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Supplementary Figures 

 

 

 

Supplementary Figure S1: Schematic representation of reservoir computing with a delayed 

feedback system and a single nonlinear node. The discrete input stream u(k) is transformed into a 

piecewise continuous function I(t) using a sample and hold procedure. Three time steps of length τ are 

represented in panel (a). This input is multiplied by the mask function M(t). The mask function is 

piecewise constant over interval θ and periodic over period τ. In the present case the mask function is 

taken to be a binary function. The resulting function J(t)=M(t)I(t) is represented in panel (b) for 3 time 

steps. The sum x(t-τ)+γ J(t) drives the nonlinear node, where γ is an adjustable parameter. The response 

of the nonlinear node is a complex function x(t) depicted in panel (c). Finally, a linear combination of 

the values of the N virtual nodes is taken to obtain the output. The only parameters which are optimised 

in this procedure are the input gain γ, the degree of nonlinearity of the nonlinear node (typically 

depending on a single parameter), the separation θ of the nodes, and the output weights 
i

w . 

 



 

 

Supplementary Figure S2: Input time trace for large θθθθ and corresponding interaction graph (a) 

Input time trace ( )J tγ ⋅  (blue) and oscillator output x(t) (red) of our system when the time scale T of 

the Mackey-Glass system is much smaller than the separation θ of the virtual nodes T<<θ. Here we 

choose T/θ=0.05. The values on both the x- and y-axis are dimensionless. The mask M(t) takes two 

possible values. For this choice of parameters, the system rapidly reaches a state that is independent of 

previous inputs. In this regime the system behaves like N independent nodes, each of which is coupled 

only to itself at the previous time step, as schematised by the interaction graph in panel (b). 

 



 

 

Supplementary Figure S3: Input time trace for small θθθθ and corresponding interaction structure 
(a) Time trace of input γJ(t)  (blue) and oscillator output x(t) (red) of our system when the time scale T 

of the Mackey-Glass system and the separation θ of the virtual nodes satisfy T/θ=5 (This is the same 

plot as in Fig. 5). The values on both the x- and y-axis are dimensionless. The mask M(t) takes two 

possible values. In this case the system does not have the time to reach an asymptotic value. Therefore, 

the dynamics of the nonlinear node couples neighboring virtual nodes, as schematised by the 

interaction structure in panel (b). 



 

 

Supplementary Figure S4: Interaction graphs for large and small θθθθ Interaction graphs for different 

virtual node separation where we plot the coefficients 
ni

Ω  and
ji

∆ of eq. S18 as a matrix using colour 

coding. For large values of θ (left), the diagonal elements are significantly larger than all others, but 

when θ decreases (right), the exponential tail of the off-diagonal elements and the also the connection 

to the last virtual node of the previous input step become dominant.  

 



 

 

Supplementary Figure S5: Time trace NARMA10 task Time trace of the input stream and the 

corresponding response of the Mackey-Glass node for the optimal parameters for the NARMA10 task 

(η = 0.5, γ = 0.01, p = 1 and τ = 80 (400 nodes of 0.2 time units separation)). The blue line represents 

the input J(t) with imprinted input mask, multiplied by the input scaling γ. The red line shows the 

Mackey-Glass output x(t). The values on both the x- and y-axis are dimensionless. As input mask, a 

random series of amplitudes of 0.1 and -0.1 are used. 

 

 



 

 

Supplementary Figure S6: Time-trace of the input stream and the corresponding response of the 

nonlinear node in the case of spoken digit recognition, represented over the duration of one 

spoken digit The input with imprinted input mask is multiplied by the input scaling γ and is 

represented by the blue line. The red line denotes the oscillator output. Parameters: η = 0.8, γ = 0.5, p = 

7 and τ = 80 with 400 nodes of 0.2 time units separation. The values on both the x- and y-axis are 

dimensionless. 

 



 

 

Supplementary Figure S7: Schematic representation of the experiment The Mackey Glass system 

is realised by a nonlinearity (NL), and amplifier (Amp), a low pass filter, and a delay. DAC and ADC, 

Digital to Analog Converter and Analog to Digital Converter respectively. The input gain block 

corresponds the parameter γ, while the amplification block corresponds to η. 

 

 



 

 

Supplementary Figure S8: Schematic representation of the hardware node Two FET transistors, 

one n-channel (Fairchild 2N5457) and one p-channel (Fairchild 2N5460) generate the nonlinear 

function itself. An amplifier (LM741) provides the desired magnification factor and two RC-circuits 

allow to set the time constant of the circuit. R1 = 507Ω, R2 = 1kΩ, R3 = 3.7kΩ, R4 = 100kΩ, R5 = 

5.7kΩ, R6 = 1.2kΩ, C1 = 0.1µF, C2 = 47pF. 

 



 

 

Supplementary Figure S9: Fitting of experimental transfer function Experimental transfer function 

(black) compared to a fit using the Mackey-Glass equation (red). Fit parameters correspond to C = 

1.33, b = 0.4 and p = 6.88 (eq. S20). 

 



 

Supplementary Discussion 

Different perspectives on Reservoir Computing  

Reservoir computing (RC) is a powerful method recently introduced in the field of machine learning. 

In hard classification or prediction tasks, it often outperforms other state-of-the-art approaches. For 

instance, RC improves prediction of chaotic dynamics by three orders of magnitude over previous 

methods [7]. Even more it won an international financial time series forecasting competition [27]. 

Concerning speech recognition, (isolated digit recognition), using the benchmark described in section 

‘Specific aspects of the benchmark tests’, the word error rate was decreased from the previous best of 

0.6% to 0.2% [12], while for the Japanese vowel benchmark the test error rate was brought to zero 

(previous best 1.8%) [28]. 

 

RC can be approached from different points of view and can therefore be linked to various fields of 

research. 

 

From the viewpoint of machine learning, the techniques used in RC are related to those implemented in 

support vector machines, originally introduced by Vapnik [29]. Support vector machines have proven 

to be able to attain state-of-the-art performance on a number of tasks. They also rely on a mapping of a 

low-dimensional input onto high-dimensional states. The main difference to RC lies in the exact 

realisation of the high-dimensional mapping. While in RC the mapping is explicit - the dynamical 

response resulting in the reservoir states - , in support vector machines a technique called the kernel 

trick is employed [30]. The hyperplanes that separate two input classes in the high dimensional feature 

space are calculated by defining cross products in terms of a kernel function. A second difference is 

that in reservoir computing the mapping onto feature space is explicitly temporal. This is implemented 

by reservoirs exhibiting fading memory. 

From the viewpoint of neuroscience, RC aims at mimicking, in a reductionist scheme, how our brain 

does information processing. In this context, RC assumes that the neurons are embedded in a 

randomly-connected complex network whose intrinsic activity is modified by external stimuli. The 

persistent neuronal network activity makes the information processing of a given stimulus occur in the 

context of the response to previous excitations. The generated network activity is then projected into 

other cortical areas that interpret or classify the outputs. It was this bio-inspired view that motivated 

one of the original RC concept (Liquid State Machine) [6]. 

From a dynamical systems point of view, the reservoir can be regarded as a complex dynamical system 

that operates optimally in a certain dynamical regime. Three basic properties, linked to the dynamical 

properties of the network [6], should be fulfilled for a network to perform as reservoir. Firstly, different 

inputs should be mapped onto different reservoir states. This is generally referred to as the separation 

property. Secondly, reservoir states that are only slightly different should be mapped onto identical 

targets. If not, noise would suffice to map identical inputs onto different target values. This is called the 

approximation property. Finally, fading memory is desired. In many tasks, the information is stored in 

the temporal behaviour of the input (e.g. speech recognition). It does not suffice to process the present 

input values, also previous values have to be taken into account. Usually, only recent inputs are 

relevant while those from the far past do not need to be taken into account. These three properties can 

be realised by the dynamical system, provided that the system resides in a proper dynamical regime. 

When the system operates in a chaotic regime, it is highly sensitive to small input variations and 

therefore has very good separation properties. The separation might, however, become so high that the 

approximation property no longer holds. In the reservoir community it is often claimed that the edge of 

chaos is an optimal operating point, since it offers a compromise between a stable system, with good 

approximation properties and fading memory, and a chaotic system, with excellent separation 

capability. More generally, the edge of stability, where the system goes from an ordered regime to 

another regime (oscillatory or chaotic), has been identified as appropriate operating point. This can be 

understood by noting that when a constant input is fed into the reservoir, most likely the target function 

will also be a constant. In case the system does not reside in a fixed point, but operates, e.g., in the 

oscillatory regime, a fluctuating reservoir state would need to be mapped onto a constant target, which 

is difficult to achieve with the linear training algorithm used in RC.  

 



This viewpoint, relating RC to complex dynamics, suggests that RC can be implemented in a wide 

variety of physical systems, provided that separation, approximation and fading memory properties are 

fulfilled. This has led to a few proof-of-principle demonstrations using different systems such as a 

bucket of water [31], the cerebral cortex of a cat [32], a VLSI chip [33], or an array of semiconductor 

optical amplifiers [34] (the latter only in simulation). However, in all these implementations the tasks 

performed have been rather simple and the performances did not reach those of digital 

implementations.  

 

Reservoir computing is not only of conceptual interest. Indeed because of its flexibility, RC represents 

an alternative approach to building information processing machines. It could find applications in 

regimes, such as ultra-low energy or ultra-fast computing, which are inaccessible with standard 

electronics. However the first step before starting to address these issues is to show that analog RC can 

be efficiently implemented and can reach performances comparable to digital realisations. It is this 

important milestone which is reached in the present work. 

 

Reservoir computing: general concepts 

Different variants of RC have been investigated. All of these variants comprise two layers. The first 

layer is called ‘the reservoir’ or ‘the liquid’. This layer consists of a randomly interconnected network 

of nonlinear nodes (sometimes referred to as neurons). The nodes are driven by random linear 

combinations of Q input signals, projecting the original input signal onto a high dimensional state 

space. The emerging reservoir state is given by the combined states of all the individual nodes. Unlike 

with traditional recurrent neural networks, the coupling weights in the reservoir are not trained. They 

are usually chosen in a random way, globally scaled in order for the network to operate in a certain 

dynamical regime. The second layer performs the readout. Due to the projection of the low-

dimensional input data onto a high dimensional space, the readout can be efficiently done by linearly 

combining the states of the system. The training algorithm can thus be simplified drastically to a linear 

classifier.  

 

The RC implementation proposed in this paper is closely related to echo state networks [7]. In echo 

state networks the node states at time step k are computed according to the following equation: 

 ( ) ( ) ( ) ( )( )ˆ 1 1  res res res res

res in out bias
k f W k W k W k W⋅= ⋅ − + + − +⋅x x u y  S1 

In this equation, x(k) is the (Nx1)-dimensional vector of node states, u(k) is the (Qx1)-dimensional 

input matrix and ( )ˆ ky  the reservoir output value(s), all at time step k. The matrices 
res

xxx
W  contain the 

(generally random) reservoir, input and feedback connection weights and random bias values. The 

weight matrices 
res

res
W are scaled by multiplicative factors 

res res

xxx xxx xxx
W Wα→   in order to get good 

performance. For the nonlinear function f , often a sigmoidal function, such as f(x) = tanh(x) is chosen. 

In some cases, feedback from the output to the reservoir nodes is also included. This is not used in our 

approach, we nevertheless include it here for completeness. 

In the most general formulation, the output is a weighted linear combination of the node states, a 

constant bias value and the input signals themselves.  

 ( ) ( ) ( ) ( )ˆ ˆ1 1out out out out

res in out biask W k W k W k W= + −⋅ +⋅ ⋅+ −y x u y  S2 

Sometimes the previous value of the output is also taken into account, but in our approach we set 
out

out
W  to zero.  

In RC only the matrices 
t

xxx

ou
W in equation S2 are optimised (trained) to minimize the mean square error 

between the calculated output values ( )ˆ ky  and the required output values y(k). During the whole 

process, all weight matrices in equation S1 remain unchanged.  



The determination of optimal weight values 
t

xxx

ou
W , the process referred to as training, can be 

performed either in one-shot (offline) learning or by gradually adapting the weights (online learning). 

The former approach has been applied in our work. It consists of driving the reservoir with a sufficient 

number of input samples (either a single time trace, as for the NARMA task, or multiple short time 

traces as for the Spoken Digit Recognition task, see ‘Specific aspects of the benchmark tests’) and 

recording the node states for each time step. For N nodes and M time steps, the result is a (NxM)-

dimensional reservoir state matrix. To this matrix, we add a constant signal to generate the correct first 

moment of the required output signal. We will refer to the resulting ((N+1) x M) matrix as S, and to the 

concatenation of all readout weight matrices as W, being a R x (N+1) matrix, where R is the number of 

outputs. y designates the R x M matrix corresponding to the desired output. The aim is to minimize the 

mean square error 
2

WS − y . This can be obtained by choosing 

 ( )† 
T

W S= y  S3 

Here
† denotes the Moore-Penrose pseudo-inverse, which allows to avoid problems with ill-conditioned 

matrices. 

After the training stage, the performance of the system is evaluated by applying previously unseen 

input signals to the reservoir (the testing stage). 

In order to avoid overfitting to the training data, regularisation is commonly used, either by adding 

some Gaussian noise to the node states during training, or by using so-called Tikhonov regularisation 

or ridge regression, which minimizes 
2 2

WS Wλ− +y  instead. The second term serves the 

purpose of keeping the weights as small as possible, while still minimizing the error. Regularisation 

complicates the training because the parameter λ needs to be optimized first, using yet another data set 

than the ones used in training and testing. In our paper, ridge regression was used. 

 

For the reader interested in a more in-depth presentation of reservoir computing, we refer to the recent 

review articles [35,36,37]. 

 

 

Delayed feedback systems as reservoirs 

Delayed feedback systems have been extensively studied in the nonlinear dynamics community, see 

e.g. [1]. The typical evolution equation for a delayed feedback system, such as used in the present 

work, is 

 ( ) ( ) ( )( ),t F t t τ= −&x x x  S4 

F describes a dynamical system, therefore an intrinsic time scale T is present in addition to the delay 

time τ. The role of these timescales will be discussed later. 

 

Delayed feedback can have a significant impact on the dynamical behaviour of systems. It can e.g. lead 

to characteristic instabilities, induce synchronisation between subsystems, or also lead to stabilisation. 

Delayed feedback also implies that the phase space of the system becomes mathematically infinite 

dimensional, because its state is defined by the continuous function x(s) in the interval t–τ < s  t. 

The delay induces many degrees of freedom, providing an explicit mapping from temporal to spatial 

information in a high-dimensional space [38]. 

 

In the present work we show how, in the context of RC, one can use systems with delayed feedback to 

drastically increase the available dimensions, even when only a single nonlinear node is used. This is 

done by exploiting both the present system’s state and those of the past as computing states. Thus we 

replace the spatial multiplexing of usual RC (wherein multiple nonlinear nodes act in parallel) by time 

multiplexing in which a single nonlinear node processes the computing states sequentially. 

 



To this end the delay interval is divided into N pieces of length θ=τ/N, their endpoints representing 

nodes. We refer to these nodes as virtual, because they are simply a delayed version of the output of the 

hardware node. 

Contrary to the case of classical reservoirs, where the input vector at a certain time is injected in 

parallel to all nodes, in our system the input vector is fed to the nodes in a serial manner. We now 

outline this masking procedure, schematised in Supplementary Figure S1, see also Figure 1 (c) in the 

main text. 

First, we sample and hold the input for a duration of τ (see Supplementary Figure S1(a)). The resulting 

function I(t)  is related to the continuous input signal u(k) by  

I(t)=u(k) for ( ) 1k t kτ τ≤ < +           S5 

Second, in order to break the symmetry between the N nodes, we multiply I(t) by a mask function M(t). 

This mask function is a piecewise constant function, constant over an interval of θ and periodic, with 

period τ. The values of the mask function during each interval of length θ are chosen independently at 

random from some probability distribution: ,( ) res

in iM t W=  for ( 1)i t iθ θ− ≤ ≤  and 

( ) ( )M t M tτ+ = , with ,

res

in iW  random values. In terms of a ‘classical’ reservoir setup, the values of 

the mask function M(t) correspond to the weights of the connection between the input layer and the 

reservoir layer. In equation S1 these weights were referred to as 
res

in
W .  

When the input signal consists of a single channel, the values to be injected are given by 

 ( ) ( ) ( ) .J t I t M t= ⋅  S6 

The function ( )J t  is the product of the input and the mask function (Supplementary Figure S1(b)). 

When the input consists of Q values ( )j
I t , we generate a separate mask ( )j

M t for each input j and 

subsequently they are all summed together. The value to be injected is then given by: 

 

1

( ) ( ) ( )
Q

j j

j

J t I t M t
=

= ×∑  S7 

The resulting evolution equations are thus 

 ( ) ( ) ( )( )( ) ,x t F x t x t J tτ γ= − +&  S8 

where γ is an adjustable parameter (usually referred to as input gain).  

 

The final step when using the delay system as a reservoir computer is to construct the output using a 

(linear) perceptron so that every discrete input step ( )ku is mapped onto a discrete target value 

( )ˆ ky and this for every k. The reservoir state comprises the virtual node states, i.e. the values at the 

end of each interval θ. For the i
th

 virtual node the k
th

 discrete reservoir state is given by 

 ( )( )       i

kx x k N iτ θ ε= − − −  S9 

with ε being a very small value compared to θ, which takes into account that the last simulated time 

step or the last experimental sample is taken. Thereafter a set of trained weights
i

α  for i = 1...N is used 

to calculate 

1

ˆ   
N

i

i k

i

w
=

=∑ky x , where ( )ˆ ky is the calculated approximation of the target function y(k) 



with , out

i res iw W= . The 
i

α  are determined in such a way that the Normalised Root Mean Square Error, 

defined as  

 
( )

( )

M 2

k 1

2

ˆ  1
 

k k

k

NRMSE
M σ

=
−

=
∑ y y

y
  S10 

is minimized.  

 

Notes on the Mackey-Glass model  

Our starting point is the Mackey-Glass model introduced as a model of blood cell regulation [16], 

modified by an additional input J(t’) 

 
[ ]

[ ]

( ' ') ( ')1
( ') ( ') ,

1 ( ' ') ( ')
pp

C x t J t
x t x t

T b x t J t

α τ β

α τ β⋅

 ⋅ ⋅ − + ⋅
= − + 

+ ⋅ − + ⋅  

&  S11 

with C being the coupling factor, p the exponent, b a nonlinearity coefficient, T the intrinsic timescale 

and τ the delay time. The factor α determines how much of the feedback signal is mixed with the input, 

while the factor β scales the magnitude of the input signal. The mixing of input and feedback signal 

happens just before the reinjection into the nonlinear node.  

We have rescaled the variables and parameters in the previous equation to obtain the minimum number 

of significant parameters, as follows: η = Cα, γ = bβ, X=bαx and t = t’/T , yielding 

 ( ) ( )
( ) ( )

( ) ( )
.

1
p

X t J t
X t X t

X t J t

η τ γ

τ γ

⋅ − + ⋅  = − +
+ − + ⋅  

&  S12 

which is eq. (1) of the main text. 

 

Time Scales 

In the above delayed feedback system with external input we can identify three time scales: the 

separation of the virtual nodes θ, the delay time τ, and the timescale T of the Mackey-Glass system. We 

find that good performance occurs when the time scales are related by θ<≈T<< τ. 

 

If T<< θ, the Mackey-Glass system reaches its steady state for each virtual node. In this case the 

reservoir state x(t) is only determined by the instantaneous value of the input J(t) and the delayed 

reservoir state x(t- τ). There is no coupling between virtual nodes, and the dynamics of the system is too 

simple to perform well as reservoir. The behaviour in this case is illustrated in Supplementary Figure 

S2. 

When θ<T, the state x(t) of the system at time t depends on the states of the previous virtual nodes. The 

strength of this dependency is an exponentially decaying function of the separation of the virtual nodes. 

However, when T/θ is too large, the Mackey-Glass system is essentially not responding to the 

instantaneous value of the feedback and input, but only to the average taken over many previous nodes, 

which is not a good regime of operation either. Empirically we have found that for N=400 virtual 

nodes, the best choice is T/θ=5. This leads to significant coupling between virtual nodes, but without 

too much averaging. This regime is illustrated in Supplementary Figure S3. 

 

Relation to Traditional Reservoir Computing 



Here we establish a more formal link between the traditional formulation of RC given in ‘Reservoir 

computing: general concepts’ and the interconnection graphs presented in ‘Time Scales’. In contrast to 

traditional reservoirs where all communication between nodes takes place from one discrete time step 

to another, in our concept interaction between nodes occurs through inertia of the nonlinear system and 

through the feedback line. For this reason, the interaction graphs shown in Supplementary Figure S2(b) 

and Supplementary Figure S3(b) do not quite correspond to the interconnection matrix 
res

res
W used in 

traditional reservoirs (see S1). In what follows, we will derive an approximate interconnection matrix 
res

res
W describing the coupling between virtual nodes processing information from different input time 

steps. 

For simplicity of notation, in the following we normalise all times with respect to the intrinsic time 

scale of the nonlinear system T, that is we work in units where T=1. 

Let us consider again the nonlinear equation for the Mackey-Glass node: 

 ( ) ( ) ( ) ( )( ),x t x t f x t J tτ= − + −&  S13 

with  

 ( ) ( )( )
( ) ( )

( ) ( )
,

1
p

x t J t
f x t J t

x t J t

η τ γ
τ

τ γ

− +  − =
+ − +  

 S14 

where J(t)=M(t)I(t), with M(t) the mask function. We recall that I(t) is constant over each segment with 

duration τ and equals u(k) over this segment. 

In a linear approximation, assuming a constant value of f(x(t-τ),J(t)) during the duration θ, solving the 

equation yields: 

 ( ) ( ) ( ) ( )( )0 1 ,    t tx t x e e f x t J tτ− −= + − −  S15 

where x0 is the initial value at the beginning of each interval θ, i.e., the value for the previous virtual 

node. In particular, the values of the virtual nodes are given by S15 with t replaced by θ. 

We now return to the discrete time of input signal u(k) The state of the i
th

 virtual node (i ∈[1,N]) is 

reached after a time θ , denoted by ,i k
x . The input to virtual node i at time step k equals win,iuk. (S15) 

can be written as: 

 

( ) ( )

( ) ( )

( ) ( )

1, , 1 1, 1 ,1

, 1, , 1 ,

, 1, , 1 , ,

1 ,

1 ,

1 ,

k n k k in k

i k i k i k in i k

n k n k n k in n n k

x x e e f x w u

x x e e f x w u

x x e e f x w u

θ θ

θ θ

θ θ

− −

− −

− −

− −

− −

− −

= + −

= + −

= + −

L

L

 S16 

where θ is the separation of the virtual nodes. This equation allows us to recursively compute each 

virtual node state at time step k only as a function of the input at the same time step k and virtual node 

states at time step k-1: 



 ( ), , 1 , 1 ,

1

,             
i

i k ni n k ji j k in j k

j

x x f x w u− −

=

= Ω + ∆∑  S17 

with 

  ,i

ni
e

θ−Ω =  

 ( ) ( )  .1
i j

ji
e e

θθ − −−∆ = −  S18  

This equation is our analogue of equation (S1), representing classical reservoirs and it explicitly 

describes the state coupling between consecutive time steps. However, it differs from traditional 

reservoirs because the nonlinear functions are applied to the states before the summation is taken. The 

interaction topology encoded in S17 is similar to that in the recently proposed cycle reservoir [26]. 

Supplementary Figure S4 illustrates this interaction topology by showing interaction strength matrices 

for two values of θ. The coefficients 
ni

Ω correspond to the values found in the last column, while the 

diagonal and off-diagonal elements are given by
ji

∆ . In terms of traditional reservoirs, this can be 

related to 
res

res
W .  

 

Specific aspects of the benchmark tests 

In the following we provide more details on the procedures used to perform the two benchmark tests: 

NARMA10 and spoken digit recognition. As noted before, we work in units where the time constant of 

the nonlinear node is normalised to T=1. This corresponds to the experimental situation where the 

nonlinear node is fixed, and the delay τ and duration of virtual nodes θ can be adjusted.  

NARMA10 

The NARMA10 task is one of the most widely used benchmarks in reservoir computing. It was 

introduced in [23], and used in many other publications in the context of RC, for instance in [21] and 

[26].  

For the NARMA10 task, the input u(k) of the system consists of scalar random numbers, drawn from a 

uniform distribution in the interval [0, 0.5] and the target y(k+1) is given by the recursion 

 

9

1 9

0

0.3 0.05 1.5 0.1. 
k k k k i k k

i

y y y y u u+ − −

=

 
= + + + 

 
∑  S19 

In [21], for a reservoir of size N=100, the best performance reported is NRMSE=0.18 (eq. S10). If the 

reservoir is replaced by a shift register that contains the input, the minimal NRMSE is 0.4. NRMSE 

values below this level require a nonlinear reservoir. 

We illustrate the input procedure, along with the response of the dynamical node, in Supplementary 

Figure S5. The time trace representing the input stream γJ(t) for the NARMA10 test is plotted in blue 

and the response of the nonlinear node is shown in red. The input mask consists of a random series of 

amplitudes of 0.1 and -0.1.The input signal, multiplied with the mask and the input scaling factor γ, is 

depicted together with the output of the Mackey-Glass node. Note how for this value of θ the Mackey-

Glass system is in the transient regime for every node. 

 

The importance of the parameters γ, η and θ is already discussed in the main paper. Note that the 

optimal parameters for the NARMA10 task are quite particular: the nonlinearity is weak (p=1), the 

input scaling is small (γ = 0.01), and the input mask is also small (random values of  ± 0.1). This 

results in a better linear memory, which is crucial for this specific benchmark. Although, because of the 



memory requirements the node is close to linear, it still can significantly outperform a shift register that 

contains the input (for which NRMSE ≥ 0.4) and thus necessarily exploits the weak nonlinearities that 

are present. We have checked that this requires the inputs to be calculated with sufficiently high 

precision. These parameters and high precision are presently not accessible in our experiments. 

 

Spoken digit recognition 

The spoken digit recognition task, as introduced by Doddington and Schalk [19], is generally accepted 

as a basic speech recognition task in the RC community [11,12,19]. Also other approaches have used 

this test as a benchmark, one of them being the Sphinx 4 engine [20] by Sun Microsystems.  

The input dataset for the spoken digit recognition consists of a subset of the NIST TI-46 corpus
1
 with 

ten spoken digits (0...9), each one recorded ten times by five different female speakers. Hence, we have 

500 spoken words, all sampled at 12.5 kHz. The input for the reservoir is in this case a set of 86-

dimensional state vectors with up to 130 time steps. Each of these inputs represents a spoken digit, 

preprocessed using a standard cochlear ear model [25].  To construct an appropriate target function, ten 

linear classifiers are trained, each representing another digit of the dataset. The target function is -1 if it 

does not correspond to the targeted digit and +1 if it does. For every target the time trace is averaged in 

time and a winner-takes-all approach is applied to select the actual digit. To indicate the performance 

of the reservoir on this benchmark, the error is expressed both as the word error rate and as the margin. 

The margin expresses ‘the distance’ between the reservoir’s best guess and the second best guess. 

When the 10 linear classifiers are trained to be +1 or -1, the resulting output series are averaged over 

the entire sample and the classifier with the highest mean value is selected to be the best approximation 

of the +1. If the margin is very high, this implies that the classification is very clear and that no 

confusion is possible. When the margin is very low, there is almost no difference between the best and 

the second best guess. Note that even with a very low margin, in theory the word error rate could still 

go down to 0%. However, both in simulation and experiment, we observe a clear correlation between 

margin and word error rate. 

 

In the case of speech recognition, to eliminate the impact of the specific division of the available data 

samples between regularisation, training and testing, we use n-fold cross validation. This means that 

the entire process of regularisation, training and testing is repeated n times on the same data, but each 

time with a different assignment of data samples to each of the three stages. The reported performances 

are the mean across these n runs. For experiment and modelling we used n=20, thus a 20-fold cross 

validation. In the modelling we additionally averaged over 6 of such runs. 

 

In Supplementary Figure S6 we illustrate input and response of the Mackey-Glass node for the 

spoken digit recognition task. Similarly to the NARMA10 test, the nonlinear oscillator exhibits a 

transient behaviour (red line) because of the fast alternating input signal (blue line). The mask consists 

of a random assignment of three values: 0.59, 0.41 and 0. The first two values have equal probability of 

being selected, while the third one is more likely to be selected. Using a zero mask value implies that 

some nodes are insensitive to certain channels, thus avoiding averaging of all the channels. The degree 

of nonlinearity is now much higher: p = 7. For the spoken digit recognition task memory is of less 

importance and more emphasis is put on nonlinear transformation. Hence the node can be much more 

nonlinear and it becomes possible to implement this experimentally. 

This spoken digit benchmark was introduced in the Reservoir Computing community in [11] where a 

WER of 4.3% was reported for a reservoir of size 1232. In [12] a winner-takes-all approach was 

introduced, and WER of 0.2% was obtained for a reservoir of size 308. In [26] a WER rate of 1.3%, 

both for traditional and cycle reservoirs of size 200 is reported. Our experimental system has a WER of 

0.2%. For comparison, using Hidden Markov Models, the Sphinx-4 system [20] reported a WER of 

0.55% on the same data set. 

 

                                                        
1 Texas Instruments-Developed 46-Word Speaker-Dependent Isolated Word Corpus (TI46), 

September 1991, NIST Speech Disc 7-1.1 (1 disc). 



Notes on the electronic Mackey-Glass implementation 

Our experimental implementation of reservoir computing, as used in the spoken digit recognition 

experiments, is shown in Supplementary Figure S7. 

 

Following [17], the Mackey-Glass system is constructed according to the scheme depicted in 

Supplementary Figure S8. The circuit consists of four parts: the nonlinearity, an amplifier, a RC-filter 

and a buffer. The nonlinearity was constructed using two field effect transistors, one p-channel, and 

one n-channel.  Both of them are coupled with the gate of each transistor connected to the source of the 

other, resulting in a transfer function that can be fitted to the Mackey-Glass equation. In Supplementary 

Figure S both the experimentally observed transfer curve and the fit to the  Mackey-Glass equation are 

depicted. To fit the nonlinearity to the Mackey-Glass equation we use 
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he RC filter is used to determine the time constant of the system, which is 10 ms (R4
.
C1). Connected to 

the circuit of Supplementary Figure S8, we added a PC controlled A/D D/A converter (National 

Instruments 6025E, 200 kSamples/s, 12-Bit A/D conversion). The delay line and the combination with 

the external input are both implemented digitally in the PC via LabView code. The continuously 

acquired data are delayed for a time corresponding to the feedback time. The input stream u(k) is 

converted into the function J(t) by imprinting the mask. Finally, the sum of external input J(t) and 

delayed output of the circuit are fed into the nonlinearity (FET transistors). 
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