Isotope-Coded Dimethyl Tagging for Differential Quantification of Posttranslational Protein Carbonylation by 4-Hydroxy-2-nonenal, an End-Product of Lipid Peroxidation

Navin Rauniyar and Laszlo Prokai*

Department of Molecular Biology & Immunology, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107

Supplementary Figures:

Figure S1. Linearity of relative quantitation of the peptide FVNQHLC[#]GSHLVE (where # represents cysteine residue oxidized to cysteine-sulfonic acid, Cys-SO₃H), Glu–C fragment of the oxidized insulin β -chain, by dimethyl tagging strategy using isotopic variants of formaldehyde. Two identical solutions of the peptide were dimethylated using light (H¹²CHO) or heavy (D¹³CDO) isotopes of formaldehyde, respectively. As summarized in chart **a**, the differentially tagged peptides were combined in various molar ratios (1:1, 1:5, 5:1, 1:10 and 10:1), desalted and analyzed by LC–MS for relative quantification of the isotopic pairs from XICs of the doublet ions at *m*/*z* 779.87 (2+) and 782.89 (2+), respectively, which corresponded to the light and heavy dimethyl-labeled FVNQHLC[#]GSHLVE. The peptide was tagged only at its N-terminus as it contains a single amine group and, hence, Δ was 6 Da (3 Th for the doubly-charged ions). Averaged over the elution of the differentially labeled peptides, chart **b** displays the [M+2H]²⁺ molecular-ion region of the recorded high resolution ESI mass spectra (full scan: from *m*/*z* 350 to *m*/*z* 1500).

Figure S2. CID-MS/MS spectra of the doubly charged (**a**) unlabeled (m/z 904.02), (**b**) light (m/z 918.03), and (**c**) heavy (m/z 921.04) dimethyl-labeled HNE-modified peptide fragment of ATP synthase subunit beta peptide, LVLEVAQH*LGESTVR (21-34).

^{*} Corresponding author. Phone: 817-735-2206. Fax: 817-735-2118. E-mail: lprokai@hsc.unt.edu.

Figure S3. LC–ESI-MS analysis of plasma protein tryptic digest spiked with differentially dimethyl-labled HNE-modified angiotensin I, DRVYIHPFHL, in a ratio of 3:1 (without prior ennrichment of HNE-modified peptides) (a) Base-peak chromatogram and (b) averaged full-scan mass spectrum from acquisitions in the 0 to 90-min retention time window. The inset shows mass spectrum of ions mostly corresponding to peptides from plasma protein and the relative abundance of angiotensin I, that is ~2% in the mixture.

Figure S4. LC–ESI-MS analysis of the 'eluate' fraction obtained after acid-catalyzed hydrolysis of the captured hydrazones during enrichment of spiked dimethylated HNE-modified angiotensin I from plasma protein tryptic digest using hydrazide-coated glass beads for chemoprecipitation. (a) Base-peak chromatogram and (b) averaged full-scan mass spectrum of the 'eluate' fraction from acquisitions in the 0 to 90-min retention time window. Expanded view of full-scan mass spectrum of isotopomeric pair corresponding to $(M+3H)^{3+}$ ions of differentially dimethylated HNE-modified DRVYIHPFH*L (* indicate HNE moiety attached to the corresponding histidine) present in a ratio of 3:1 is shown in the inset.

Figure S5. (a) XICs and full-scan MS spectra of differentially dimethyl-labeled, triply-charged precursor ions of HNE-modified angiotensin I, [@]DRVYPHIFH*L (where, [@] = dimethylated residue and * = HNE-modified residue), at m/z 494.28 and 496.29 spiked in a ratio of 1:3, 1:1 or 3:1 into plasma protein tryptic digest and reisolated from the complex matrix by hydrazide-based chemoprecipitation strategy. The observed ratios (i) 1:3, (ii) 1:1 and (iii) 3:1 of the $[M+3H]^{3+}$ isotopic peptide pairs after enrichment were in close agreement to the expected ratios. (b) XICs and full-scan MS spectra of differentially dimethyl-labeled, triply-charged precursor ions of doubly HNE-modified angiotensin I, [@]DRVYPH*IFH*L (where, [@] = dimethyl label and * = HNE-modified residues), at m/z 546.32 and 548.33 obtained after enrichment and depicting the observed light/heavy ratios (i) 1:3, (ii) 1:1 and (iii) 3:1 of the isotopic peptide pairs were in close agreement to the spiked ratios.

Figure S6. XICs and full-scan MS spectra of differentially dimethyl-labeled, doubly-charged precursor ions of HNE-modified vimentin tryptic peptide, [@]QVQSLTC*EVDALK[@] (where, [@] = dimethylated residue and * = HNE-modified residue) at m/z 823.46 and 829.49, mixed in a ratio of 1:3, 1:1 or 3:1 and subsequently isolated by hydrazide-based chemoprecipitation strategy for

LC–MS analyses. The observed ratios (i) 1:3, (ii) 1:1 and (iii) 3:1 of the $[M+2H]^{2+}$ isotopic peptide pairs after enrichment were in close agreement to the expected ratios.

Figure S7. XICs of mono-dimethyl labeled, doubly charged precursor ions of HNE-modified ATP synthase subunit beta peptide fragment, [@]LVLEVAQH*LGESTVR (where, [@] = dimethylated and * = HNE-modified residue).

Figure S8. XICs and CID-MS/MS spectra of dimethyl-tagged, doubly-charged precursor ions of Glu–C fragment of HNE-modified oxidized insulin beta chain, $^{@}$ FVNQH*LC[#]GSHLVE (where, $^{@}$ = dimethylated, * = HNE-modified residue and [#] = cysteine-sulfonic acid, Cys-SO₃H).

Figure S9. XICs and CID-MS/MS spectra of dimethyl-tagged, triply-charged precursor ions of HNE-modified peptide [[@]LGFLGSNTPHVNHHMPPH]* (where, [@] = dimethylated). The neutral loss of HNE from the fragment ions during collision induced dissociation tandem mass spectrometry precluded the localization of the site of HNE modification (*).

Figure S10. XICs and CID-MS/MS spectra of bis-dimethyl-tagged, doubly-charged precursor ions of HNE-modified apomyoglobin tryptic fragment, [@]H*PGDFGADAQGAMTK[@] (where, [@] = dimethylated and * = HNE-modified residue).

Figure S11. XICs and CID-MS/MS spectra of bis-dimethyl-tagged, doubly-charged precursor ions of HNE-modified apomyoglobin tryptic fragment, $^{@}$ LFTGH*PETLEK[@] (where, [@] = dimethylated and * = HNE-modified residue).

Figure S3

m/z

i) Light/Heavy=0.33 (expt=0.33)

Supplementary Figure S7

Supplementary Figure S11

