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Supplementary data 

 
Experimental procedures: 
        cDNA cloning of Arabidopsis ACS and E. coli expression and purification –Total 
RNA was extracted from the leaves of six-week-old Arabidopsis plants and used as a 
template to reverse-transcribe cDNA with oligo-dT as primer (1). The coding sequence of 
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Arabidopsis ACS (At5g36880) was amplified by PCR using 1 unit of high-fidelity proof-
reading Platinum DNA polymerase (Invitrogen), and 0.2 M of each forward and reverse 
primers: 5'- atgaaaataggatctccttcttccccg -3' and 5'- gccacatcggcaagtgcaataag -3'. The RT-
PCR product was cloned into pGEM vector (Promega) and subsequently DNA 
sequencing was used to confirm gene identity. An Ecor I- NotI fragment (~2000 bp) 
containing the partial ACS gene without the putative signal peptide N-terminal region 
(aa97-743) was sub-cloned into an E. coli expression vector derived from pET28a.  
 
        E. coli cells harboring a pET28:ACS plasmid or a vector alone were cultured for 16 
h at 37 ºC in LB medium (15 mL) supplemented with kanamycin (50 μg/mL) and 
chloramphenicol (34 μg/mL). A portion (5 mL) of the cultured cells was transferred into 
fresh LB liquid medium (250 ml) supplemented with the same antibiotics, and the cells 
then grown at 37oC at 250 rpm until the cell density reached OD600 = 0.6.  The cultures 
were then transferred to 25oC and gene expression induced by the addition of isopropyl β-
D-thiogalactoside to a final concentration of 0.5 mM. After 3 h growth while shaking 
(250 rpm), the cells were harvested by centrifugation (6,000 x g for 10 min at 4 ºC), 
resuspended in lysis buffer (10 ml 50 mM Tris-HCl pH 7.6, 10% (v/v) glycerol, 50 mM 
NaCl, 0.1 mM EDTA, 1 mM MgCl2, supplemented with 1 mM DTT and 0.5 mM 
phenylmethylsulfonyl fluoride) and lysed in an ice bath by 24 sonication cycles each (10-
sec pulse; 20-sec rest) using a Misonix S-4000 (Misonix incorporated, Farmingdale, New 
York) equipped with microtip probe. The lysed cells were centrifuged at 4 °C for 30 min 
at 20,000 x g, and the supernatant (termed s20) was recovered and kept at -20oC.  
 
 ACS proteins were purified either on a gel-filtration column (Superdex75, 1 x 90 
cm) followed by SourceQ-15 (0.5 x 5 cm, GE) (1), ATP-affinity column (2 ml, a kind gift 
from Dr. Timothy Haystead, Duke University, Durham) or various Dye columns (1 ml, 
Sigma).The ATP- and Dye-columns were equilibrated with 50 mM sodium-phosphate, 
pH 7.5. The bound proteins were eluted with the same buffer containing increasing 
concentrations of salt up to 0.5 M, and ACS selectively eluted with buffer containing 10 
µM ATP. The fractions containing ACS activities were snap frozen in liquid nitrogen and 
stored in aliquots at -80ºC. The concentration of proteins was determined using the 
Bradford reagent kit (Bio-Rad) using bovine serum albumin (BSA) as standard.  
 

The molecular weight of the recombinant ACS was estimated by size-exclusion 
chromatography using a Waters 626 LC HPLC system equipped with a photo diode array 
detector (PDA 996) and a Waters Millennium32 workstation. ACS (0.5 ml) or a mixture 
of standard proteins [10 mg each of alcohol dehydrogenase (150 kDa), ovalbumin (48.9 
kDa), ribonuclease A (15.6 kDa), and cytochrome C (12.4 kDa)] were separately 
chromatographed at 1 ml/min on a Superdex75 column (10 mm id X 300 mm long, GE) 
equilibrated with 0.1M sodium phosphate, pH 7.6, containing 0.1 M NaCl. The eluant 
was monitored at A280 nm and fractions collected every 20 sec. Fractions containing 
enzyme activity were pooled and kept at -80ºC. To confirm the amino acid sequence of 
recombinant ACS, the purified recombinant protein was fragmented with trypsin and the 
resulting peptides were confirmed by MALDI TOF-MS analyses.  
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        ACS HPLC-based assay- reactions (50 µl final volume) were performed in 50 mM 
HEPES-NaOH, pH 7.6, (or other buffer when indicated) containing 5 mM MgCl2, 1 mM 
ATP, 0.2 mM CoA, and 1 mM acetate and 1.5 µg recombinant ACS. Reactions were kept 
at 37ºC for up to 10 min, and then terminated with an equal volume of chloroform. After 
vortexing (30 seconds) and centrifugation (12,000 rpm for 5 min, at room temperature), 
the upper aqueous phase was collected and chromatographed at 1 ml min-1 on a C18 
reverse-phase column (4.6 mm id x 250 mm long, 5 µm, Agillent Prep-C18, or 4.6 mm id 
X 100 mm long, 5 µm TSKgel ODS-100V, Tosho) using an Agilent Series 1100 HPLC 
system equipped with an autosampler, diode-array detector and ChemStation software. 
Chromatography conditions were 35 min linear gradient from 98% A/2% B to 100% B 
[where A is (20 mM t-butylamine-H3PO4 pH 6.6) and B is (20 mM t-butylamine -H3PO4 

pH 6.6 with 20% acetonitrile)] followed by 10 min at 100% B, 3 min to 50% A/B and 10 
min pre-equilibration with 98% A/2% B.  Nucleotides were detected by their UV 
absorbance using a Waters or Agilent photodiode array detector. The maximum 
absorbance for adenosine-nucleotides was 253 nm. The peak areas of analyses were 
compared to calibration curves of an internal standard. Stds (1 mM each ATP, AMP, 
acetate, CoA, AcCoA) were prepared in the same buffer, temperature and pH as 
enzymatic reactions. 
 
           Kinetics-To determine the kinetic parameters for ATP, acetate, and CoA, the 
experiments were conducted by varying the concentration of one substrate while the other 
was saturated.  The catalytic activity of ACS was assayed at 37ºC for 5 min using 
HEPES-NaOH pH 7.6, containing MgCl2 (5 mM), variable concentrations of ATP (40 
µM to 2 mM), a fixed concentration of acetate (2 mM) and CoA (2 mM), and 0.2 µg 
recombinant ACS (3 pmol). In a separate series of experiments reactions were performed 
with a fixed amount of ATP (2 mM) and variable concentrations of either CoA or acetate 
(20 to 400 µM).  Enzyme velocity data of the amount (µM) of AcCoA produced per 
second per µg enzyme, as a function of substrate concentrations was plotted. The Solver 
tool (Excel version 11.5 program) was used to generate best-fit curves calculated by 
nonlinear regression analyses, and for calculation of Vmax and apparent Km. 
 
         Enzyme properties of ACS-To characterize the properties of recombinant ACS, the 
activity was tested under a variety of conditions: with various buffers, at different 
temperatures, different ions, or with different potential inhibitors. For the optimal pH 
experiments, 1.5 µg recombinant enzyme was first mixed with 5 mM MgCl2, 1 mM ATP, 
1 mM CoA and 50 mM of each individual buffer (Tris-HCl, phosphate, MES, MOPS, or 
HEPES). Assays were then initiated after the addition of 1 mM acetate. Inhibitor assays 
were performed under standard assay conditions except for the addition of various 
additives (DTT, nucleotides) to the reaction buffer. These ACS assays were incubated for 
30 min at 37ºC, and were subsequently terminated by heat (1 min at 100ºC). After 
cooling and chloroform extraction, the reaction was separated by chromatography and the 
amount of AcCoA formed was calculated from HPLC UV spectra. For the experiments 
aimed at defining the optimal temperature the ACS assays were performed under 
standard assay conditions except that reaction were incubated at different temperatures 
for 10 min. Subsequently, the activity was terminated (100ºC) and the relative activity 
was measured after chromatography.  For the experiments aimed at determining if ACS 
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required metals, assays were performed with buffer, ATP, CoA, acetate and with a 
variety of ions. After 10 min at 37ºC incubation the assay was terminated by heat. The 
amount of AcCoA formed was calculated from HPLC UV spectra. 
 
        Deconvolution of superimposed peaks-In the “multiple peak spectral fitting’ (MPSF) 
approach described below, metabolic time-series spectra are to be analyzed as linear 
superpositions of the standard spectra of individual metabolites. However, between the 
measurement of the standard spectra and the measurement of the metabolic time-series 
spectra NMR resonances tend to shift due to small changes in the physico-chemical 
environment. As a pre-processing step, we therefore have to align the peak positions of 
each observed standard to match the corresponding peak positions in the time-series 
spectra. The resulting “aligned spectral standards” will then be used to represent the 
respective metabolite’s contribution to the time-series superposition spectra.  

In the simplest version of our alignment procedure, we utilize only certain well-
resolved, isolated peaks in the time-series spectra, to be referred as “diagnostic peaks”, 
which must be chosen for each metabolite so as to not overlap with any peaks of any 
other metabolites. The alignment is then applied separately to each diagnostic peak of 
each observed metabolite. This is implemented by representing the “target” diagnostic 
peak in the time-series spectra as a superposition of a large set of “shifted diagnostic 
peaks”, generated by applying successive frequency shifts, in small increments, to the 
original diagnostic peak extracted from the observed standard spectrum. That is, formally 
e = La where the experimental data vector e comprises the target diagnostic peak signal 
of the time-series spectra; each column of the “library” matrix L contains a shifted 
diagnostic peak generated from the standard spectrum; and a is the vector of 
superposition amplitudes. The diagnostic peak shifts that make up L are generated in a 
window (-W,W) about the original peak from the standard beginning at location –W, then 
successively shifting the peak by one NMR frequency grid point (i.e., ~1.3  10-4 ppm for 
the data presented here) up to W. The usual method for determining a would be to invert 
(or find a pseudoinverse of) the matrix L and solve: a = L-1e. However, because a is not 
otherwise constrained, this approach does not localize the peak well. Furthermore, 
oscillations and negative peaks are found in the estimate of e, which is unphysical. For 
these reasons, we use a rank one variant of an optimization method called Non-Negative 
Matrix Factorization (NMF) (2-3). This method enforces the constraint that the vector a 
is non-negative. In other words, all of the peak amplitudes are positive. This type of 
factorization minimizes the distance |e – La|. For our results, we used Lee and Seung’s 
original multiplicative update rule: 

ai =:ei (L
T e)i/(L

TLa)i      (1) 

where superscript T indicates the transpose. As illustrated below, the resulting amplitudes 
a exhibit a sharp maximum when plotted as a function of the incremental peak shifts 
applied to the standard. The corresponding maximum-amplitude shifted diagnostic peak 
gives the best alignment to the target diagnostic peak in the time series and it is therefore 
used as the “aligned spectral standard” to represent the metabolite’s spectral contribution 
to the time-series spectra in the particular frequency window where it resides. Alignment 
errors are assessed by picking random initial conditions for the NMF minimization 
procedure and generating a probability distribution of possible alignments. 
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The same alignment procedure can be applied, separately and independently, to each 
identifiable diagnostic peak of each metabolite for which a standard spectrum has been 
recorded. This allows us to incorporate multiple shifted diagnostic peaks, each from a 
different spectral frequency window, into a more detailed and more informative aligned 
spectral standard. One should expect, and we have explicitly confirmed, that inclusion of 
a larger number of peaks in the aligned spectral standard significantly reduces the noise 
in the resulting MPSF-generated concentration estimates. Errors for this multiple window 
procedure are generated in the same way as for individual windows. 

The foregoing NMF-based alignment procedure can be further generalized to deal 
with metabolites which do not exhibit any isolated diagnostic peaks. In this case, the 
NMF is employed to simultaneously fit multiple standards to the time-series data in a 
given frequency window. This generalized multiple-standard alignment approach can 
then also be applied to any other spectral frequency windows of interest where multiple 
metabolites may exhibit overlapping standard spectral weight. We have found that this 
approach generally gives low noise results, specifically by way of reducing noise in the 
resulting MPSF-based concentration estimates. All MPSF concentration data reported 
here were therefore generated via multiple-standard alignment in each given frequency 
window. 
 
The Ensemble Network Simulation (ENS): 

Input Data Sets and Models-From the proton NMR spectral time-series of both 
the forward reaction (FR) and backward reaction (BR) experiments, time-dependent 
concentrations of small-molecule metabolite compounds acetate, ATP, CoA, acetyl-AMP 
(also referred to as compound “Q” for short), AcCoA, and AMP were extracted for up to 
300 observation times, spread out approximately equidistantly over an ~73 minute 
reaction and NMR observation time interval, by two different methods: the MPSF and 
peak integration with background subtraction (PIBS) approach, as described in the 
Experimental Procedures section. In addition, the peak integral time-series of an NMR 
resonance, representing the concentration sum of three adenosine-containing compounds 
(ATP, CoA and AcCoA), was included in the PIBS data set. Each of these two time-
series data sets (MPSF and PIBS) was then used as input into a series of ensemble 
network simulations (ENS) following Battogtokh et al. 2002 and Yu et al. 2007 to 
discriminate between four different hypothesized reaction network topologies of the ACS 
enzymatic pathway [Figure 6(A)] (4-5).  

 
         Ensemble Probability Distribution-In each ENS, both FR and BR time series data 
for all ~300 observation times and all observable compounds (acetate, CoA, ATP, Q, 
AcCoA, and AMP), as well as the observed concentration sum ATP+CoA+AcCoA for 
the PIBS data set, were incorporated into an ensemble probability distribution function 
Q(,) = -1 exp[-2(,)/2] with normalization factor  and a 2-function,  

2(,) = j=1…J [Yj  - c(j) - Fj()]2 / j
2 .                                                 (2) 

Here, (1,… M)  denotes the vector of all unknown rate coefficient and unknown 
initial concentration parameter variables in the model, with M=15, 21, 21, and 23 in 
Models 1, 2, 3, and 4, respectively. Of these, Ms=8 are initial concentration  variables and 
Mr=7, 13, 13, and 15 are rate coefficient variables for models 1, 2, 3, and 4, respectively. 
The index j=1,…J labels all data points from all experiments, all observable compounds 
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and all observation times, with J=3878 and 2995 in the PIBS-processed and MPSF-
processed data set respectively. Yj   is the natural log of the observed concentration, 
measured in NMR peak area units; j is the corresponding experimental standard 
deviation (SD) of Yj; Fj() is the corresponding predicted natural log molar 
concentration, obtained by solving the model’s kinetic rate equation system for given 
model parameter vector ; and c(j) is the natural log of the unit conversion factor 
required to convert the model’s molar concentration units into the experimental NMR 
peak area units in which the concentration for data point j is measured. 
 

Unit Conversion Factors and Scale Factor Classes-The unit conversion factors 
required to convert the model’s molar concentration units into experimentally observed 
NMR peak area units may differ from one experiment to another, due to changes in 
experimental detection conditions; and they may also differ between resonances within 
the same NMR spectrum, due to differential T1 relaxation times. To determine (or at least 
constrain) these conversion factors in the ENS, the set of all experimental data points j is 
partitioned into “scale factor classes” (SFCs) (5), such that all j sharing a common unit 
conversion factor (from molar to NMR resonance peak area) are assigned to the same 
SFC, with different SFCs labeled by an index c=1,… C (5) The (1,… C) then denotes 
the vector of the natural log conversion factors, c, and c(j) in Eq.(2) denotes the SFC 
which comprises data point j. The ENS treats each c as an independently adjustable 
model parameter variable, on an equal footing with the -variables. For the MPSF and 
the PIBS data set, two or, respectively, three SFCs with independently adjustable c (i.e., 
C=2 and C=3) were introduced. For the MPSF data set, the SFC c=1 comprises all data 
points j for all compounds observed in the FR experiment; and  c=2 comprises all data 
points j for all compounds in the BR experiment. For the PIBS data set, the SFC c=1 
comprises all data points j for all compounds observed in the FR experiment, as well as 
compound Q in the BR experiment; c=2 comprises all data points j for all compounds 
except AcCoA in the BR experiment; and c=3 comprises data points j for compound 
AcCoA in the BR experiment.  

The -variables are constrained in the ENS by fixing the model initial (t=0) 
concentrations to the value 1.0mM (which is independently known experimentally, from 
the titration of the input reactants) for Acetate in the FR, and for AMP and PPi in the BR 
experiment. For other input reactant compounds, the initial concentrations may not have 
been well quantitated experimentally by titration, in either FR or BR experiments, and 
they were therefore treated as MC -variables in all ENSs. For observable output product 
compounds (AcCoA and AMP in FR; and acetate, CoA and ATP in BR) the initial 
concentrations were also treated as -variables, each with an upper bound of 0.25 mM, to 
provide for ENS correction of small, systematic background subtraction errors in the 
MPSF or PIBS data sets. ACS enzyme initial concentrations were fixed at the titrated 
values of 0.0008 mM for both the FR and the BR experiment. The initial concentration 
values of the hypothesized enzyme-complex compounds occurring in the various models 
were all fixed to zero for both FR and BR.  

Averaging over the -variables can be carried out analytically, since the -
variables are normally distributed in Q(,) for fixed . One thereby obtains an 
“effective”, -averaged probability distribution, with an “effective” 2-function, denoted 
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respectively by Q() and 2() below, where Q() = const  exp[-2()/2]. Due to the 
normal distribution of the -variables in Q(,), this is mathematically equivalent to 
minimizing 2(,) with respect to  at fixed . It is also equivalent to replacing the 
independent -variables by their “conditional” means, i.e., by  averaged over 
Q(|)Q(,)/Q(), given a fixed . This conditionally averaged -vector at fixed  is 
denoted by () for short. The effective 2() thus equals the full 2(,)-function, 
minimized with respect to the -variables. The Monte Carlo (MC) guided random walk 
procedure discussed below is then implemented for this effective Q(), i.e., it randomly 
varies only the -variables, guided by the effective Q(), with -variables replaced by 
their conditional means (). All 2-values and means shown and discussed here and in 
the main text of this article are (based on) effective 2-values. In all figures  comparing 
experimental concentration time series data to ENS-based model predictions [Figures 
6(B) and S2(A)], the experimental data exp(Yj) have been re-scaled into model units by 
multiplication with exp(-c(j)). That is, the experimental data points shown, in units of 
mM, represent exp(Yj - c(j)), with c(j) denoting the mean of c(j) over Q(,) or, 
equivalently, the mean of  c(j)() over  Q().  

Integrating out the -variables by analytical means does of course not eliminate 
their ensemble fluctuations prescribed by the underlying probability distribution Q(,). 
Even though the -variables are not independently varied by the MC random walk, the 
ensemble -fluctuations, along with the -fluctuations, do still contribute to the ensemble 
uncertainties of predicted observables, such as the uncertainty bands of the concentration 
time series shown in Figures 6(B) and S2(A). Otherwise it might appear paradoxical, for 
example, that model 3 could have the lowest converged 2-values, as seen in Figure 6(C), 
and at the same time have the largest width of concentration uncertainty bands, as seen in 
Figures 6(B) and S2(A). In the absence of the -variables, the model with the widest 
concentration uncertainty bands would also be expected to have the largest (not smallest!) 
2-values, since the uncertainty band widths directly correlate with the rms magnitude of 
the “zero- residuals” Rj:=(Yj-Fj()) and the latter would also be the residuals 
contributing to 2. However, in the presence of the -variables the rms values of the “2-
residuals” in Eq.(2), rj:=(Yj-c(j)-Fj()), are not necessarily correlated in an obvious way 
with the concentration uncertainty band widths. The uncertainty band widths are again 
directly correlated with Rj=(Yj-Fj()), but now Rj=rj+c(j) and Rj

2=rj
2+c(j)

2+2rj 

c(j). So, when expressed in terms of the mean squares of 2-residuals, the corresponding 
mean square of the zero- residuals is modified both by the square of the relevant -
variable and the cross-correlation between the c(j)-variable and rj. The - and -variables 
can then be coupled by Q(,) in such a manner that, on average, the mean 2 is 
decreased by the coupling, while the concentration uncertainty band widths are increased, 
due to the additional, positive c(j)

2+2rj c(j)-contribution. This is in fact the case in the 
models studied here, and most strongly so in model 3. 

 
 Experimental Standard Deviations- Experimental SD values j are required as 
inputs to Eq. (2). They were estimated separately for each compound in each experiment 
with two independent methods: either by (i) least-squares fitting a linear function y=at+b 
to the experimental concentration data yj (in NMR peak area units) over a short (<5min) 
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time interval and calculating their rms deviation (rms) from the linear fit; or by (ii) 
generating a distribution of concentrations from the alignment distributions found in the 
MPSF procedure and calculating standard deviations of the set of resulting 
concentrations. Both of these procedures generated similar error bars and resulted in 
(rms)-values which are roughly independent of time over the ~73min NMR observation 
time interval for each compound and experiment. We then used j=ln(1+3.0(rms) /yj) 
for the SD of the log concentration Yjln(yj). Multiplying (rms)  by the additional factor 
of 3.0 here ensures that we are obtaining a very conservative upper limit for j. Using 
larger j speeds up MC equilibration and it also helps to avoid overfitting of the data.  
Consequently, we are likely overestimating the uncertainties in any ensemble predictions 
based the resulting distribution Q(,), since increasing j tends to “widen” the 
distribution.  
 
 Constraints by Sub-Noise Metabolites-The NMR spectra did not show any 
evidence of any detectable (i.e., above-noise) amounts of the intermediate metabolite 
acetyl-AMP (Q) being released as a free non-enzyme-bound species during either the FR 
or BR experiment. While this observation does of course not rule out the production of 
small sub-noise levels of free acetyl-AMP, it does impose an upper limit on the free 
acetyl-AMP levels; and this upper limit in turn could impose a potentially important 
constraint on any hypothetical pathway model. To incorporate this constraint into the 
ENS, we included in 2(,) for the PIBS simulations a series of acetyl-AMP “synthetic” 
experimental data Yjln(yj), at 300 time points each for both the FR and the BR 
experiment, with all yj set to the mean (rms) from compounds detected in the FR 
experiment and with a large SD for Yj, of j=2.0. This has the effect of allowing model 
parameterizations  with possible Acetyl-AMP production at or below the noise-limited 
NMR detection levels, while constraining the ensemble distribution so as to suppress 
models with Acetyl-AMP levels rising significantly above NMR noise.  

For the MPSF data set, separate simulations were performed for each model both 
with and without such synthetic “Q-constraint” data included in 2(,). We found that 
the MPSF results were generally not affected by inclusion or omission of these synthetic 
data. Specifically, the rank-ordering of the models by their respective MC-converged 2–
values does not depend on the presence or absence of the synthetic data. Figure 6 and 
Figure S2 only show the MPSF  and PIBS results from the simulations performed without 
synthetic Q-constraint data. 

 
Monte Carlo (MC) Protocol-During the simulation, all unknown model parameter 

variables m are confined to intervals [m
(lo), m

(hi)] with very conservative low- and high-
limits m

(lo) and m
(hi), respectively. At the start of the simulation, each m is randomly 

initialized with ln(m) drawn from a uniform distribution on [ln(m
(lo)), ln(m

(hi))]. 
Starting from this random -initial, a MC equilibration of 5000 MC sweeps is performed. 
As described in (5), each MC sweep consists, with equal probability, of either M single-
m or M global- Metropolis updating steps, controlled by the ensemble probability 
distribution Q(). MC equilibration is then followed by MC sample accumulation, 
consisting of another 1000 or 5000 MC sweeps for the MPSF- or PIBS-processed 
experimental data, respectively, with the random  at the end of each sweep being 
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collected into the MC sample. Ensemble averages, SDs and parameter distributions are 
estimated by the corresponding averages, SDs and distributions over the MC sample, 
including, for example, MC averages of the kinetic rate equation solutions for the time-
dependent metabolite concentrations. This MC process of random -initialization, 5000 
equilibration and 1000 (for MPSF) or 5000 (for PIBS) accumulation sweeps is repeated 
20 or 10 times, for the MPSF- or PIBS-processed data sets, respectively, each MC (re-
)start with a different random -initialization. Of these 20 or 10 MC re-starts, only those 
converged with an accumulated MC average 2<max

2=6000 are collected into a “grand 
sample”, for each of the four models, simulated with the MPSF input data set. The choice 
of this 2-cut-off, max

2 , is explained further below. 
For the PIBS input data set the overall quality of fit was significantly worse for all 

four models, with the best converged 2-values from all MC re-starts being about 4 times 
larger than for the MIPS input data set, as illustrated below in Figure S2(B). We therefore 
had to increase the collection tolerance for the PIBS simulations, to max

2=20000, in 
order to be able to collect any MC re-starts at all into the grand sample. As discussed 
below, the PIBS time series data cannot be adequately fitted by any of the four network 
models considered here. However, as discussed below and in the main text of this article, 
this is a deficiency of the PIBS data analysis procedure, and not per se a deficiency of the 
four models. We are showing the PIBS-based ENS results here only to further illustrate 
the inadequacies of the PIBS procedure and to contrast it with the MPSF approach. The 
latter extracts sufficiently reliable concentration time series data to allow for a 
meaningful ENS-based analysis and network model discrimination; the former does not. 

The grand sample is used to estimate the MC statistical sampling error and to 
obtain the ensemble grand sample averages and SDs, as shown in Figure 6(C) and Figure 
S2(B). For each of the four models, simulated with each (MPSF and PIBS) input data set, 
the MC re-start with the lowest final 2-value was then also used for the MC trajectories 
in Figure 6(C) and Figure S2(B), showing 2() vs. MC sweep number.  

The number of experimental data points J included in 2, Eq. (2), sets the 2-scale 
for an acceptable fit. Assuming approximately normally distributed experimental data, we 
expect an acceptable fit to have a 2-value of about exp

2=J, i.e., exp
2 ~ 3000 for the 

MPSF and exp
2 ~ 3900 for the PIBS data sets, respectively. If the actual 2–values of the 

best model fit are substantially larger than exp
2=J we should reject the underlying 

network model as incompatible with the data. 
Likewise, if the actual ensemble mean 2-value of a MC re-start substantially 

exceeds exp
2=J then we should reject such a re-start from the MC grand sample. The 

number of experimental data points J thus also sets the scale of our 2-cut-off, max
2, for 

acceptance or rejection of the specific parameter (-) space region explored by an MC re-
start. We have chosen as max

2 = 2exp
2 = 2J ~ 6000 for the MPSF data. The expected 

ensemble standard deviation of 2 is also controlled by the number of experimental data 
points J, with  [exp

2] ~ J1/2 ~ 55. The imposed cut-off max
2 exceeds the expected mean 

2-value, exp
2, by about (6000-3000)/55 ~ 55 standard deviations. So only MC re-starts 

with converged mean 2-values within less than 55 expected standard deviations from the 
expected mean, exp

2 have been included into the MC grand sample for the MPSF data 
set.  
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Some MC re-starts can in fact produce converged mean 2-values significantly 
exceeding those of the “better” (i.e., lower-2) re-starts, and thus exceeding exp

2. This 
occurs when the MC random walk through -space gets trapped in a high-2 local 
minimum of the 2()-landscape. By performing repeated MC re-starts, each with a 
completely new random -initialization, instead of just one very long single MC run, we 
are reducing the probability of accidentally being trapped in only one single “bad” high-
2 local minimum while missing “good” -regions with substantially lower 2 –values. 
As in any non-linear data fitting procedure, we can of course never completely rule out 
the possibility of missing the “best”, i.e., absolute 2()-minimum. However, the MC re-
starts actually collected into our grand sample have mean converged 2-values that are 
typically within less than ~1-2 times the expected standard deviation [exp

2] from each 
other, suggesting that the ENS is indeed exploring -regions with close to absolute- 
minimal 2(). 

 
Parameterization and Prediction Uncertainties-R2Q4.2>> If mean converged 2-

values were found to be significantly smaller than exp
2 this would indicate a serious 

over-fitting of the data. However, the ENS approach effectively prevents this from 
happening. In contrast to conventional maximum likelihood methods, the ENS algorithm 
does not endeavor to find the best , having the minimum 2-value and giving the best fit 
to the data. Rather, for an acceptable model, the ENS generates a representative sample 
of all possible  that are reasonably, and about equally well, consistent with the data Yj, 
within the constraints imposed by the overall available range of model predictions Fj(). 
The ENS thus explores the entire “uncertainty cloud” in -space which comprises all  
having acceptably low, but not necessarily minimal 2(). In the course of doing so, the 
ENS automatically detects the presence of large -uncertainties wherever they arise. The 
ENS also translates -uncertainties (and, as discussed above, -uncertainties) into 
corresponding uncertainties for predicted observables, as indicated, for example, by the 
uncertainty bands in the concentration time series shown in Figure 6(B) and S2(A).  

Hence, a model which would over-fit the data in a maximum likelihood setting 
can still be reasonably analyzed by the ENS approach, and utilized to give meaningful, if 
uncertain, predictions. In an ENS analysis, such an “over-fitting” model will exhibit large 
-uncertainties, at least along some sub-manifolds of -space. These -uncertainties may, 
or may not, translate into large prediction uncertainties, depending on the model and on 
the specific observable quantity that is being predicted. In the context of kinetic rate 
equation network models it has been found (4,5,10) that large -uncertainties frequently 
do not always result in large prediction uncertainties for concentration time series 
observables. Concentration time series for some, if not all, relevant molecular species can 
often be predicted with reasonably tight uncertainty bands in spite of the fact that the 
underlying -uncertainties may be very large. This happens when the predicted 
observable is largely insensitive to -variations along those sub-manifolds in -space that 
support the large uncertainty clouds. Likewise, despite large -uncertainties, the ENS can 
still identify statistically significant differences in converged 2–values, and thereby 
discriminate, between different models.  

This capability of the ENS approach to make meaningful model predictions and 
allow for significant model discrimination, in spite of large model parameterization 
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uncertainties, is also very much in evidence for the models and for the MPSF data set 
investigated here. As illustrated by the results for the ensemble means and ensemble 
standard deviations in Table S2, the MPSF data constrain the rate coefficient -variables 
in each of the four models only to within an order of magnitude at best. Yet the 
differences in converged-2 values between these models are statistically significant, as 
discussed below.  

Also, the ENS makes meaningful concentration time series predictions here, with 
reasonably tight uncertainty bands not only for all of the observed compounds, but also 
for at least some of the species for which there is no information at all in the NMR data. 
This is illustrated, for example, by the PPi time series predictions shown in Fig. S2(A). 
There are no experimental data for this compound; and yet, despite the large relative -
uncertainties shown in Table S2 (100% or larger!), the PPi uncertainty bands are no 
more than 20-30% of predicted terminal concentration. The PPi time series prediction is 
thus sufficiently precise to allow for a meaningful test by future experiments, such as 31P-
NMR. 

If one were to attempt a maximum-likelihood analysis, such as least-squares 
fitting, for any of the four models considered here, using the current MPSF data set, the 
results would be meaningless, due to over-fitting. Even if a unique parameterization , 
with absolute-minimal 2(), could be identified any model prediction based on such a 
single “best”  should not be trusted. The “best”  here is embedded in a large 
uncertainty cloud of “many” other, almost equally “good” parameterization choices. Any 
 within this uncertainty cloud would give essentially the same goodness of fit to the 
data, as quantified by the 2-value. The standard deviations reported in Table S2 do in 
fact provide us with some rough measure of the “extent” of this cloud in -space. The 
only meaningful way to make any predictions in this situation is thus to locate and 
explore the entire cloud, not just a single  within it, and to then translate the cloud from 
-space into probability distributions of predicted time series and 2-values. That, in 
essence, is what the ENS algorithm accomplishes.  

 
Model Discrimination.-Visual inspection of residuals is not a reliable gauge of the 
systematic deviations between model and data in this case where one is dealing with 
complex, heterogeneous data sets with multiple species being simultaneously fitted by the 
same model. The 2-function, in the other hand, provides a quantitative measure of both 
random and systematic deviations between model and experiment. The different 2-
values of the four models compared here reflect the differences in their systematic 
deviations from the experimental data. These deviations are well outside of their 
statistical 2-uncertainties.  

The expected 2-values due to random fluctuations in the data are of order exp
2~J 

where J~3000 is the number of experimental (MPSF) data points included in 2. For the 
best-fitting model, model 3, simulated with the MPSF data set, the actual 2-values, of 
order 4400, are consistent with exp

2~J. The expected standard deviation of 2 is of the 
order [exp

2]~J1/2~55. This value of [exp
2] is also roughly consistent with the rms 

statistical fluctuations of 2, as seen in the Monte Carlo trajectories shown in Figure 6(C). 
The difference in 2-values of the two best-fitting models, Model 2 and Model 3, is of 
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order 2~480. This 2 exceeds, at least 8-fold, their standard deviation [exp
2]. This 

suggests that the 2-difference between the two models is indeed statistically significant. 
The four models being compared here differ in their number of degrees of 

freedom, that is, in the number M of their parameter variables in  that are being 
randomly varied during the MC simulation. Statistical information criteria (8,9) such as 
the Akaike information criterion (AIC) and the Schwarz-Bayes information criterion 
(SBIC) provide systematic approaches to account for these differences in model 
complexity when comparing and ranking such models in terms of their 2-values. 
According to either criterion, one should modify the 2-function by adding an M-
dependent penalty term for the -space dimension M, resulting in “IC-functions” given 
by 

AIC = 2 + 2M   for Akaike 
and 

SBIC = 2 + 2M ln(J)   for Schwarz-Bayes 
where J is again the number of data points in 2. Models with different M-values should 
then be ranked according to their IC-function values instead of their 2-values. However, 
for our four models, the differences in their M-values, and hence differences of the 
foregoing M-penalty terms in their AIC- and SBIC-functions, are either zero or small 
compared to the differences, 2, in their 2-values, as illustrated in Figure 6(C). Taking 
into account the M-penalties, from either AIC or SBIC, will therefore not change the 
rankings based on 2-values. Specifically, the M-values of model 1, 2, 3, and 4 are M=15, 
21, 21, and 23, respectively. Between the second-best and the best model, 3 and 2, we 
thus have no M-penalty difference at all: 2M=0, using AIC, and 2M ln(J)=0 using 
SBIC. Between the third- and second-best models, 4 and 3, we have a positive M-penalty 
difference which only favors model 3 (and model 2!) over model 4 more strongly, with 
2M=+4.0, using AIC, and 2M ln(J)=+32.0, using SBIC. Between the fourth- and the 
third-best model, 1 and 4, we have a negative M-penalty difference, with 2M=-16, using 
AIC, and 2M ln(J)=-128, using SBIC. However, either M-penalty difference, which 
tends to favor model 1 over model 4, is still much smaller in magnitude than the positive 
2-difference, 2~+500. Thus, 2 favors model 4 over model 1 much more strongly 
than the M-penalty difference favors 1 over 4; and it does so with a net AIC- or SBIC-
difference that is still well outside of the 2-uncertainties, [exp

2]~J1/2~55. <<R2Q4.2 
 

Limitations and Extensions of NMF and ENS Approaches-As currently 
implemented, the ENS method requires assumptions of specific network model 
topologies to be tested against the NMR time series data. Thus, our present ENS analysis 
focuses on the comparison and 2-ranking of just a small candidate set of reasonable, but 
ultimately ad hoc model network topologies. For such a set of selected network 
topologies, the ENS then provides the useful capability to discriminate between the 
competing models. This scenario is in fact frequently encountered in the study of 
metabolic systems. If some candidate set of possible model topologies has already been 
identified by prior experiments, the ENS can identify the best candidate, or at least 
narrow down the possible choices, based on consistency with the data, as more 
experiments are being performed and more data are added.  
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However, in the current approach, we can of course not rule out that some 
network topology, omitted from the initial candidate set, may give better agreement with 
the data than the best candidate identified in the set. For example, even the “best” model 
in our candidate set, model 3, does still exhibit systematic deviations between ensemble 
mean and experiment for the early-time Acetate data shown in Figure S2(A). These 
systematic deviations account for the fact that the actual ENS mean 2-value exceeds the 
expected exp

2~J~3000 by about 1400 in model; and they, in fact, provide the basis for 
ranking of models. Conceivably, a more elaborate model topology may be found with a 
mean 2-value closer to (but not, see below, less than!) exp

2, whereas the ENS approach 
implemented here determines the best topology only within a fixed candidate set. 

It would therefore be useful to extend the ENS approach so that variations of 
network topology can be systematically explored by the simulation algorithm itself, 
without being constrained by the ad hoc selection of an initial limited, fixed candidate 
set. The limitation to fixed network topologies can indeed be overcome by a variable-
topology ENS method where discrete (binary) random variables are included in  to 
model, and randomly vary by MC, the presence or absence of putative reactive links in 
the network. This will be the focus of future developments of this methodology.  

Extensions of the NMF and ENS approaches can also be developed to analyze 
metabolic systems where only incomplete subsets of participating metabolites can be 
identified from databases of spectral standards. NMF can then help in such cases to detect 
yet unidentified metabolites by subtracting out the already known spectral contributions. 
Furthermore, already in its present incarnation, ENS does not require complete time 
series data for all molecular species, nor even for all metabolites. This is illustrated 
already by the model simulations presented here: no time series data were available for 
the free enzyme or hypothesized enzyme-substrate complexes that are assumed in the 
models. Yet, the ENS is able to infer the concentration time series of all of these un-
observed species. Typically, as one might expect, the ENS relative uncertainty bands of 
such unobserved species (as a percentage of concentration) are much larger than for the 
observed compounds. Lastly, the ENS can also be extended to extract best-guess spectral 
signatures of unknown metabolites from direct simulations of full spectral time series in 
both fixed- and variable-topology settings. 
 
Results: 
 
Cloning and biochemical characterization of acetyl-CoA synthetase from Arabidopsis: 
         Two alternative gene models exist for Arabidopsis ACS with respect to the 
translation start site and perhaps its possible sub cellular localization. The first model 
predicts the At5g36880.1 protein corresponding to aa (1-743) and its transcript is 
supported by numerous cDNA’s and EST’s sequencing projects (GenBank). This protein 
version is predicted to localize in chloroplast based on the algorithm developed by K. 
Nakai (www.psort.org) with a putative chloroplast transit peptide domain (spanning aa 1- 
to 85).  The second model At5g36880.2, predicts a shorter protein (693 aa) lacking the 
first 51 aa. The latter version was predicted to reside in the secretory system or in other 
organelles such as peroxisome.  Support for ‘longer or shorter’ ACS transcripts in other 
plant species as can be determined by BLAST analyses of sequence database. Regardless 
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of the start site, BLAST alignment between the plant and ACS proteins from other 
species indicates that the aa identity resides within aa 91-to 743 of Arabidopsis. 
          

SDS-PAGE analysis (Figure S1, panel A) of total protein isolated from E. coli cells 
expressing ACS97-743 (Line 2) showed a distinct 75 kDa protein, corresponding to the 
calculated molecular weight of the recombinant ACS. The ACS was subsequently 
purified by a gel-filtration (Superdex 75) chromatography followed by Q-sepharose 
chromatography (lane 3). The resulting ACS protein band was distinct and was not 
observed in control protein fractions, isolated from E. coli cells expressing an empty 
vector, and purified by the same procedures (lane 4).  The authenticity of the ACS was 
determined by cutting the 75 kDa band from the gel, digesting with trypsin, and 
confirming its aa identity by MALDI-TOF.   
 

To determine ACS activity, enzymatic reactions were resolved by ion-paired reverse 
phase HPLC. Figure S1(B) (panel 4) shows that, in the presence of acetate, Mg2+ and 
ATP, recombinant ACS readily converts CoA to AcCoA.  In addition to a peak migrating 
as AcCoA [17.2 min, Figure S1(B)] a specific peak eluting as AMP (8.5 min) was 
observed, while the ATP peak (11.5 min) was reduced in size. Control protein, (i.e. 
protein extracted from E. coli expressing an empty vector and purified following the 
same procedure) was unable to produce AcCoA [Figure S1(B), panel 5]. This result 
indicated that the recombinant ACS is an active Acetyl CoA Synthase. Interestingly, both 
AMP and ADP were identified as final products, however ADP was also ‘made’ in the 
negative control, and we attribute this to the instability of ATP. Nevertheless, to ascertain 
whether ACS is an AMP-forming or ADP-forming enzyme, the reverse reactions were 
carried out. ACS was incubated with AcCoA, PPi and AMP, or with AcCoA, phosphate 
and ADP.  The resulting data indicate that ACS was able to convert AcCoA to CoA only 
in the presence of AMP [Figure S1(B), panel 6]. The enzyme was unable to convert ADP, 
Pi and AcCoA to a product [Figure S1(B), panel 8], indicating that the plant ACS, like 
the bacteria and human enzyme, is a truly AMP-forming enzyme.  To validate that the 
HPLC peak eluted at 17.2 min is AcCoA, the peak marked 2 [Figure S1(B), panel 4] was 
collected and its identity was confirmed by 1H NMR spectroscopy as AcCoA [Figure 
S1(C)].  
 
       ACS had high enzymatic activity at pH 7.6, and activity was reduced by 25% and 
45% at pH 7.0 and pH 6.5, respectively (Table S1).  The enzyme requires metals (Mg2+) 
and no activity was observed in the presence of EDTA. Interestingly, ACS displayed 
similar relative activity if Mg was substituted by Ca2+. However, activity was lost when 
Mg2+ in the reaction was substituted by Mn2+, Zn2+, Cu2+ or Fe2+. ACS had high 
enzymatic activity between 25 to 37ºC and activity was completely inhibited above 50ºC. 
To test the substrate specificity of ACS, propionate, malonate, butyrate and succinate 
were examined and compared with acetate. Relative to acetate (Table S1), the 
recombinant Arabidopsis ACS converted ~40% propionate to propioanate-CoA, like the 
bacterial (6) and human ACS, but conversion of other non-acetyl substrates to CoA 
derivatives was not observed.  For the kinetic studies of ACS, various concentrations of 
ATP were tested while the other ACS substrates (acetate, and CoA), were kept at 
saturating levels. Similarly, concentrations of CoA were varied while acetate and ATP 
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concentrations were kept at saturating levels. The apparent Km values for ATP, acetate, 
and CoA were 75.9 µM, 139 µM, 115 µM respectively and the Vmax values for these 
three substrates were 1164 min-1, 1248 min-1, and 1600 min-1, respectively.  In contrast to 
the ACS activity isolated from spinach leaf that absolutely required DTT (7), the activity 
of recombinant Arabidopsis ACS is independent of DTT. Moreover, enzymatic activity 
of ACS was inhibited by 95% in the presence of 10 mM DTT. 
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Table S1: Summary of enzymatic properties of Arabidopsis ACS. The activity of ACS in 
a standard reaction system as described in Materials and Methods was set to 100% for 
this comparative studies.   n.d.(not detected). The data is an average of three repeats. 
 

  Relative ACS activity  
Acetate (1mM) 100% 

Propionate (1mM) 45% 
Malobate (1mM) n.d. 
Butyrate (1mM) n.d. 

Substrate specificity 

Succinate (1mM) n.d. 
6.5 63% 
7.0 87% 

pH 

7.5 100% 
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8.0 92% 
9.0 81% 
0  n.d. 
25 90% 
30 97% 
37 100% 

Temperature (°C) 

50 n.d. 
Mg2+ 100% 
Ca2+ 100% 
Mn2+ n.d. 
Zn2+ n.d. 
Fe3+ n.d. 

Metal ions (5 mM) 

Cu2+ n.d. 
DTT (10 mM) 4.3% 

Additives 
NaCl (100 mM) 50% 
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Table S2: Rate coefficient ensemble averages and ensemble standard deviations are given 
in the 3rd and 4th column, respectively, in units of (mM)(1-n)/minute for reaction of order n 
(i.e., a reaction having n reactants entering), abbreviation: ATP (T), acetate(A), CoA (C), 
acetyl-AMP (Q), AMP (M), AcCoA (R). Forward reactions listed without a 
corresponding backward reaction are assumed to be irreversible, i.e., have been assigned 
a fixed, zero backward rate coefficient. 
 

Model Reaction Equation 
Rate Coefficient 

Ensemble Average 

Rate Coefficient 

Ensemble SD 
1 ATP+acetate+CoA+ACS-->E/A/T/C 4.52E+03 1.52E+04 
 E/A/T/C -->ATP+acetate+CoA+ACS 4.62E+02 1.67E+03 
 E/A/T/C-->E/R/M/P 1.04E+03 1.63E+03 
 E/R/M/P-->E/A/T/C 4.46E+02 1.57E+03 
 E/R/M/P-->AcCoA+AMP+PPi+ACS 1.51E+03 2.43E+03 
 AcCoA+AMP+PPi+ACS -->E/R/M/P 5.94E+04 1.32E+05 
 ATP-->ADP 2.66E-03 3.67E-05 
2 ATP+acetate+ACS-->E/A/T 2.45E+02 3.36E+02 
 E/A/T --> ATP+acetate+ACS 4.70E+02 4.89E+02 
 E/Q/P-->Acetyl-AMP+PPi+ACS 1.91E+03 1.69E+03 
 Acetyl-AMP+PPi+ACS --> E/Q/P 9.41E+02 1.04E+03 
 E/A/T-->E/Q/P 1.46E+03 1.35E+03 
 E/Q/P --> E/A/T 6.78E+04 1.81E+05 
 Acetyl-AMP+CoA+ACS-->E/Q/C 3.50E+03 6.63E+03 
 E/Q/C --> Acetyl-AMP+CoA+ACS 4.12E+02 9.48E+02 
 E/Q/C-->E/R/M 1.48E+03 1.35E+03 
 E/R/M --> E/Q/C 2.22E+02 6.81E+02 
 E/R/M-->AcCoA+AMP+ACS 9.63E+02 1.34E+03 
 AcCoA+AMP+ACS --> E/R/M 2.38E+03 2.36E+03 
 ATP-->ADP 3.32E-03 3.68E-04 
3 ATP+acetate+ACS-->E/A/T 3.32E+02 3.88E+02 
 E/A/T --> ATP+acetate+ACS 9.33E+02 1.70E+03 
 E/A/T-->E/Q/P 8.36E+02 6.92E+02 
 E/Q/P --> E/A/T 5.34E+01 1.15E+02 
 E/Q/P-->Acetyl-AMP+PPi+ACS 1.64E+03 2.28E+03 
 Acetyl-AMP+PPi+ACS --> E/Q/P 1.79E+05 2.25E+05 
 E/Q/P+CoA-->E/Q/C+PPi 8.56E+02 1.62E+03 
 E/Q/C+PPi --> E/Q/P+CoA 1.56E+03 3.25E+03 
 E/Q/C-->E/R/M 1.77E+03 2.25E+03 
 E/R/M --> E/Q/C 7.04E+02 1.96E+03 
 E/R/M-->AcCoA+AMP+ACS 8.63E+02 1.85E+03 
 AcCoA+AMP+ACS --> E/R/M 1.40E+04 4.32E+04 
 ATP-->ADP 3.22E-03 3.97E-04 
4 ATP+acetate+ACS-->E/A/T 9.14E+02 1.72E+03 
 E/A/T --> ATP+acetate+ACS 5.26E+02 7.13E+02 
 E/A/T-->E/Q/P 1.28E+03 1.82E+03 
 E/Q/P --> E/A/T 1.10E+03 1.64E+03 
 E/Q/P-->E/Q+PPi 1.06E+03 1.20E+03 
 E/Q+PPi --> E/Q/P 6.63E+02 9.95E+02 
 E/Q+CoA-->E/Q/C 2.02E+03 4.08E+03 
 E/Q/C --> E/Q+CoA 1.46E+02 3.38E+02 
 E/Q/C-->E/R/M 2.11E+03 2.42E+03 
 E/R/M --> E/Q/C 4.35E+02 7.58E+02 
 E/R/M-->AcCoA+AMP+ACS 1.62E+03 1.76E+03 
 AcCoA+AMP+ACS --> E/R/M 3.07E+04 1.03E+05 
 E/Q-->Acetyl-AMP+ACS 1.28E+03 1.57E+03 
 Acetyl-AMP+ACS --> E/Q 6.04E+04 1.52E+05 
 ATP-->ADP 3.15E-03 3.75E-04 
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Figure Legends 
 
Figure S1. Isolation and biochemical characterization of recombinant ACS. (A) SDS-
PAGE analyses of total E. coli protein isolated from cell expressing ACS plasmid (lane 
1), gel filtration followed by Source-Q column purification of ACS (lane 3), and control 
cells expressing empty plasmid (lane 2) or column purified control (Lane 4). The protein 
band (~ 75 kDa) points by an arrow, was excised from the gel, trypsin digested and 
analyzed by MALDI-TOF; and confirmed the aa identity of the recombinant Arabidopsis 
ACS. (B) Forward and reverse HPLC-based ACS assays. Forward ACS activity was 
measured with purified ACS (panel 4) or control protein fraction isolated and purified as 
ACS but from cells expressing empty plasmid (panel 5) in the presence of 1 mM ATP, 1 
mM acetate and 0.2 mM CoA. Note the formation of two new peaks migrated with 
retention time as std AMP (peak # 5) and AcCoA (peak #2) and reduction of CoA (peak 
#1). Peak x is unknown contaminate in the CoA preparation. Formation of ADP peak 
(peak #4) is likely an artifact due to instability of ATP (peak #3), and observed in 
negative control as well. The reverse ACS activity was measured with purified 
recombinant ACS in the presence of 1 mM of AMP, 1 mM of PPi and 1 mM of AcCoA. 
The formation of two new peaks migrated with retention time as std ATP and CoA was 
observed (panel 5), while no similar peaks was observed in the presence of 1 mM of 
ADP, 1 mM of Pi and 1 mM of AcCoA (panel 7). (C) Peak#2 in panel 4 was collected; 
lyophilized, analyzed by 1H-NMR and confirmed as AcCoA when compared with Std. 
 
 

Figure S2. Network reconstruction of AtACS-catalyzed reaction. (A) Time course of 
concentrations of CoA, AcCoA, acetate and PPi to show how the ENS data fit the MPSF 
experimental data for different models. The scatter dot represents the experimental data. 
The solid line represents the ENS data (middle line) with standard derivation (upper and 
lower lines).  (B) The 2-values of ENS MC random walking process PIBS data sets of 
all models. The first 10000 for PIBS walking points were shown and this process was 
repeated 10 times.  
 
Figure S3. Time course of residuals of AMP for the ENS fit to MPSF-processed 
experimental data for models 1, 2, 3 and 4 in panels (A), (B), (C), and (D), respectively. 
Residuals were calculated as the difference between re-scaled experimental concentration 
data exp(Yj-c(j)) and the predicted concentration exp(Fj()), obtained from the ENS 
mean of the natural log concentration Fj(). 
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Figure S1 
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Figure S2 
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Figure S3 

 


