Supplementary Tables

					-	HBV				_	HC	С	
P. No.	Age	Sex	HB sAg	HB sAb	HB eAg	HB eAb	HB cAb	HCV Ab	Liver Cirrhosis	Source	TNM Staging	Histol- ogical Grade	AFP
1	36	М	_	+	_	+	_	_	+	primary HCC	T1 N0 M0	II	++
2	35	М	+	_	_	+	+	_	+	primary HCC	T1 N0 M0	II	++++
3	33	F	+	_	_	+	+	_	—	primary HCC	T1 N0 M0	II	++++
4	32	М	+	_	_	+	+	_	+	primary HCC	T1 N0 M0	III	+
5	51	М	+	_	_	+	+	_	+	primary HCC	T1 N0 M0	III	++
6	67	М	+	_	_	+	+	_	_	primary HCC	T1 N0 M0	Ι	_
7	43	М	+	_	_	+	+	_	+	primary HCC	T2 N0 M0	II	+++
8	64	М	+	_	_	+	+	_	+	primary HCC	T1 N0 M0	II	_
9	57	М	+	_	_	+	+	_	+	primary HCC	T1 N0 M0	II	_
10	60	М	_	_	_	_	_	_	_	primary HCC	T1 N0 M0	II	_
11	55	F	+	_	_	+	+	_	_	primary HCC	T3 N1 M0	II	+
12	36	М	+	_	_	+	+	_	_	primary HCC	T3 N2 M0	II	_
13	37	М	+	_	+	_	+	_	+	primary HCC	T1 N0 M0	III	++++
14	36	М	+	_	_	+	+	_	+	primary HCC	T1 N0 M0	II	_
15	53	М	+	_	_	+	+	_	+	primary HCC	T1 N0 M0	Ι	_
16	71	М	+	_	+	_	+	_	+	primary HCC	T1 N0 M0	Ι	_
17	30	М	+	_	+	_	+	_	+	primary HCC	T1 N0 M0	II	_

Supplementary Table 1.	Characteristics of HCC Patients	Used for Survival Analysis

18	71	М	+	_	_	+	+	_	+	primary	T3 N2	Ι	_
										HCC	M0		
19	42	М	+	—	—	+	+	—	+	primary	13 NI	III	+ + +
										HCC	M0		
20	58	М	+	_	_	+	+	_	+	primary	TI NO	II	_
										НСС	M0		
21	49	М	+	_	_	_	_	_	+	primary	T3 N1	III	+
										HCC	M0		
22	40	М	+	_	_	+	+	_	_	primary	T3 N1	III	+ + +
										HCC	M0		
23	52	F	+	_	+	_	+	_	+	primary	T3 N3	П	+ + + +
-	-									HCC	M0		
24	59	М	+	_	_	+	+	_	+	primary	T2 N0	П	_
	C y									HCC	M0	11	
25	55	м	_	_	_	_	_	+	+	primary	T3 N2	IV	+
20	55	101								HCC	M0	1 V	,
26	27	м	+	_	_	+	+	_	+	primary	T1 N0	Ш	_
20	21	111	I			I	I		I	HCC	M0	111	
27	24	м	Т	_	_	1	1	_	Ŧ	primary	T1 N0	Ш	_
21	54	11/1	Т			Ŧ	Ŧ		Т	HCC	M0	111	
20	51	м							1	primary	T3 N1	III	
28	51	M	+	_	_	+	+	_	+	HCC	M0	111	++++
20	5.4									primary	T3 N1	тт	
29	54	М	+	_	_	+	+	_	+	HCC	M0	11	++++
20	50	Б								primary	T1 N0	TTT	
30	52	F	+	_	_	+	+	_	+	HCC	M0	III	++++
										primary	T1 N0		
31	42	Μ	+	_	_	+	+	_	+	HCC	M0	111	_
										primary	T3 N2		
32	57	Μ	+	_	_	+	+	_	+	HCC	M0	111	+++
	4.0									primary	T3 N1		
33	40	Μ	+	_	—	+	+	—	+	НСС	M0	III	_
										primary	T1 N0		
34	31	Μ	+	_	—	+	+	—	+	НСС	M0	III	++++
										primary	T1 N0		
35	52	Μ	+	_	—	+	+	—	+	HCC	M0	III	++++
										primary	T1 N0		
36	70	F			_	_	_	—	+	HCC	M0	III	++
										primary	T3 N1		
37	32	F	+	—	—	+	+	—	—	НСС	MO	III	—
										nrimary	T2 N0		
38	45	М	+	—	—	+	+	—	+	HCC	M0	III	+ + + +
										primary	T3 N1		
39	51	М	—	—	—	—	—	—	+	HCC	MO	III	+ + + +
											1,10		

40	42	М	+	—	_	+	+	_	+	primary HCC	T1 N0 M0	II	++++
										primary	T1 N0		
41	71	F	+	_	_	+	+	_	+	HCC	M0	II	—
42	55	М	+	_	_	+	+	_	+	primary	T1 N0	П	++++
12	55	101	·				·		·	HCC	M0	11	
43	48	М	+	_	_	+	+	_	+	primary	T1 N0	III	+ + + +
										HCC	M0 T2 N1		
44	50	М	+	—	—	+	+	—	+	HCC	M0	III	+
										primary	T3 N2		
45	41	М	+	—	—	+	+	—	+	HCC	M0	III	++++
16	65	M								primary	T1 N0	TT	
46	65	М	+	+	_	+	_	_	+	HCC	M0	111	++++
47	52	м	+	_	_	+	+	_	+	primary	T1 N0	II	_
47	52	1 v1	I			I	I		I	HCC	M0	11	
48	35	М	+	_	_	+	+	_	+	primary	T1 N0	Ι	+
										HCC	M0	-	
49	55	М	+	_	_	+	+	_	+	primary	T2 N0	III	+ + + +
										HCC	M0 T2 N2		
50	20	М	+	—	—	+	+	—	—	ргшагу НСС	15 N5 M0	III	+ + + +
										primary	T2 N0		
51	48	М	+	—	_	+	+	—	+	HCC	MO	III	++++
	40									primary	T2 N0	11	
52	40	М	+	_	_	+	+	_	+	HCC	M0	11	++++
53	58	м	_	_	_	+	+	_	+	primary	T3 N3	II	+ +
55	58	1 v1				I	I		I	HCC	M0	11	
54	59	М	+	_	+	+	_	_	+	primary	T1 N0	II	+ + + +
										HCC	M0		
55	31	F	+	—	_	+	+	—	—	primary	TT NO	II	—
										ncc	MU T1 N0		
56	31	М	+	—	_	+	+	_	+	НСС	M0	III	+ +
										primary	T1 N0		
57	70	М	+	_	_	+	+	—	+	НСС	M0	II	—
50	15	м				1	1		I	primary	T3 N1	TT	l
38	45	IVI	Ŧ	_	_	Ŧ	Ŧ	_	+	HCC	M0	11	+
59	60	F	+	_	_	+	+	_	+	primary	T1 N0	Ш	+ + +
0,7	00	1								HCC	M0		
60	60	М	+	_	_	+	+	_	+	primary	T3 N1	II	+
										HCC	M0 T2 N1		
61	54	М	+	_	_	+	+	—	+	Primary	13 NI M0	II	+
										nee	INIO		

62	60	М	+	_	_	+	+	_	+	primary	T1 N0	III	++++
										HCC	M0		
63	45	М	+	_	_	+	+	_	+	primary	T3 N2	П	_
00	10	1.1				·			·	HCC	M0	11	
()	50									primary	T3 N1	TTT	
64	52	М	_	+	_	_	+	_	+	HCC	M0	111	+++
										nrimary	T1 N0		
65	46	М	+	—	—	+	+	—	+	нсс	MO	Ι	+ +
										·			
66	53	М	+	_	_	+	+	_	_	primary	II NO	II	+ + + +
										HCC	M0		
67	60	м	_	+	_	_	+	_	+	primary	T4 N0	П	_
07	00	111		I			I		I	HCC	M0	11	
~~~	- 0	-								primary	T3 N1		
68	58	F	+	_	—	+	+	_	_	HCC	M0	11	—
										nrimary	T3 N1		
69	40	М	+	—	—	+	+	—	+		MO	III	—
										HCC	MU		
70	40	М	+	_	_	+	+	_	_	primary	T4 N0	П	++++
10	10	1.1				·				HCC	M0	11	
<b>71</b>	50									primary	T1 N0	тт	
/1	56	М	+	_	_	+	+	_	_	HCC	M0	11	++++
										primary	T2 N0		
72	46	М	+	—	—	+	+	—	—	HCC	MO	III	+ + + +
73	46	М	+	_	_	+	+	_	_	primary	12 N0	III	+ + + +
										HCC	M0		
74	25	м	_L	_	_	<u>т</u>	Т.	_	Ŧ	primary	T2 N0	Ш	_
/4	55	111	I			I	I		I	HCC	M0	111	
										primary	T2 N0		
75	51	М	+	_	+	_	+	_	_	HCC	M0	III	—
										nrimary	T1 N0		
76	44	М	+	—	—	+	+	—	+			III	+ + + +
										HCC	MU		
77	57	М	+	_	_	+	+	_	_	primary	T1 N0	Ш	+
										HCC	M0		
70	20	м	1	_	I.	_		_	1	primary	T2 N0	Ш	
/8	39	IVI	+		+	_	+	_	+	HCC	M0	111	++++
										primary	T2 N0		
79	68	Μ	+	—	—	+	+	—	+	HCC	MO	III	++++
										nrimore	T2 NO		
80	57	М	+	—	_	+	+	_	_	primary	12 NU	III	_
										HCC	M0		
81	40	М	+		+	_	+	_	_	primary	T2 N0	Ш	+
01	40	141								HCC	M0	111	
<b>62</b>	50									primary	T2 N0	777	
82	50	М	+	_	—	+	+	_	+	HCC	M0	111	++++
										nrimarv	T1 N0		
83	37	М	+	—	—	+	+	—	+		MO	III	—
										псс	INIU		

84	63	М	+	_	_	+	+	_	+	primary	T1 N0 M0	III	++
										HCC	MU T2 N0		
85	39	М	+		—	+	+	—	+	ргппагу НСС	MO	III	—
										nrimary	T2 N0		
86	46	М	+		—	+	+	—	—	НСС	M0	III	—
										primary	T1 N0		
87	44	М	+	_	_	+	+	—	+	НСС	M0	II	—
										primary	T2 N0		
88	62	М	+			+	+	_	+	HCC	M0	11	++
00	25	м								primary	T2 N0	TTT	
89	35	М	+	_	_	+	+	—	+	HCC	M0	111	—
00	50	м	1			1	1		l	primary	T1 N0	П	
90	55	IVI	Ŧ	_	_	+	Ŧ	_	+	HCC	M0	11	_
01	57	м	1		_	I		_	1	primary	T2 N0	Ш	_
91	57	IVI	Ŧ	_	_	+	Ŧ	_	+	HCC	M0	111	_
02	27	м	1		_	I		_	1	primary	T2 N0	Ш	
92	57	IVI	Ŧ			Ŧ	Ŧ	_	Ŧ	HCC	M0	111	+ + +
02	52	м	1		_	I		_	1	primary	T2 N0	Ш	I
93	55	IVI	Ŧ	_	_	+	Ŧ	_	+	HCC	M0	111	+
04	51	м	1		_	I		_	1	primary	T2 N0	Ш	I
94	51	IVI	Ŧ	_	_	+	Ŧ	_	+	HCC	M0	111	+
05	70	м	_		_	_		_	_	primary	T1 N0	Ш	_
95	12	IVI		Ŧ		_	Ŧ	_	_	HCC	M0	111	_
06	62	Б	Т.	_	_	<u>т</u>	Т	_	<u>т</u>	primary	T1 N0	Ш	_
90	03	Г	Ŧ			Ŧ	т		Т	HCC	M0	111	
07	50	м	_	_	_	<u>т</u>	т	_	_	primary	T3 N0	Ш	_
97	32	IVI				Ŧ	т			HCC	M0	111	
08	12	м	-			-	+		+	primary	T2 N0	Ш	<b></b>
90	43	1 <b>v1</b>	1			I	I		Ι	HCC	M0	111	
90	11	М	+	_	_	+	+	_	+	primary	T2 N0	Ш	++++
"		111	1			i	ļ		,	HCC	M0	111	
100	36	М	+	_	_	+	+	_	_	primary	T2 N0	Ш	++++
100	50	141				·	·			HCC	M0	111	
101	49	М	+	_	_	+	+	_	+	primary	T3 N0	Ш	_
101	.,	1,1								HCC	M0	111	
102	40	М	+	_	_	+	+	_	_	primary	T1 N0	III	++++
102	10	1,1								HCC	M0	111	
103	32	М	+	_	_	+	+	_	_	primary	T2 N0	Ш	++++
100										HCC	M0		
104	58	М	+	_	_	+	+	_	+	primary	T2 N0	Ш	+ + + +
	20	1.1								HCC	M0		
105	57	М	+	_	_	+	+	_	+	primary	T2 N0	Ш	+ + + +
	21	1.1								HCC	M0		

106	39	М	+	_	+	_	+	_	_	primary HCC	T3 N0 M0	III	++++
107	59	М	+	_	_	+	+	_	+	primary	T2 N0	III	++
108	55	М	+	_	_	_	+	_	_	primary HCC	M0 T2 N0 M0	III	+
109	50	М	+	_	+	_	+	_	_	primary HCC	T3 N1 M0	III	++++
110	39	М	+	_	_	+	+	_	+	primary HCC	T1 N0 M0	Ι	++
111	58	М	_	_	_	_	_	_	_	primary HCC	T3 N1 M0	III	_
112	30	М	+	_	+	_	+	_	_	primary HCC	T1 N0 M0	II	_
113	61	М	+	_	_	+	+	_	+	primary HCC	T1 N0 M0	Ι	_
114	54	М	+	_	_	+	+	_	+	primary HCC	T1 N0 M0	III	+
115	28	М	+	_	_	+	+	_	+	primary HCC	T1 N0 M0	II	++
116	42	М	+	_	_	+	+	_	_	primary HCC	T1 N0 M0	II	_
117	49	М	+	_	+	_	+	_	+	primary HCC	T2 N0 M0	III	+
118	45	М	+	_	_	+	+	_	+	primary HCC	T1 N0 M0	III	++++
119	47	М	+	_	_	+	+	_	_	primary HCC	T1 N0 M0	Ι	+ + + +
120	48	М	+	_	+	—	+	_	+	primary HCC	T1 N0 M0	III	_
121	35	М	_	_	_	_	_	_	+	primary HCC	T1 N0 M0	II	++++
122	63	F	_	_	_	_	_	_	+	primary HCC	T3 N1 M0	III	_
123	36	М	+	_	_	+	+	_	+	primary HCC	T3 N1 M0	II	++++
124	35	М	+	_	_	+	+	_	+	primary HCC	T3 N1 M0	II	_
125	37	М	+	_	_	+	+	_	+	primary HCC	T1 N0 M0	II	++
126	44	F	+	_	_	+	+	_	+	primary HCC	T3 N3 M0	III	+ + + +
127	67	М	+	—	—	+	+	_	+	primary HCC	T1 N0 M0	II	—

128	46	М	+	_	_	+	+	_	+	primary HCC	T3 N3 M0	II	++++
129	46	М	+	_	+	_	+	_	_	primary HCC	T2 N0 M0	III	++
130	47	М	+	_	_	+	+	_	+	primary HCC	T3 N1 M0	III	++++
131	41	М	+	_	+	_	+	_	+	primary HCC	T2 N0 M0	II	_
132	42	М	+	_	+	_	+	_	_	primary HCC	T3 N0 M0	Ι	_
133	38	М	+	_	_	+	+	_	+	primary HCC	T1 N0 M0	II	++++
134	55	М	+	_	+	_	+	_	_	primary HCC	T1 N0 M0	II	++
135	68	М	+	_	_	+	+	_	+	primary HCC	T1 N0 M0	III	_
136	36	М	+	_	_	+	+	_	+	primary HCC	T1 N0 M0	II	_
137	78	F	_	_	_	_	_	_	+	primary HCC	T1 N0 M0	II	_
138	48	М	+	_	_	+	+	_	+	primary HCC	T1 N0 M0	III	+
139	43	F	_	_	_	_	_	_	—	primary HCC	T1 N0 M0	II	—
140	50	М	+	_	_	+	+	_	—	primary HCC	T1 N0 M0	II	—
141	58	М	+	_	_	+	+	_	_	primary HCC	T1 N0 M0	II	_
142	37	М	+	_	_	+	+	_	_	primary HCC	T1 N0 M0	II	_

Abbreviations: HBV, hepatitis B virus; HCV, hepatitis C virus; HCC, hepatocellular carcinoma; P, patient; HBsAg, hepatitis B surface antigen; HBsAb, antibody against HBsAg; HBeAg, hepatitis B e antigen; HBeAb, antibody against HBeAg; HBcAb, antibody against hepatitis B core antigen; TNM, tumor-node-metastasis; AFP, alpha-fetoprotein; M, male; F, female.

## Supplementary Table 2. Sequences of RNA Oligonucleotides and Primers Used

Name	Primer Sequence (5'-3')
miRNA Duplexes	
miR-99a sense strand	AACCCGUAGAUCCGAUCUUGUG
miR-99a antisense strand	CAAGAUCGGAUCUACGGGUUUU
NC sense strand	UUCUCCGAACGUGUCACGUTT
NC antisense strand	ACGUGACACGUUCGGAGAATT
Primers for 3'UTR Cloni	ng
mTOR 3'UTR F	CGACGCGTGGAGGCCCAGATGTGCCCATC
mTOR 3'UTR R	GGGTTTAAACATGTTTAAAATTCTGATGTCATTTATTGG
IGF-1R 3'UTR F	CGACGCGTGGATCCTGGCACAGAGAAGAGTTAC

GGGTTTAAACGTGCCATGCACTGCTGGGCTCC

CGACGCGTCCCAACAATGTGAGGGGGTCCCTAGC

GGACTAGTCGAGGAGAGCCAAGTGCAGCGAAG

AGCTTTGTTTAAACCGGAAAGTTCGTCGCTGGGTTAACAA

AGCTTTGTTTAAACCTCATCAAGCTGCTCTGGGTTTCCTTTTG

AGCTTTGTTTAAACCAGGGTTTTGAAACCTTTAGTGATACCATGCA

CGACGCGTCCTGTTTCCATCCATATACTTACTTCCCCCA

## **Primers for RT-PCR**

IGF-1R 3'UTR R

FGFR3 3'UTR F

FGFR3 3'UTR R

FZD5 3'UTR F

FZD5 3'UTR R

FZD8 3'UTR F

FZD8 3'UTR R

U6 F	GTGGACCGCACAAGCTCGCT
U6 R	TTGTTGAACGGCACTGTGTATAGCA
β-actin F	CTCGCTTCGGCAGCACA
β-actin R	AACGCTTCACGAATTTGCGT
pri-miR-99a F	AGTGTGACGTTGACATCCGT
pri-miR-99a R	GCAGCTCAGTAACAGTCCGC
C21orf34 F	TTTGCTTCAAACGACAACAAGAG
C21orf34 R	TTCGAGCATGGCCGGATTG

Abbreviations: NC, negative control; RT, reverse-transcription; F, forward primer; R, reverse primer.

## Supplementary Table 3. Enrichment Analysis of Predicted miR-99a Targets in KEGG Cell Signaling Pathway Database.

Pathway	Count	<i>P</i> value
Pathways in cancer	9	0.015187
Metabolic pathways	9	0.913787
MAPK signaling pathway	7	0.042937
Chemokine signaling pathway	6	0.027574
Leukocyte transendothelial migration	5	0.014499
Jak-STAT signaling pathway	5	0.036139
Cytokine-cytokine receptor interaction	5	0.081776
Focal adhesion	5	0.093158
Long-term potentiation	4	0.011716
Colorectal cancer	4	0.017167
Progesterone-mediated oocyte maturation	4	0.040815
Cell adhesion molecules (CAMs)	4	0.073579
Wnt signaling pathway	4	0.104772

Only the top 5 enriched cell signaling pathways of predicted miR-99a targets in KEGG database were shown. A hypergeometric test was used to validate the significance with indicated P value.

Supplementary Figure 1



Supplementary Figure 1. Expression of miR-99a in human liver tissue and cell lines. The mature miR-99a expression was analyzed by real-time qRT-PCR in normal human liver tissue and the indicated human liver cell line (HL-7702) or HCC cell lines (HepG2, Changliver, Hep3B, SMMC-7721, Huh7). The normalized miR-99a expression in normal human liver tissue in each experiment was set as relative 1. Data are shown as mean  $\pm$  s.d. (n = 4) of one representative experiment. Similar results were obtained in at least three independent experiments.

Supplementary Figure 2



Supplementary Figure 2. Restoration efficiency of miR-99a in HCC cell lines. HepG2, SMMC-7721 and Huh7 cells were transfected with miR-99a or NC mimics. miR-99a expression was analyzed by real-time qRT-PCR 24 or 48 hours after transfection. The normalized miR-99a expression in normal human liver tissue in each experiment was set as relative 1. Data are shown as mean  $\pm$  s.d. (n = 4) of one representative experiment. Similar results were obtained in at least three independent experiments. **, *P* < 0.01.

Supplementary Figure 3

	294 300
mTOR 3'UTR	5' CCAUAACUUUAGAAAUACGGGUU 3'
miR-99a	3' GUGUUCUAGCCUAGAUGCCCAA 5'
Mutant 3'UTR	5' CCAUAACUUUAGAAAAUGCCCAU 3'
	5597 5603
IGF-1R 3'UTR	5' UUAAGUCCAGUAGAUUACGGGUA 3'
miR-99a	3' GUGUUCUAGCCUAGAUGCCCAA 5'
Mutant 3'UTR	5' UUAAGUCCAGUAGAUAUGCCCAA 3'
	537 543
FGFR3 3'UTR	5' CUCAGAGACUGAAAUUACGGGUA 3'
miR-99a	3' GUGUUCUAGCCUAGAUGCCCAA 5'
	3830 3836
FZD5 3'UTR	5'UUUGGUGACUUUUGAUACGGGUU 3'
miR-99a	3' GUGUUCUAGCCUAGAUGCCCAA 5'
	543 549
FZD8 3'UTR	5' UACACCCCACGUAAAUACGGGUU 3'
miR-99a	3' GUGUUCUAGCCUAGAUGCCCAA 5'

Supplementary Figure 3. TargetScan prediction of miR-99a pairing site and mutated sequence in the complementary site for the seed region.



**Supplementary Figure 4. Putative targets of miR-99a.** (A) Analysis of luciferase activity. HepG2 cells were co-transfected with indicated RNA duplex, pRL-TK and pMIR-Report firefly luciferase reporter plasmid containing wild-type 3'-UTR of putative target gene. After 24 hours, firefly luciferase activity was measured and normalized by Renilla luciferase activity. The normalized luciferase activity of NC-transfectant in each experiment was set as relative luciferase activity 1. Data are shown as mean  $\pm$  s.d. (n = 4) of one representative experiment. Similar results were obtained in at least three independent experiments. *, P < 0.05. (B) Restoration of miR-99a reduces protein level of FGFR3. FGFR3 expression in HepG2 cells was analyzed by Western blotting 60 hours after transfection with miR-99a or NC mimics.

Supplementary Figure 5



**Supplementary Figure 5. Effects of knocking down miR-99a in HL-7702 cells.** HL-7702 cells were transfected with miR-99a inhibitor or inhibitor NC (iNC) at the indicated concentration. Expression of IGF-1R and mTOR were analyzed by Western blotting 60 hours after transfection.



Supplementary Figure 6. Positive correlation between expression of mature miR-99a, primary miR-99a and C21orf34 in HCC and matching liver tissues. RNA levels of mature miR-99a, primary miR-99a (pri-miR-99a) and the host gene C21orf34 in HCC and matching liver tissues (n=20) were detected by qRT-PCR. The mature miR-99a level was normalized to U6 expression, while C21orf34 and pri-miR-99a were normalized to  $\beta$ -actin expression. Statistical analysis was performed using Pearson's correlation coefficient. Each data was expressed with a log2 scale.