Supplemental Figures:

Supplemental Fig. 1. Picture of the *E. coli* cell pellets from cells containing HT-CpeA with pPebS and either pCpeYZ (left) or pCpeS (right).

Supplemental Fig. 2. Immunoblot analyses of whole-cell extracts expressing HT-CpeA and HT-CpeB. To determine whether apo-HT-CpeA and apo-HT-CpeB were present in the supernatant (soluble) or in the pellet fraction (as inclusion bodies) of whole-cell extracts of *E. coli* cells grown at either 37 °C or 18 °C, cell pellets were lysed and soluble and insoluble proteins were separated by low-speed centrifugation at 10,000 × g. Samples from the supernatant (soluble) and pellet (inclusion bodies and unbroken cells) were separated by SDS-PAGE, transferred to a PVDF membrane, and probed with antibodies raised against CpeA (Panel A) or CpeB (Panel B) from *F. diplosiphon.* **Panel A:** Lanes were loaded as follows: HT-CpeA 37 °C supernatant (lane 1); HT-CpeA 37 °C insoluble pellet (lane 2); HT-CpeA 18 °C supernatant (lane 3); HT-CpeA 18 °C insoluble pellet (lane 4). **Panel B:** Lanes were loaded as follows: HT-CpeB 37 °C supernatant (lane 3); HT-CpeB 18 °C insoluble pellet (lane 4). Proteins are identified to the left of each panel and with arrows.

Supplemental Fig. 3. Pull-down assay showing absence of a detectable interaction between CpeY and HT-CpeZ. This figure shows a Coomassie-blue stained SDS-polyacrylamide gel that was loaded with purified HT-CpeZ (lane 1); two different *E. coli* whole-cell extracts containing recombinant CpeY obtained from expression cells with pCpeY (lanes 2 and 3), the flow-through from metal affinity chromatography of an interaction assay (the same assay as shown in lane 2) between HT-CpeZ and CpeY extract (lane 4); and the eluate from this interaction assay between HT-CpeZ and CpeY extract (lane 5). Lane S shows the molecular mass standards at left. Arrows at the right show the expected migration positions of CpeY and HT-CpeZ.

Supplemental Fig. 4. Chromatogram of a tryptic digest of HT-CpeA-PEB purified from cells containing pCpeA, pCpeYZ, and pPebS separated on a C_{18} RP-HPLC column.

Supplemental Fig. 5. Mass spectrometric analyses of low abundance tryptic peptide of HT-CpeA-PEB produced with CpeY/CpeZ **A**. MALDI MS/MS spectrum of the precursor ion at m/z 1089, which was deduced to be a peptide fragment with a covalently bound PEB chromophore. This peptide binding PEB was derived from trypsin digestion of the HT-CpeA-PEB produced in the presence of CpeY and CpeZ. The MS/MS spectrum contains a peak of interest at m/z 503. The peak, resulting from a neutral loss of 586, was attributed to a peptide containing a cysteine at position 139. The sequence of the peptide is (R) GCAPR (D). The peak corresponding to protonated PEB, which is detected at m/z 587, was not detected in the spectrum shown in this figure. Nonetheless when applying a higher acceleration voltage the peak is visible. **B**. Peak assignments of product ion spectrum corresponding to the precursor protonated PEB-peptide (derived from CpeA) complex. A tick mark prior to number, e.g., '803, indicates that one hydrogen has been transferred to the departing neutral ion upon cleavage. A tick mark after a number, e.g., 969', indicates the transfer of one hydrogen to the formed ion. A dot (\cdot) indicates a radical ion.

Supplemental Fig. 6. Tryptic digest of HT-CpeB-PEB purified from cells containing pCpeB, pCpeS, and pPebS. The chromatogram represents sample separated on a C₁₈ RP-HPLC column.

Supplemental Fig. 7. A. MALDI MS/MS spectrum of the precursor ion at m/z 1250, which was deduced to be a peptide fragment with a covalently bound PEB chromophore, and which was derived from trypsin digestion of the HT-CpeB-PEB produced in the presence of CpeS. The MS/MS spectrum contains two peaks of interest at m/z 664 and m/z 587. The peak at m/z 664 was attributed to a peptide containing a cysteine at position 80. The sequence of the peptide is (R) MAACLR (D). The second peak at m/z 587 was attributed to protonated PEB. **B.** Peak assignments of product ion spectrum corresponding to the precursor protonated PEB-peptide (derived from CpeB) complex. A tick mark prior to number, e.g., '964, indicates that one hydrogen has been transferred to the departing neutral ion upon cleavage. A tick mark after a number, e.g., 1129', indicates the transfer of one hydrogen to the formed ion. A dot (\cdot) indicates a radical ion.

Supplemental Fig. 8. Analyses of HT-CpeA-PCB produced in the presence of pPcyA and p*CpeYZ* **A.** Absorbance (solid line) and fluorescence emission (dashed line) spectra of HT-CpeA purified from cells containing pCpeA, pPcyA with pCpeYZ and absorbance (dashed dotted line), fluorescence (dotted line) without pCpeYZ are shown. **B.** Coomassie-blue-stained SDS polyacrylamide gel containing HTCpeA purified from cells containing pCpeA, pPcyA (lane 1) and pCpeA, pPcyA, pCpeYZ (lane 2). Position of a molecular mass standard is indicated to the right. **C.** Zn-enhanced fluorescence image of the gel pictured in panel **B**.

Supplemental Fig. 9. Amino acid sequence alignment between CpeY from *F. diplosiphon* (called Fd in the figure), a fusion of CpcE with CpcF from *Synechocystis* sp. PCC 6803 (called PCC6803 CpcEF), and RpcG from *Synechococcus* WH8102 (called WH8102 RpcG). The CpcE/CpcF proteins were combined to form one concatenated protein. The software used was MacVector 9.0. Dark shading indicates identical residues and light shading indicates similar residues.

Plasmid Name	Recombinant proteins produced ^a	Parent vector	Antibiotic^b	Reference
pPebS	Myovirus HO1 and HT-PebS	pACYCDuet-1	Cm	(1)
рРсуА	PcyA from <i>Synechoco ccus</i> sp. PCC 7002 and Ho1 from <i>Synechocystis</i> sp.	pACYCDuet-1	Cm	(2)
рСреА	<i>F. diplosiphon</i> HT-CpeA	pETDuet-1	Ар	This paper
pCpeA:C82S	<i>F. diplosiphon</i> HT-CpeA (Cys ⁸² mutated to Ser)	pETDuet-1	Ар	This paper
pCpeA:C139S	<i>F. diplosiphon</i> HT-CpeA (Cys ¹³⁹ mutated to Ser)	pETDuet-1	Ap	This paper
pCpeA:C82S/ C139S	<i>F. diplosiphon</i> HT-CpeA (Cys ⁸² and Cys ¹³⁹ mutated to Ser)	pETDuet-1	Ap	This paper
рСреВ	F. diplosiphon HT-CpeB	pETDuet-1	Ар	This paper
pCpeB:C80S	<i>F. diplosiphon</i> HT-CpeB (Cys ⁸⁰ mutated to Ser)	pETDuet-1	Ар	This paper
рСреВ:С1658	<i>F. diplosiphon</i> HT-CpeB (Cys ¹⁶⁵ mutated to Ser)	pETDuet-1	Ар	This paper
pCpeB:C48S/ C59S	<i>F. diplosiphon</i> HT-CpeB (Cys ⁴⁸ and Cys ⁵⁹ mutated to Ser)	pETDuet-1	Ар	This paper
рСреΖ	F. diplosiphon,HT-CpeZ	pCOLADuet-1	Km	This paper
pCpeY	F. diplosiphon CpeY	pCOLADuet-1	Km	This paper
pCpeYZ	F. diplosiphon HT-CpeZ and CpeY	pCOLADuet-1	Km	This paper
pCpeS	F. diplosiphon CpeS	pCOLADuet-1	Km	This paper

Supplemental Table 1: Plasmids used in this study

^{*a*} Proteins produced as Hexa-histidine-tagged fusions are indicated as HT-^{*b*} Antibiotic resistance used to select for the presence of the plasmid (Ap: ampicillin; Cm: chloramphenicol; Km: kanamycin; Sp: spectinomycin)

Dammeyer, T., Bagby, S. C., Sullivan, M. B., Chisholm, S. W., and Frankenberg-Dinkel, N. (2008) *Curr. Biol.* **18**, 442-448 1.

Biswas, A., Vasquez, Y. M., Dragomani, T. M., Kronfel, M. L., Williams, S. R., Alvey, R. M., Bryant, D. A., 2. and Schluchter, W. M. (2010) Appl. Environ. Microbiol. 76, 2729-2739

Supplemental Table 2.

Primer Name	Sequences	
cpeAF	5'-AA <u>GGATCC</u> GATGAATCAGTTGTTACCACCGT-3'	
cpeAR	5'-AA <u>GAATTC</u> CTAGGAGAGAGAGAGTTAATAGCGTA-3'	
cpeBF	5'-AA <u>GGATCC</u> GATGCTTGATGCTTTTTCTAGAGC-3'	
cpeBR	5'-CC <u>GAATTC</u> TTAGCTCAAAGCAGAGATTACGCG-3'	
cpeZF	5'-CC <u>GGATCC</u> GATGCCGACAACAGAAGAACTATTCCAA-3'	
cpeZR	5'-CC <u>GAATTC</u> TTATTTTTCTCCCCGCTGAAACTT-3'	
cpeYF	5'-ACAAGGAGCTTG <u>CATATG</u> GATAAGCGCTTTTTT-3'	
cpeYR	5'-AA <u>CTCGAG</u> GGCTGTGATTTCTTGATTTTTCAGGGT-3'	
cpeSF	5'-CAAATAGCTAAAACATATGGAAACCAAAGTGTTG-3'	
cpeSR	5'-AA <u>CTGCAG</u> CTAGGCACCAGTGTTTATG-3'	
CpeA (C82S)	5' CCTTCAAAGCTAAGTCCGCTCGTGACATC-3'	
CpeA (C139S)	5'- CGTAACCGTGGTTCTGCACCTCGTGATATG-3'	
pETDuet(XhoI del)	5'-ACGTCGGTACCCTCCAGTCTGGTAAAGAAACCGCTG-3'	
CpeB (C80S)	5'-CGTATGGCTGCCTCCTTACGCGATGCA-3'	
CpeB (C165S)	5'-GTTGAAGATCGTTCCGCTAGCTTAGTT-3'	
CpeB (C48S, C59S)	5'-GCTAGCTCCATGGTTTCTGATGCGTAGC	
	TGGAATGATCTCCGAAAACCAAGGT-3	

Oligonucleotide primers used in this paper (Engineered restriction enzyme sites are underlined)

В

Sup. Fig.2

Sup. Fig. 3

Sup. Fig. 4

A

А

Supplemental Fig. 9

Fd CpeY PCC6803 CpcEF WH8102 RpcG	1 MDKRFFNFFNLTEDQAIALLDTPQDQLSENDSRYIAASHLVNFP TERS 48 1 MSEPNLNPAYTLDQAIANLQQT EDASARYYAAWWIGRFRAAQPET 45 1 MPIDSVTAALEALDH QDAGVRYHGAWWLGKNR SAEG 36
Fd CpeY PCC6803 CpcEF WH8102 RpcG	 49 INALIRAVQ - QTDPSLDN - RIVRRKSVETLGRLKATTALPFIRICLFDED 46 IAALLVALEDETDRSPDGGYPLRRNAAKALGKLGDRQVVPALIKALECED 37 VPRLVECLLDERDKTCTGGYPLRRQAARSLGMIKDSRCLPELLKTLETDD 86
Fd CpeY	97 CYTVENAAWAIGEIGTQDTDILEDVAQLLEKPGQTYR 133
PCC6803 CpcEF	96 YYVRESAAQALEGLGDARAMAPLMAKLTGGLAAAQLVEGKPHLAQPYE 143
WH8102 RpcG	87 VQLHEATLRALIQIKSDQCSSSLINYLDRDIPNKPIE 123
Fd CpeY	134 VIIHTLTKFNYQPALERIRKFVNDSDPPTASAAIAAVCRLTGDYSQMAKV 183
PCC6803 CpcEF	144 AIIEALGTLQAVESIGLIEPFLEHFSPKVQYAAARALFQLTGDNRYGDLL 193
WH8102 RpcG	124 ALIEALTEQRMWDVSEKIQPFLNDKSERIAGSAAAFFYSYTGEMTYLNKV 173
Fd CpeY	184 VQILQHPNVLGRRLSIQDLMDARYYDAIPDIAKCPVSLVFRLRGLRTLAE 233
PCC6803 CpcEF	194 ITALGGTDLQLRRSAMMDLGATGYLPGAQAIAKAFAENSLKLIALRDLWA 243
WH8102 RpcG	174 ISLLDHQNRFIRQSAAFDLARIGTIKATDPILTAKIPNNVKMFAIKAILN 223
Fd CpeY	234 A GISEG AIT FAKIQPYLEQTLYDHPQDLNLVHSYDRLPTLEILIRG 279
PCC6803 CpcEF	244 THRQRQ ASSESKALSPASRQILELMDSLLMEGNS - VVTPEIERLIQA 289
WH8102 RpcG	224 KSLSRSNQADSTPDTDLASTHSSLFKALDSLARDNFSGNLLTEQDNQTPE 273
Fd CpeY	280 LYETD FGRCYLATKT ILEHYADAAAEALFATYAA 313
PCC6803 CpcEF	290 VETADSAAKLVGAVRALAATRSPLAVPQLTTVLRYNNPG AAVAAVDGL 337
WH8102 RpcG	274 TYPGDGSTESDLLSNAFDNLRSPSLTSRKSGIKQLVRGANRFKIDLLDLY 323
Fd CpeY	314 E A N N D Y G A H F H V I K L F G W L K H A P A Y D L I V E G L H N K Q P Q F 352
PCC6803 CpcEF	338 I Q I G D A AMTH - L L A NMD G Y N Y G A R A W A T R A C A G I G D P R A L A L L Q E A A L T D 386
WH8102 RpcG	324 F S E S D Q D I T M G L I K A M A E L K N P H Y A N A L I D A I G V E I G N H 362
Fd CpeY	353 Q K S RAAAAIALAELG D P KAIPELK A C L E T K I W D L K 387
PCC6803 CpcEF	387 F A L S V R R A A A K G L G F L R W Q S L P Q E E Q E T V Q K A I Y D T L I Q V C E D P E - W V V R 435
WH8102 RpcG	363 C Q G N I R R V A A C A L G D I N W N A KIS S Q S L H A V F N K L K W T L H S P E D W G L R 409
Fd CpeY PCC6803 CpcEF WH8102 RpcG	388 YATLMALEKLGDISEHKQAAQDSDWLIARKASSTLKN 424 436 YGAIAGLENLAKQAQHYRQPLKDFLQSFVEQEPEAIVGERILWTLEN 482 410 YSACLALEGIGNADSIKLLNEAKAKETDPVLSARLDKAILKSKNKTSIHH 459
Fd CpeY	425 QEITA 429
PCC6803 CpcEF	483 IGPI 486

WH8102 RpcG 460 I EN K K V L 466