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Detailed Specification of the Model. The transcriptional dynamics.
The specification of the transcriptional dynamics requires includ-
ing thermodynamic binding of transcription factors (TF) to their
binding sites and modeling the consequences on the rate of tran-
scription. Consider first the case where all N transcription factors
affect gene i as activators. If at least one of the binding sites is
occupied by its TF, we consider that the gene will be transcribed;
this choice corresponds to having the transcription rate be pro-
portional to the Probability of OCCupation or “POCC” (1) of the
regulatory region. In the simplest framework, we take the bind-
ings to arise independently (no cooperativity). In addition, we
identify up to an overall scale the transcription rate of a gene with
the POCC of its regulatory region. Considering that protein con-
tent is proportional to transcription rate (at least in the steady-
state), we set Si—the mean normalized expression level of gene
i—equal to this POCC. Using Eq. 1 of the main part of the paper,
one then obtains

Si ¼ 1 −
Y

j

ð1 − PijÞ: [S1]

This equation is basic for the “mean field” model of ref. 2 in
which the neglect of fluctuations and the corresponding limita-
tions were explained. Note that if the Pij are small, transcription
is additive in these variables, while in the binary limit where Pij
is 0 or 1, Si corresponds to the logic of transcription being “on”
if and only if at least one of the binding sites is occupied, as ex-
pected from the use of the POCC.

Our treatment of inhibitory interactions (due to repressors)
is new and is motivated by a number of known cases where the
binding of a TF acts as a veto, for example if the presence of the
TF makes the DNA form a loop that conceals the other binding
sites. Another mechanism for vetoing transcription is simply for
the bound TF to block access of the polymerase to its promoter.
Within our framework, transcription proceeds as in Eq. S1 in the
absence of any repressors, but as soon as any of the inhibitory
sites are bound by their repressors, transcription is turned off.
Again assuming there are no cooperative effects, and repeating
for repressors the argument just used for activators, we are led to
modify Eq. S1 to

Si ¼ ½1 −
Y

j

ð1 − PijÞ�
Y

j0
ð1 − Pij0 Þ; [S2]

where j runs over activating interactions and j0 over inhibitory
interactions.

By neglecting cooperative effects, we have obtained a model
where the main parameters are those determining the binding
probabilities implicit in Eq. 1 in the main part of the paper and
these are subject to experimental constraints. All of our results
are given for this model. Incorporating cooperative effects could
lead to a more realistic model but at the cost of more parameters.
We now propose a way to generalize the framework described
so far. Reconsider the POCC of gene i’s regulatory region; we
denote by Pi this probability. Assuming that

Pi ¼ ∑
k≥1

∑
½j1;…;jk �

Pðk;N−kÞ
i ðj1;…; jk; j̄kþ1;…;̄jNÞ; [S3]

where jl (̄jl) is the label of an occupied (unoccupied) binding site
and ½j1;…;jk� stands for a combination of k out of N gene labels.

For pedagogical reasons, reconsider the case where the bindings
arise independently (no cooperativity). Then the probabilities in
the sum on the right hand side would factorize into a product of
terms Pð1;0Þ

i ðjÞ (or Pð0;1Þ
i ð̄jÞ). Replacing Pð1;0Þ

i ðjÞ by Pij defined in
Eq. 1 of the main part of the paper, we have

PðkÞ
i ðj1;…; jk; j̄kþ1;…; j̄NÞ ¼

Y

j

Pij ×
Y

j0
ð1 − Pij0 Þ;Λ [S4]

where j runs over indices for which the binding site is occupied
and j0 runs over the other indices. Then the sum over k in Eq. S3
can be explicitly performed. However, to obtain a generalization
of these equations so as to allow nonindependent binding prob-
abilities, one could for instance replace in Eq. S4 the equality by
a proportionality. Such an identification often appears in the
literature: using the stationary limit of appropriate kinetic equa-
tions, one argues that the concentration of a molecular complex
is proportional to the product of concentrations of the constitu-
ents. Here, because of the reparametrization symmetry of the
dynamics, the proportionality constant can only depend on k.
One could then truncate the sum over k, say at k ¼ 3, to avoid
too many free parameters, a situation that arises in a number
of genetic network reverse engineering attempts. Such a model
deserves study, but that would take us much beyond the scope
of the present work.

Defining phenotypes. The genotype of the GRN is its hardware,
specified by the list of interaction weights Wij themselves deter-
mined by the mismatches between the character strings asso-
ciated with TF and binding sites. By convention, we make the
weight negative for a repressor and positive for an activator.
The phenotype of a given GRN is associated with its expression
behavior which follows from the transcriptional dynamics. We
consider two cases of behavior. In the first, we focus on the stea-
dy-state expression vectors (fixed points of the transcriptional
dynamics). In the second, we focus on cyclic behavior of the
expression vectors.

Given a GRN genotype, determining its phenotype is straight-
forward in practice. In the first case where we have given target
expression patterns, we start in these target vectors and we see
whether we converge to a nearby fixed point under iteration
of the transcriptional dynamics. (In contrast, in our previous
work, we had considered initial states that were unrelated to the
target vector.) In the second case, we start with one of the pat-
terns in the target cycle and see whether the trajectory under
iterations stays close to that cycle. For the steady-state behavior,
we shall impose 2, 3, or more vectors that consist of N∕2 levels at
0 and N∕2 at 1, and furthermore these vectors are taken to be
orthogonal (for the 0∕1 coding for Si this means that the scalar
product of two vectors is N∕4). Setting N ¼ 16 (the choice of N is
not important as long as it has a moderate value, we have not
explored what happens at large N), we define four mutually
orthogonal targets as follows, a direct generalization of that of
ref. 2:

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

This choice is motivated by the fact that at largeN, random binary
vectors are typically nearly orthogonal. The symmetries of the
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model are relevant for studying it, but with any interesting choice
of vectors, most of the symmetries are broken. Note that because
one can transform these vectors into each other by index permu-
tation, the basins of attraction leading to these targets are on
average of equal size.

For the case where one enforces a target cycle, we shall use the
toy sequence where the genes are taken to lie on a ring, and the
cycle consists in having the “on” genes shift to the right at each
time step:

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1

1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

The above is reminiscent of the cycle studied by Li et al. (3) for
the yeast cell cycle. We have also considered a cycle where the
shift is not by two, but by one or three genes. The results are
nearly the same in all these cases.

As a last point, when initializing the expression vector to de-
termine the phenotype, instead of zero values we use a very small
nonzero value (e.g., 10−3) so that the target expression is an at-
tractor which is in fact the desired property for the phenotype to
be relevant.

A fitness for deviations from the target behavior. To quantify the
deviations from the ideal target behavior, we first check whether
we have steady-state behavior (in the first case) or cyclic behavior
(in the second). For each target vector SðtargetÞ, we define its dis-
tance to the associated GRN specific expression vector S via:

DðS;SðtargetÞÞ ¼ ∑
i

∣Si − SðtargetÞi ∣: [S5]

By summing all these distances, one for each target (each steady-
state in the first case, and each expression vector of the periodic
cycle in the second), we obtain what we refer to as the “total” dis-
tance DT for that GRN. The resulting measure of “fidelity” to the
imposed function can be turned into a kind of fitness via

FðGRNÞ ¼ expð−fDTÞ; [S6]

where f acts as a control parameter allowing one to be more or less
stringent on the fidelity. We thus consider the set of all GRN and
apply the relative weight FðGRNÞ to each; this then provides an
ensemble for the GRN, and by adjusting f we can focus on those
GRN that are the most functional. For specificity, we shall work
with f ¼ 20, but our results depend only very weakly on this choice
provided f is in the range 10 to 100.

Computational Approach via MCMC Sampling. A random genotype
will not produce vectors close to the target ones because there are
so many possibilities of expression vectors. Thus in practice one
cannot usefully sample functional GRN by randomly generating
character strings or equivalently random W s. Instead, we note
that the space of all genotypes is endowed with a fitness function
(see previous paragraph) and thus one can apply Markov Chain
Monte Carlo (MCMC) techniques. We use MCMC with the Me-
tropolis rule (4). That computer algorithm produces a (biased)
random walk in the fitness landscape that visits at long times the
different genotypes according to their fitness as given in Eq. S6;
the sampling thus focuses on genotypes having high fidelity to the

imposed functional constraints. In detail, we perform random
mutations of the binding sites, which produce changes to the edge
weights and thus to the genotypes. (Technically, it would be pos-
sible to work at the level of edge weights alone, but it would make
explanations of the MCMC far more delicate.) A sweep is defined
as LN2 successively attempted changes of the genotype (a ran-
dom mutation of one coding letter and, independently, a random
switch of the sign of one of the TF-DNA interactions). Each such
change is accepted or rejected by the Metropolis algorithm. The
Markov chain is initialized for instance using a random GRN.
After some time, as in ref. 2, we obtain a GRN with a phenotype
sufficiently close to the target (see Fig. S1), and we use this to
start the production run of the MCMC. Thereafter, we iterate
sweeps, recording successive GRNs.

A speed optimization was implemented to address the pro-
blem of CPU times: the simulation as described above requires
a lot of computation time at L ¼ 12 where small mismatches
become very unprobable and one has to wait extremely long
to go from one genotype to another one that is relatively inde-
pendent. Therefore, we implemented the following modified
procedure. We first set L ¼ 8 and apply the MCMC, recording
genotypes every 100 sweeps. Because our dynamics depend on
mismatches and not on the value of L, these recorded GRNs
can be interpreted as L ¼ 12 genotypes with high fitness; the only
issue is that the distribution of the magnitudes of the correspond-
ing mismatches is incorrect. Hence we set L ¼ 12 and use the
saved genotypes obtained at L ¼ 8 as starting points of new
MCMC runs, obtaining from these after equilibration a large
sample of L ¼ 12 genotypes in a reasonable time. Notice that,
in principle, any pairs of GRNs can be reached from one another
via a succession of elementary moves. In this sense our sampling
is ergodic.

Essential Interactions and the Essential Network. As already men-
tioned, genotypes can be represented by the N by N matrix of
Wij interaction strengths along with the N2 signs specifying the
activating vs. inhibitory nature of each interaction. These Wij
are never zero (see Eq. 2 of the main part of the paper), so we
cannot say that an interaction is completely absent. Nevertheless,
one may expect some interactions to be more important than
others, for instance when the Wijs are larger than average. An
arbitrary cut-off could be introduced for separating small and
large values, but it is better to base such a classification on func-
tionality. We thus consider what happens when an interactionWij
is removed by setting it to zero. Starting with one of the genotypes
generated by our MCMC (and thus typically satisfying well the
soft functional constraints), we determine the change in fitness
produced by setting Wij to zero: if the change is rejected by the
Metropolis rule in five successive attempts, we say that this inter-
action is essential, motivated by the corresponding biological
definition (a very similar result is obtained by defining the essen-
tiality as the sensitivity to a single mutation that increases the mis-
match by 1; because the definition of essentiality involves the
Metropolis test, a random event, one sometimes finds false essen-
tials, however this is a very weak effect). This definition leads to a
summary description of a genotype via a list of ordered pairs ði;jÞ
specifying the essential interactions as well as their nature (acti-
vating or inhibitory). This list of pairs can then be represented by
a directed graph, withþ signs on the edges that are activating and
− signs on the edges that are inhibitory. In all our work we refer
to this oriented and signed graph as the essential network of the
genotype; note that no information on the weightsWij is attached
to this network representation.

SI Results. Basins of attraction for the transcriptional dynamics. We
have checked that the basin of attraction of a target phenotype
represents a large fraction of all possible initial phenotypes, so
that the GRN property of performing the imposed function is
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not merely a consequence of starting with the right expression
vector. For instance, in the case of the fixed point phenotypes,
these basins constitute approximately 99.8(9)%, 52.9(9)%, and
49.6(8)% of the whole space for n ¼ 2, 3, and 4 respectively. With
our choice of target phenotypes and the permutation symmetry of
the model, the basins associated with individual targets are equal
(after averaging over functional GRNs).

Statistics of essential interactions.The essential network provides a
summary of the GRN genotype that can be more easily under-
stood than the full genotype. A key feature of this summary is
its sparseness: there are few essential interactions controlling
any given gene. Another property is the relative frequency of in-
hibitory and activating interactions. For pedagogical reasons, let
us first consider this issue at the level of all interactions, not just
the essential ones. Even though the genotypes generated by the
MCMC sampling have functional constraints, they contain many
smallWij that have hardly any effect on the phenotype; the sign of
these interactions are thus random, and in effect these Wij act as
noise. If instead we focus on the larger Wij, the functional con-
straints are likely to bias the sign in favor of activating interac-
tions. To avoid an arbitrary definition of large weights, it is
advantageous to use the notion of essentiality because of its link
with phenotypes. For the essential networks produced from the
GRN of our MCMC with the constraint of two to four steady
states, we find that the great majority of the essential interactions
are activating, see Table S1 (these numbers are not sensitive to
N). These results are not surprising, but increasing the number
of constraints forces the connections to be more complex and
to make greater use of inhibitory interactions. In the toy cases
of genes on a ring, we also have this general picture and find that
the number of both activating and inhibitory essential interac-
tions grows linearly with N.

Abundance of functional essential networks. Another question of
interest concerns the number of distinct functional essential net-
works. The number of distinct GRNs is of little interest, being
trivially enormous because all inessential interactions can be
changed at will without affecting the phenotype. It is wise to first
find the essential networks that are in a sense representative of a
group of GRNs, in other words to perform a cluster analysis of
the sample of essential networks at our disposal. Let the numbers
of such networks be M and define a distance between a pair of
them, for example

DistanceðA;BÞ ¼ ∑
ij

ðAij − BijÞ2; [S7]

where Aij, Bij are �1 for essential interactions and 0 otherwise.
Our question can now be reformulated more precisely: does the
number of clusters, considered as a proxy for the number of re-
presentative essential networks, saturate at some moderate value
asM grows? (It must saturate somewhere, of course, but that may
be for very large M values.) To answer this question, it is most
convenient to use the modern affinity propagation algorithm
(5), where the number of clusters is not preassigned but is deter-
mined by the algorithm; the code can be downloaded from Frey
Laboratory Web page at Toronto University. As an illustration,
for four fixed points we find that the number of clusters grows

at large M roughly like M2∕3 (with a prefactor of the order of
0.3) and shows no sign of saturation up to at least M ¼ 4;000.
Other values of n lead to similar results, but some care is neces-
sary in interpreting these trends at n ¼ 2 and 3. Indeed, it turns
out that for these values of n many clusters, distinct according to
Eq. S7, have essentially the same topology and differ merely by
the labeling of nodes (this reflects symmetries in our choice of the
target phenotypes). In contrast, for n ¼ 4 the clusters are genu-
inely different. To get more insight into this problem, we have
carried out a complementary investigation, counting the number
of distinct topologies (instead of using the clustering algorithm).
This task is very tedious and our account of the network repar-
ametrizations was only partial. With this proviso, it appears that
the number of distinct topologies again increases like a power of
M, however now the exponent increases with n (approximately
from 0.69 for n ¼ 2 to 0.97 for n ¼ 4).

Motif frequency. The frequency of the most prominent motifs in
our model is shown in Table S2.

Motifs using interaction strengths rather than essentiality. In our fra-
mework, every gene has some interaction with every other, so any
analysis has to focus on the most relevant ones. So far, we have
used the essentiality criterion, which keeps the functionally rele-
vant interactions. What happens if instead we use the interaction
strength as criterion? To address this question, we have recom-
puted the motif frequencies in the case of the cyclic phenotypes
with a criterion based on the interaction’s mismatch. Explicitly,
we consider an interaction only if its mismatch is less or equal
to Mmax. In Fig. S2 we show the dependence on Mmax. For small
mismatches, the degree of overrepresentation of motifs is insen-
sitive toMmax, and so the result is nearly identical to that obtained
when essentiality is used. However for larger allowed mismatches,
we see that the overrepresentation of motifs drops sharply to-
wards the background value frequency of randomized networks.
This behavior is expected because allowing for large mismatches
introduces Wij that act like random noise.

A small oscillating GRN. To provide further insight into the proper-
ties of the transcriptional dynamics of our model, we consider
here a small GRN with just three genes. We take the cyclic phe-
notype where each gene is turned on successively, with target
expressions set to (1,0,0), (0,1,0), and (0,0,1). In Fig. S3 we show
an example of a GRN produced and in which we show the suc-
cessive expression levels when starting in the (1,0,0) configura-
tion. In the absence of any input, a gene on its own will have
a very low level of transcription within our model. To turn on dur-
ing a cycling, a gene has to receive an activating signal from its
predecessor. These signals are represented by the three red (ac-
tivating) arrows in Fig. S3. [This feature differentiates our system
from the repressilator network in which the genes are constitu-
tively on (6).] In the presence of just these three activating inter-
actions, the expression levels will end up all rising, approaching
the (1,1,1) state. To prevent this saturation, multiple repressors
are necessary. One way to achieve this goal is for all three genes
to be self repressive and to repress their predecessor, but the
MCMC finds more sparse solutions than that: here we see that
two repressors are sufficient to have the desired cyclic behavior.
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Fig. S1. A schematic representation of our MCMC process. (A) Steady-state behavior and n ¼ 3: crosses (heavy dots) stand for the target (fixed point) states,
while the line is the system’s trajectory. The “total” distance entering the Metropolis test is DT ¼ D1 þ D2 þ D3. (B) Similar as before, but for a cycle. Gray dots
stand for successive states obtained by iterating Eq. S2. Here DT ¼ D1 þ…þ D8.

Fig. S2. Overrepresentation of motifs as a function of the interaction strengths allowed. The x axis gives the maximummismatchMmax for an interaction to be
included in the search for motifs. The y axis gives the frequency of eachmotif divided by the frequency in the randomized ensemble. We see that these ratios of
frequencies are insensitive to Mmax at low values but then rapidly decrease towards 1 at larger Mmax. (N ¼ 16 and cyclic phenotypes are imposed.)

Fig. S3. A small system of three genes exhibiting oscillatory behavior. (Top) The network of essential interactions with the correspondingmatrix of mismatches
fdijg (blue interactions and minus signs indicating repressors). (Bottom) The gene expression levels SiðtÞ produced by the transcriptional dynamics starting with
the 1st gene being on and the other two being off.
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Table S1. A sample of results of our simulations

Observable 2FP 3FP 4FP Cycle

〈#Essentials〉 14.70(1) 21.08(2) 29.39(1) 23.42(1)
〈#Inhibitory〉 2.500(12) 6.38(2) 10.11(1) 7.38(1)
〈Robustness〉 0.9494(2) 0.9259(2) 0.8998(3) 0.9099(3)
〈Dist2target〉 0.966(3) 1.390(4) 1.961(4) 3.583(4)

nFP stands for phenotypes with n fixed points, while Cycle stands for the cyclic
phenotype; for both, the number of genes is N ¼ 16. The robustness is defined
as the frequency of genotypes surviving a random mutation according to the
Metropolis rule. Notice that it is fairly well reproduced by 1 − n∕2N, a result
generalizing an analogous result of ref. 2. The distance to the target is the
distance entering the fitness. It is nearly constant when divided by the number
of target phenotypes. Further division by the number of active genes in a
phenotype, i.e., N∕2, yields approximately 6%, which measures the average
deviation of their activity from the maximum Si ¼ 1.

Table S2. Most important motifs

Motif 2FP 3FP 4FP Cycle

Motif A: model 0.706(16) 2.358(39) 2.984(4) 0.000
Randomized 0.002(1) 0.002(1) 0.002(2) 0.000
Motif B: model 0.000 0.000 0.000 5.451(41)
Randomized 0.001(1) 0.008(3) 0.071(9) 0.023(5)
Motif C: model 0.000 0.000 0.000 5.170(40)
Randomized 0.000 0.008(3) 0.078(9) 0.029(1)
Motif D: model 0.000 0.000 0.000 4.533(42)
Randomized 0.000 0.014(4) 0.0180(6) 0.030(7)
Motif E: model 0.000 0.000 0.000 6.676(22)
Randomized 0.017(4) 0.102(16) 0.057(8) 0.173(14)
Motif F: 0.000 0.000 0.000 2.296(29)
Randomized 0.000 0.001(1) 0.050(6) 0.003(2)

nFP means “n fixed points phenotype.” Cycle refers to our 8-step cyclic
phenotype. We typically used 1,000 GRNs in our motif search.
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