1	Rational design of an artificial genetic switch: co-option of the H-NS-
2	repressed <i>proU</i> operon by the VirB virulence master regulator.
3	
4	Kelly A. Kane and Charles J. Dorman*
5	
6	
7	
8	
9	SUPPLEMENTARY DATA FILE

1 Table S1: Primers

Oligonucleotides	Sequence (5' to 3') ^{a b}
icsB fw	tgtacctcgtgagcatatgtagt
<i>icsB</i> rev	ggggcattgattgcagtttt
proU rev +230.XbaI	ttt <u>tctaga</u> tatctcgccttcttcaatgg
proU fw -270.NotI	ttt <u>gcggccgc</u> ctacccgcagcagggaaata
proU fw -150.NotI	ttt <u>gcggccgc</u> tcgctatctttgacaaaaatatc
proU fw -60.NotI	ttt <u>gcggccgc</u> gccacatttgccatcaggg
proU SDM FseI fw	tttgctcgcatcaatattcaGGCCGGCCttgccatcaggggttgcctc
proU SDM FseI rev	gaggcaacccctgatggcaaGGCCGGCCtgaatattgatgcgcaaa
<i>yaeT</i> fw.SmaI	ttt <u>cccggg</u> aagaacgtaacactggtagct
<i>yaeT</i> rev. NotI	ttt <u>gcggccgc</u> gacaggtcggcgtcatctg
<i>tet</i> .40 bp $proU$ fw	aagactggaatttetgagggtgttatttteaaaatateteteattaagacceaettteaeatt
tet 40 bp proU rev	cgcggcactgtacgccgctggcgtggtatcccacggattactaagcagttgtctcctg
icsB.fw.40 bp proU	aagactggaatttetgagggtgttatttteaaaatatetgtaectegtgageatatgt
icsB.rev.40 bp proU	aagactggaatttetgagggtgttatttteaaaatateggggggattgatt
cat.rev.40 bp proU	cgcggcactgtacgccgctggcgtggtatcccacggattacacttattcaggcgtagcag
rho.RT.fw	gttgtagtcgatagccgcga
rho.RT.rev	tacaggcaacatggaactgc
P1.RT.fw	cttatatcacgggaaattcc
P2.RT.fw	gggtaatatatcgacatagac
gfp.RT.rev	agtgaaaagttcttctcctt

2 ^a Underlined nucleotides represent restriction enzyme sites used for cloning

^b Capitol letters indicated base pair substitutions made in site-directed mutagenesis

1	VirB dependent de-repression of <i>proU</i> is mediated by promoter P2 and not P1. To
2	determine which promoter was responding to VirB mediated de-repression, qRT-PCR
3	was preformed with the chromosomal integrations of pZep-proU-1, pZep-proU-2M and
4	pZep-proU-2. These hybrid promoters were inserted into the native proU locus in both
5	wild type and hns strains of S. flexneri. To differentiate between transcripts originating at
6	the $proU$ P1 and P2 promoters, forward primers specific for detection of transcripts from
7	either P1 (P1 fw) or P1 and P2 combined (P2 fw) were used (Fig. S1A). The results from
8	both P1 fw and P2 fw primers confirmed that expression from the VirB de-repressed
9	proU was mediated by the P2 promoter and not the adjacent P1 promoter. Just as had
10	been seen in the plasmid-based experiments, constructs with the VirB binding site at
11	position -270 (pZep-proU-2) of the proU P2 promoter was derepressed in the S. flexneri
12	wild type background to levels similar to those seen in the hns mutant. With the mutated,
13	non-functional VirB binding site inserted at the same position (pZep-proU-2M), VirB
14	dependent derepression was not observed (Fig. S1B).
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	

1	FIG S1. Transcription from derepressed <i>proU</i> promoters is mediated by promoter P2,
2	not P1. A. Schematic of pZep-proU-2, the modified proU promoter that was integrated
3	into the proU locus on the chromosome. Primers P1 fw, P2 fw and gfp rev are indicated
4	with arrows. B. Quantitative PCR measurements of gene transcript levels (arbitrary
5	values) from promoter P1 (primer sets P1 fw and gfp rev), and promoter P2 (P2 fw and
6	gfp rev). Measurements were taken from wild type cells with pZep-proU-2M (mutated
7	binding site at position -270) inserted, wild type cells with the pZep-proU-2 (functional
8	VirB binding site at position -270) inserted, and hns cells also haboring pZep-proU-2 in
9	place of native proU. All experiments were conducted with bacteria grown under
10	repressive conditions in 0 mM NaCl growth medium.
11	
12	

1 Supplementary Data: Figure S1