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Reconstruction of probability

We tested cases of training primitive action sequences with different probabilities of selecting primitive
actions in a specific object position. In this testing experiment, the probability of selecting “Right
to Center” (when object is located in the "Right” position) was varied among 12.5%, 25%, and 50%
(i.e., “Right to Left” was varied among 87.5%, 75%, and 50%; see Figure 2 in the article), and other
probabilities were fixed with 50% as the same as the previous experiment. For each condition of training
sequences, training trials were conducted for 100 sample networks when higher-level time constants 75 was
100 (other parameters settings for training were the same as the previous experiment). Figure 1 in Text
S1 describes the probabilities evaluated from primitive action sequences generated by trained networks.
The result confirms that the model network can extract probabilities of selecting primitive actions in
training sequences and also can generate pseudo-stochastic sequences with respect to the probabilities.
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Figure 1. The results of training (mean of 100 training trials). Here, a probability refers to a
probability of selecting action “Right to Center” in the right object position. When we evaluated the
probability, we computed 50 sample sequences of 100,000 time steps in the motor imagery mode for
each network.

Dependency on training data length

We examined conditions of training sets for obtaining chaos by learning. On this purpose, we conducted
an additional experiment in which the networks with 74 set as 100 were trained by changing length of
the training sequences. For each sequence in training sets, times of transitions of primitive actions were
varied among 5, 10 and 20 (Note that the condition of 20 times was the same as the previous experiment).
Other conditions for training were the same as the previous experiment. In Table 1 in Text S1, we present
evaluated results of 100 sample networks in terms of probability of generating positive Lyapunov exponent
value for each condition. It can be seen that generating chaos with positive Lyapunov exponent tends to
require a longer length of training data. Figure 2 in Text S1 shows an example of visuo-proprioceptive
sequences and internal neural activities for each condition. In the case of shorter length (Times=5), the



trajectory of internal neural activity in the higher-level network converged to a fixed point which resulted
in repetition of a periodic cycle in the middle-level network, the gating values and the visuo-proprioceptive
sequences. On the other hand in the case of longer length (Time=10, 20), pseudo-stochastic sequences
were observed in the sequences.

Table 1. The percentage of networks whose maximum Lyapunov exponent was positive after training
(by means of 100 sample networks). When we evaluated the maximum Lyapunov exponent, we
computed 10 sample sequences of 1000, 000 time steps for each network.

Times of transitions Percentage of networks whose
in each training sequence | Lyapunov exponent is positive
20 99%
10 82%
) 58%
Times = 5 Times = 10 Times = 20
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Figure 2. Time series generated by a trained network. This figure uses the same format as Figure 4 in
the article, but shows transient dynamics starting from a specific initial state given by training. When
times of transitions of primitive actions were 5 in training sets, the output was converged to a periodic
movement such as “RLRLRL---” (where L and R are the left and right positions), and the neural
activity in the higher-level network was also converged to a fixed point.



