# A Novel Target-Specific, Salt-Resistant Antimicrobial Peptide against the Cariogenic Pathogen *Streptococcus mutans*

Junni Mai<sup>1,4</sup>, Xiao-Lin Tian<sup>1</sup>, Jeffrey W. Gallant<sup>3</sup>, Nadine Merkley<sup>3</sup>, Zakia Biswas<sup>3</sup>

Raymond Syvitski<sup>3</sup>, Susan E. Douglas<sup>2,3</sup>, Junqi Ling<sup>4</sup> and Yung-Hua Li<sup>1,2</sup>\*

Department of Applied Oral Sciences<sup>1</sup>

Department of Microbiology and Immunology<sup>2</sup>

Dalhousie University, Halifax, Canada

Institute for Marine Biosciences<sup>3</sup>

National Research Council of Canada, Halifax, Canada

Guanghua School of Stomatology<sup>4</sup>

Sun Yat-Sen University, Guangzhou, China

### **Supplemental Materials**

### \*: Corresponding Author

Mailing Address: 5981 University Ave. Rm5215 Halifax, Nova Scotia Canada, B3H 3J5 Tel: 1-902-494-3063 Fax: 1-902-494-6621 E-mail: yung-hua.li@dal.ca

| Name of peptide | Sequence of peptide         | MIC<br>(µg/ml) |  |
|-----------------|-----------------------------|----------------|--|
| NRC-1           | GKGRWLERIGKAGGIIIGGALDHL*   | 32-64          |  |
| NRC-2           | WLRRIGKGVKIIGGAALDHL*       | 32             |  |
| NRC-3           | GRRKRKWLRRIGKGVKIIGGAALDHL* | 4              |  |
| NRC-4           | GWGSFFKKAAHVGKHVGKAALTHYL*  | 2              |  |
| NRC-5           | FLGALIKGAIHGGRFIHGMIQNHH*   | 4              |  |
| NRC-6           | GWGSIFKHGRHAAKHIGHAAVNHYL*  | 4              |  |
| NRC-7           | RWGKWFKKATHVGKHVGKAALTAYL*  | 2              |  |
| NRC-8           | RSTEDIIKSISGGGFLNAMNA*      | >128           |  |
| NRC-9           | FFRLLFHGVHHGGGYLNAA*        | >128           |  |
| NRC-10          | FFRLLFHGVHHVGKIKPRA*        | 4-8            |  |
| NRC-11          | GWKSVFRKAKKVGKTVGGLALDHYL*  | 8              |  |
| NRC-12          | GWKKWFNRAKKVGKTVGGLAVDHYL*  | 8              |  |
| NRC-13          | GWRTLLKKAEVKTVGKLALKHYL*    | 16             |  |
| NRC-14          | AGWGSIFKHIFKAGKFIHGAIQAHND* | 4-8            |  |
| NRC-15          | GFWGKLFKLGLHGIGLLHLHL*      | 16-32          |  |
| NRC-16          | GWKKWLRKGAKHLGQAAIK*        | 4-8            |  |
| NRC-17          | GWKKWLRKGAKHLGQAAIKGLAS     | 8-16           |  |
| NRC-18          | GWKKWFTKGERLSQRHFA          | >128           |  |
| NRC-19          | FLGLLFHGVHHVGKWIHGLIHGHH*   | 16-32          |  |
| NRC-20          | GFLGILFHGVHHGRKKALHMNSERRS  | >128           |  |
| NRC-123         | GWKDWFRKAKKVGKTVGGLALNHYLG  | 8              |  |
| NRC-124         | GIRKWFKKAAHVGKEVGKVALNACL   | >128           |  |
| NRC-125         | GLKKWFKKAVHVGKKVGKVALNAYLG  | 4-8            |  |
| NRC-126         | GWRKWIKKATHVGKHIGKAALDAYIG  | 16             |  |
| NRC-127         | GCKKWFKKAAHVGKNVGKVALNAYLG  | 128            |  |
| NRC-128         | GIRKWFKKAAHVGKKVGKVALNAYLG  | 16-32          |  |

\*: The peptides with *C*-terminal amidation. The MICs were determined in triplicate experiments using a modified method as described in Materials and Methods.

|                    | MICs (µM) |       |       |       |  |
|--------------------|-----------|-------|-------|-------|--|
| Strains            | NRC-4*    | IMB-1 | IMB-2 | IMB-3 |  |
| S. mutans UA159    | 1.0       | 2.2   | 2.8   | 44    |  |
| S. mutans GS5      | 1.0       | 2.2   | 2.8   | 44    |  |
| S. mutans NG8      | 1.5       | 2.2   | 2.8   | 44    |  |
| S. mutans Sm∆comD  | 1.0       | 8.8   | 11.3  | >44   |  |
| S. sanguinis SK108 | 2.5       | 8.8   | 22.6  | >44   |  |
| S. gordonii DL1    | 2.0       | 8.8   | 22.6  | >44   |  |
|                    |           |       |       |       |  |

## Table S2 Antimicrobial Activity of Fusion Peptides against Selected Bacterial Strains

\*: NRC-4 is the parent of the fusion peptides, IMB-1, -2 and -3.

#### Methods for NMR Spectroscopy

**Sample preparation.** Samples of peptides IMB-1, -2 and -3 were prepared for NMR analysis in 600 mL of 95/5  $H_2O/D_2O$  (v/v) potassium phosphate buffer (pH 6.6) at final concentrations of 2.60 mM for IMB-1, 3.03 mM for IMB-2 and 2.32 mM for IMB-3. The samples were first lyophilized and resuspended in an aliquot of 1 M dodecylphosphocholine- $D_{38}$  or DPC- $D_{38}$  (Cambridge Isotope Labs, Andover, MA) to a final peptide:DPC ratio of 1:70. Samples were warmed to 60 °C for 5 min, lyophilized and re-suspended in 600 mL of 95/5  $H_2O/D_2O$  (v/v).

**NMR analysis and data collection.** <sup>1</sup>H, <sup>13</sup>C and <sup>15</sup>N NMR data were collected on a Bruker AVANCE 700 spectrometer at a frequency of 700.23 MHz with a triple resonance cryoprobe. NMR spectra were collected at 303.2 K with the water frequency centered on the carrier frequency. <sup>1</sup>H chemical shifts were referenced to 2,2-dimethyl-2-silapentane-5-sulphonate through calibration of the water resonance at different temperatures (Gottlieb *et al*, 1997, J Org Chem, 62:7512). <sup>13</sup>C and <sup>15</sup>N chemical shifts were indirectly referenced from the <sup>1</sup>H spectrum (Wishart *et al.*, 1995, J. Biomol NMR, 6:135). Sequential assignments were made for the backbone residues using a phase-sensitive <sup>1</sup>H-<sup>1</sup>H TOCSY (60 or 90 ms mixing time) or <sup>1</sup>H-<sup>1</sup>H NOESY (200 or 120 ms mixing time). NMR data was processed using Bruker TopSpin 2.1 and analyzed using SPARKY 3 (Goddard TD and Kneller DG, University of California). Interproton distances were measured by the integration in the 200 ms <sup>1</sup>H-<sup>1</sup>H NOESY. Interproton distances for proton pairs were calibrated using the nOe intensity for the signal between Ala Ha and Hb with a distance of 2.8 Å, and were classified into three groups (strong, medium and weak) corresponding to proton distance ranges of < 2.5, 2.5 – 3.5, 3.5 – 5.0 Å.

**Structural determination.** Structures of peptide IMB-1, IMB-2 and IMB-3 in DPC micelles were determined according to a simulated annealing protocol described previously (Syvitski *et al.*, 2005, Biochem. 44: 7282-7293) using the XPLOR 3.1 program (Schwieters *et al.*, 2003, J Magn Reson. 160: 65; Prog Nucl Magn Reson Spectrosc 2005, 48: 47).

**NMR Diffusion.** To determine if the peptides were associated with the DPC micelles, IMB-1, -2 and -3 were exchanged into  $D_2O$  by lyophilizing and redissolving in 1 mL of  $D_2O$  (99.99 atom %D), lyophilized and re-suspended in 600 uL of  $D_2O$  to minimize the intensity of the HDO peak and used for DOSY measurements after structural analysis. <sup>1</sup>H detected 2D DOSY data sets were recorded using stimulated-echo sequence with bipolar-gradient pulses and 32  $t_1$  blocks of 4 transients each. The 2D data sets were processed using Bruker TopSpin 2.1 and the t1 diffusion dimension was processed by fitting the rest of the F2 peaks to the equation:

$$A = A_0 \exp(-Dg^2\gamma^2\delta^2(\Delta - \delta/3))$$

Where A is the observed Area and  $A_o$  is the reference intensity, D is the diffusion coefficient in m<sup>2</sup>s<sup>-1</sup>,  $\gamma$  is the <sup>1</sup>H gyromagnetic ratio (4257.7002 Hz G<sup>-1</sup>),  $\delta$  is the total length of the bipolar de-focusing re-focusing gradient pulses, optimized for each sample (0.0015 to 0.0013 s),  $\Delta$  is the diffusion time (0.30 to 0.25 s), g is the gradient strength which was 32 exponential increments between 1.703 and 32.354 G cm<sup>-1</sup>.



**Fig. S1.**  $H^{N}$ - $H^{N}$  regions of the <sup>1</sup>H-<sup>1</sup>H NOESY (200 msec mixing time) for IMB-1 (A), IMB-2 (B) and IMB-3 (C) in dodecylphosphocholine- $D_{38}$  (DPC- $D_{38}$ ) micelles. IMB-1 (A) and IMB-2 (B) have reasonable chemical shift dispersion and the *NN*(i, i+1) connections, which suggest a helical structure, whereas considerably fewer *NN*(i, i+1) connections for IMB-3 indicates that it is unstructured and the  $H^{N}$ 's are rapidly exchanging with water, which is consistent with a random coil structure.



**Fig. S2.** An ensemble of the lowest energy structure of the fusion peptides IMB-1 (A), IMB-2 (B) and IMB-3 (C). Structured regions for each peptide are overlaid. IMB-1: residues 18-31 (r.m.s.d 1.33 to lowest energy structure) calculated from 182 nOe distance restraints; IMB-2: residues 12-23 (r.m.s.d 1.22 to lowest energy structure) calculated from 198 nOe distance restraints; IMB-3: residues 16-20 (r.m.s.d 1.02 to lowest energy structure) calculated from 114 nOe distance restraints. IMB-1 and IMB-2 form an amphipathic peptide with  $\alpha$ -helical character with a flexible linker between the targeting and killing domains, whereas IMB-3 is random coil in DPC-d<sub>38</sub> micelles.



**Fig. S3.** DOSY spectra of the three fusion peptides in DPC micelles in which the F1 dimension represents the log(D) (where D is the self-diffusion constant). Both IMB-1 (A) and IMB-2 (B) have a similar diffusion constant but not to IMB-3 (C), suggesting the IMB-3 is not diffusing with the DPC- $d_{38}$  micelles.



**Fig. S4.** 1-D <sup>1</sup>H NMR spectra of IMB2-H/S14 at pH 6.6, 7.0 and 5.0 in DPC- $d_{38}$  micelles (peptide to lipid ratio 1:70). The peptide remains structured in a low pH environment.