC6557 ΔfliMN7423 STM1856-1
TH15605	flgE6569::bla ΔflgBC6557 ΔfliMN7424 STM1856-2
TH15606	flgE6569::bla ΔflgBC6557 ΔfliMN7425 STM2011-1
TH15607	flgE6569::bla ΔflgBC6557 ΔfliMN7426 STM2011-2
TH15608	flgE6569::bla ΔflgBC6557 ΔfliMN7427 rfbP1
TH15609	flgE6569::bla \flgBC6557 \fliMN7428 pgtE1
TH15610	flgE6569::bla \flgBC6557 \fliMN7429 ddg/yfdZ1
TH15611	flgE6569::bla ΔflgBC6557 ΔfliMN7430 pykF1
TH15612	flgE6569::bla ΔflgBC6557 ΔfliMN7431 garL1
TH15613	flgE6569::bla AflgBC6557 AfliMN7432 yieP1

TH15614	flgE6569::bla ΔflgBC6557 ΔfliMN7433 hpaX1	
TH15615	flgE6569::bla ΔflgBC6557 ΔfliMN7410 flhDC7872	
TH15616	flgE6569::bla ΔflgBC6557 ΔfliMN7411 flhDC7873	
TH15617	flgE6569::bla \flgBC6557 \fliMN7412 flhDC7874	
TH15618	flgE6569::bla \flgBC6557 \fliMN7413 flhDC7875	
TH15619	flgE6569::bla ΔflgBC6557 ΔfliMN7407 fliA7876	
TH15620	flgE6569::bla ΔflgBC6557 ΔfliMN7408 fliA7877	
TH15621	flgE6569::bla ΔflgBC6557 ΔfliMN7409 fliA7878	
TH15622	flgE6569::bla ΔflgBC6557 ΔfliMN7418 fliD7879	
TH15623	flgE6569::bla ΔflgBC6557 ΔfliMN7419 fliD7880	
TH15624	flgE6569::bla ΔflgBC6557 ΔfliMN7420 fliD7881	
TH15625	flgE6569::bla \flgBC6557 \fliMN7421 fliD7882	
	flgE6569::bla $\Delta flgBC6557$ $\Delta fliMN7421$	
TH15756	Δ <i>fliT5758</i> ::FCF	
	$flhC5213::MudJ \Delta araBAD1049::slyA^+$ (D97E and	
	A98P compared to the published S.t. LT2 genome	
TH15885	sequence)	
TH15886	flhC5213::MudJ ∆araBAD1049::lrhA ⁺	
	ΔaraBAD956::fliA ⁺ ΔflgM5628::FRT ΔfliA5647::FRT	
TH15939	flhC5213::MudJ	

1

2 ^{*a*} Strains for which no source or reference is given were constructed for this study.

3

4

References 2

- Lee, H. J. & K. T. Hughes, (2006) Posttranscriptional control of the Salmonella enterica flagellar
 hook protein FlgE. *J Bacteriol* 188: 3308-3316.
- 5 Wozniak, C. E., C. Lee & K. T. Hughes, (2008) T-POP array identifies EcnR and PefI-SrgD as
 6 novel regulators of flagellar gene expression. *Journal of Bacteriology*.
- Yanagihara, S., S. Iyoda, K. Ohnishi, T. Iino & K. Kutsukake, (1999) Structure and transcriptional
 control of the flagellar master operon of Salmonella typhimurium. *Genes Genet Syst* 74:
- 9 105-111.
- 10
- 11

Supplemental Figure 1

∆araBAD-flhDC⁺ flgE::3xHA

∆araBAD-flhDC⁺ flgE::3xHA + 0.2% Arabinose

1000	6.00°	1	1	
¢7	3.50	4.10	and the second	2000

Supplemental Figure 2

550