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1 Multi-Step Estimate

As neither M1(β) nor M2(β) provides a good approximation to 1 − AUC(β), we proposed an
iterative algorithm to approximately minimize 1 − AUC(β). More specifically, we suggest the
following adaptive algorithm

1. Set the initial
β ← argminβM2(β)

2. Update β as

β ← argminγ

n∑
i=1

m∑
j=1

{1− γ′(Xi − Yj)}+

1 + |1− β̂′k−1(Xi − Yj)|
,

where the minimization can be solved via linear programming technique.

3. Repeat step (2) until convergence or the number of iteration reaches a pre-specified number.

In this subsection, we conduct a small simulation study to examine the operational characteristics
of the above algorithm. Especially we investigate whether the iteration always converges to a fixed
point and whether the iteration improves the performance of the constructed score in maximizing
AUC(β). To this end, we generate the covariates {X1, · · · , Xn} and {Y1, · · · , Ym} from the following
models:

1. (multivariate normal) Xi
iid∼ N(µ1, Σ1) and Yj

iid∼ N(µ2, Σ2), where Xi and Yj are 3-dimensional
random vectors.

2. (log-normal mixture) log(Xi)
iid∼ 0.8N(µ1, Σ1) + 0.2N(µ3, Σ3) and log(Yj)

iid∼ 0.8N(µ2, Σ2) +
0.2N(µ3, Σ3).

In both settings, we let µ1 = (1, 0, 0)′, µ2 = (0, 1, 0)′, µ3 = (0, 0, 0)′,

Σ1 = Σ2 =




1 0.5 0.5
0.5 1 0.5
0.5 0.5 1


 ,

Σ3 = 5I3, I3 is the 3 by 3 identity matrix. For each generated data set, we construct the combined
score at each iteration and obtain the corresponding AUC in both training and validation set. The
validation set is generated from the same distribution as the training set with 2000 observations
in each group. Based on results from 500 generated data sets, we calculate the empirical average
of resulting AUC based on scores from each iteration and examine whether the estimated weight
converges after 50 iteration. The relative difference between two β̂ in consecutive iterations needs
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to less than 0.01% in order to be considered as convergence. Figure 1 plots the empirical average
of AUC against iteration steps. In the multivariate normal case, the iteration does not improve the
AUC in the validation set. On the other hand, the AUC in the validation set increases from 0.781
to 0.787 after one iteration and 0.788 after two iterations. Further iterations does not improve the
AUC anymore. AUC in the training set follows the similar pattern. 92% and 96% of the iterations
converges in multivariate and log-normal mixture cases, respectively. For those failed to converge,
the estimated β̂ may oscillate between few values closed to each other. This result is not surprising
as most of gain in prediction performance of adaptive lasso and SCAD regularization, if exists,
is also realized in first one or two steps (Zou and Li, 2008). In the light of the numerical study,
we suggest that iteration may improve the AUC when there are potential outliers and one or two
iterations suffice to harvest the gain in maximizing AUC(β).

References

[1] Zou, H., Li, R. (2008) One-step sparse estimates in nonconcave penalized likelihood models,
Annals of Statistics, 36, 1509-1533.

2



0 10 20 30 40 50

0.
91

5
0.

92
0

0.
92

5
0.

93
0

Iterations

A
U

C

(a) multivariate normal
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(b) log-normal mixture

Figure 1: AUC in training and validation sets (black: training set; red: validation set)
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