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ABSTRACT Equations have been developed to describe the
diffusional movement of a weak acid such as the auxin indoleacetic
acid through a long file of vacuolated cells, where cellular accu-
mulation is driven by the pH gradients across the cell membranes.
If the permeability to the auxin anion is greater at one end of the
cell than at the other, diffusional movement takes the form of
polar transport, which exhibits: a nearly constant velocity either
for the front or for a pulse of radioactive auxin, the capacity to
move auxin against an external gradient of concentration, and a
polar ratio that increases exponentially with the length of the sec-
tion. The determinants of velocity include both diffusion through
the vacuole and permeation steps at the cell membranes. Except
for the permeabilities of the membranes to the anion, values are
now available for all of the physical parameters in the equations.
With reasonable estimates of permeability coefficients for the
anion, the equations predict a velocity of transport of about 1 cm
hr-1, which agrees well with measured values. The analysis in-
dicates, however, that the underlying cellular polarity may be
greater than has been heretofore assumed. We thus demonstrate
that the hypothesis of chemosmotic polar diffusion is capable of
accounting quantitatively for the major features of auxin transport
and provides a theoretical framework whose elements can be
tested in future experiments.

Since the early quantitative descriptions of the transport of the
endogenous plant growth hormone auxin* (1-3) its cellular basis
has been elusive. Among its characteristics are (i) a polarity, in
which auxin moves more effectively through tissues in one di-
rection than in the other, with the polar ratio increasing ap-
proximately exponentially with distance (4-6); (ii) the ability to
move auxin through a tissue against an external concentration
gradient (3); and (iii) a velocity, evidenced by a nearly constant
rate of travel of 10 or more mm hr-' of either the front (2, 4,
7-10) or a pulse of radioactively labeled auxin introduced at the
apical end of a section (11). Various models involving differ-
ential secretion from the basal ends of the cells can account for
the first two of these features, but there has been no convincing
explanation for the third.
The chemosmotic polar diffusion hypothesis draws ideas and

observations from several sources and postulates that polar
transport involves both steps of membrane permeation and
diffusion through the cell (12). Uptake of auxin is pH dependent
and appears to be driven by the pH difference between the in-
side of the cell and the acidic wall space. With a difference of
2 pH units, and with only the undissociated acid permeant,
auxin can accumulate passively to an internal concentration
more than 50 times greater than the external. If the auxin anion
is also permeant, this accumulation will be reduced. The sug-
gestion that the polarity of transport is caused by a greater
permeability to the anion at the basal than at the apical end of
each cell (13, 14) is a central feature of this hypothesis.

Because neither cytoplasmic streaming (15) nor a lateral
sheath of cytoplasm around the vacuole (16) is necessary to sup-
port transport, the auxin seems to cross the tonoplast and diffuse
through the vacuole in traversing the length of each cell. The
proposed path of auxin movement (Fig. 1) is as follows (12).
Auxin permeates the apical plasmalemma, driven in by the
metabolically maintained pH gradient. Because the cytoplasmic
layer and the wall space are only about 1 um thick, their con-
centrations of auxin can be considered spatially uniform at any
time. A second permeation step occurs at the vacuolar mem-
brane, followed by diffusion the length of the vacuole. Because
the vacuole occupies most of the cross-sectional area of these
cylindrical cells, and because centrifugation of the cytoplasm
to the basal end does not slow transport (16), diffusional flux
down the thin ensheathing layers of cytoplasm is ignored in this
analysis. Exit from the cell is the reverse of entry, the only dif-
ference being a greater efflux of anion at the basal plasma mem-
brane than at the apical. The process is repeated in subsequent
cells in the file.
A formal mathematical description of this process would al-

low us to see whether reasonable values of permeability coef-
ficients, diffusion constant, and pH gradient are consistent with
the measured values of polarity and velocity of auxin transport.
This formidable mathematical problem has recently been solved
in a form applicable to nonelectrolytes (17). The purposes of this
paper are to extend this analysis to weak acids and to compare
quantitative predictions of the mathematical model with ob-
servations of auxin transport. By adjusting only the value of
anion permeability, the model predicts the three properties of
auxin transport: polarity, velocity, and the accumulation of
auxin against an external gradient of concentration. Although
our approach differs, our conclusions are similar to those of
Mitchison (18).

RESULTS
Modification of Martin's equations for diffusional movement
of a weak acid
In Martin's (17) treatment, the mass fluxM of substance per unit
area across one of the membranes is assumed to be proportional
to the difference in concentration C on the two sides of the
boundary. Thus

M = aj(Cj-Cj+),
in which a is a constant of proportionality, the permeability,
and the subscripts designate the compartments on either side
of the membrane. Auxin, however, exists as both the undis-
sociated weak acid and the anion; consequently

* Throughout this paper we use the generic term "auxin" to refer to the
endogenous hormone indoleacetic acid, but the mathematical analysis
applies to any acidic auxin that is polarly transported.
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FIG. 1. Schematic drawing of tissue. The tissue section is consid-
ered to be a linear array of n cells, of which only three are shown.
Hatched areas represent the walls, flanked by cytoplasmic layers, both
of thickness h. Length of the vacuole is >> h. a0, 0, a3, and p3 relate
to fluxes at the plasmalemma; a,, 1, a2, and , fluxes at the tono-
plast, and are defined in the text. Notation follows ref. 17 and
Appendix.

C = HA + A-.

Studies of uptake of auxin indicate permeability to the anion
as well as the acid, and provide some evidence for a proton sym-
port (19-21). The effect of such a symport is to remove the volt-
age dependence from a fraction of the anion permeability PA-.
Therefore an expression for the mass flux is

M = PHA(HAj- HAj+1) + PA- (e' )A-- -eo)(-AX1)

+ P.-(Aj -AJ+1) [1]

in which 4 is zVF/RT, an electrical term encompassing the
effect of membrane voltage on the flux of anions, R is the gas
constant, T the absolute temperature, z the valence (- 1), F the
Faraday constant, and V the membrane voltage (Vj+I - V.).

In each compartment the concentrations A-, HA, and H+
are related by the dissociation constant Ka:

K, = H+.A7/HA.
Therefore HAZ = CJ/(1 + 10PHJPK) and A7 = C.10PHiPK/
(1 + lPHJ-PK), in which pH and pK have their usual meanings;
i.e., pH = -log H+ and pK = -log Ka. Substituting these
expressions for concentration into Eq. 1 and rearranging, the
equation for mass flux takes the form

M = ajCj - jCl+ , [2]
in which

PHA + PA-(e 1) +PIl1HJ
ri= 1 + lopHj-pK

PHA + [PA( 40e~ +I~~OH+P

I + 10p~j'i-p

If the carrier concentrations remain the same on the two sides
of the membrane, PA- (or PA-) = PxAX/Kd, in which PX is the
permeability of the loaded carrier, X is the carrier concentra-
tion, and Kd is the dissociation constant for the reaction A- +
X ;+ AX-. If, on the other hand, the carrier redistributes across
the membrane in response to the concentration gradient of A-,
XX becomes a nonlinear function of A4 and the terms in Eq. 1
that represent the fluxes of anion are only approximations.
Predictions of the equations for auxin transport
Using a computer, we obtained numerical results (Theorems 8.1
and 8.1', Appendix) for the wall concentration relative to the
donor concentration (W.,/C0) as a function of both distance into
the section (cell number, m) and time. The concentration at the
"receiving end" was held at zero for these calculations. Nu-
merical values for all parameters for which independent esti-
mates are available are as follows: indoleacetic acid diffusion
coefficient D = 7 x 10-6 cm2 sec-1 (22); permeability coeffi-
cient of the undissociated acid PHA = 3.3 X 10-3 cm sec-1 (14,
23); membrane voltage at the plasmalemma V = 100 mV (un-
published observation); wall pH = 5 (24, 25); cytoplasmic pH
= 7.2 (26); and vacuolar pH = 5.5 (ref. 26; unpublished ob-
servation). Vacuolar length 1 was taken as 100 gum, and cyto-
plasm and wall thickness h = 1 ,um (Theorem 8.1) or h = 0
(Theorem 8.1'). The pKa of indoleacetic acid is 4.7. The utility
of the mathematical model is considerable, for although it is
intended to describe a complex biological system, there remain
only two related parameters forwhich there are no independent
estimates. These are the values of PA- (or PA-) at the apical and
basal ends of the cell.
The family of unbroken sigmoid curves in Fig. 2 shows the

distribution of auxin in the walls as a function of position in the
section at 3-min intervals. For these solid curves, the perme-
ability to the anion at the basal plasma membrane of each cell
was assumed to be larger than at the apical end; this produces

20 30
CELL NUMBER (m)

FIG. 2. Distribution of auxin in walls as a function of distance and
time. Unbroken sigmoid curves show the progressive basipetal move-
ment of the front at 3-min intervals through a5-mm section, calculated
from Theorem 8.1' (Appendix). W,,,/CO is the wall concentration in the
mth cell, relative to the source. The other solid curves show the cor-
responding movement of a pulse when the source concentration is Co
for 3 min and 0 thereafter. Dashed curves show the small slowing of
the pulse when the cytoplasm and wall thickness is 1 ,um (Theorem 8.1)
rather than 0. Cellular polarity A = 2.437. Cellular polarity assumes
this value with a symport present at all membranes (PA- = 3.3 x 10-3
cm sec 1) and a voltage-sensitive anion leak at only the basal plas-
malemma (PA- = 1.24 x 10-3 cm sec'). The dotted curves show the
steady-state concentrations; the one on the left is for acropetal move-
ment through the-same file of cells-i.e., cellular polarity = 1/2.437.

a

0

[3a] 0.4
3' 0.4

[3b]

In general, with pHj # pHB+I and V # 0, then a. # /,j. The
previously published mathematical treatment of diffusional
movement through a series of membranes and vacuoles (17)
assumes a. = f3. Theorems 8.1 and 8.1' in Appendix of this
paper set forth the necessary modifications for the biologically
more interesting case in which a. # ,;.
The physical interpretation of PHA is straightforward: the

permeability coefficient for the undissociated acid. The physical
interpretation of PA- and PA-, on the other hand, is less obvious.
There is evidence that one or more carriers are involved in the
transmembrane fluxes of A- (13, 19-21), and under these cir-
cumstances the expressions for aj and f3j are approximately cor-
rect only if the concentrations of A- are assumed to be well
below carrier saturation. Because auxin has its physiological
effects in the micromolar range, this assumption is reasonable.

Botany: Goldsmith et aL
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basipetal transport of auxin. The dotted curves show the steady-
state distributions of auxin, for basipetal (right) and acropetal
(left) transport, for the boundary conditions Wo = CO, Wn = 0.

Clearly the assumption of different anion permeabilities at the
two ends of each cell leads to an asymmetry of auxin movement
through the tissue.

Movement of a Pulse; Velocity of Transport. After applica-
tion of radioactive auxin to the apical end of a tissue section for
several minutes, a peak of labeled auxin moves through the tis-
sue at about 10 mm hr-1. As it moves, the spatial distribution
of label becomes less compact, and the amplitude of the peak
decreases (11).
The mathematical analysis predicts such a basipetally moving

pulse (Fig. 2). Velocity can be calculated from the movement
of the- peak of the pulse or from the movement of the center of
mass (1mW./1W,), and in this example is about 9 mm hr-1.
The model therefore predicts a second characteristic of auxin
transport, a nearly constant velocity.

Effect of h, Cytoplasm, and Wall Thickness. Ifh = 0, Theo-
rem 8.1 simplifies to 8.1'. The difference between the unbroken
curves in Fig. 2 (h = 0) and the dashed curves (h = 1 A&m) is
inconsequential, and most of the computations reported in this
paper therefore assumed h = 0 and employed Theorem 8.1'.

Cellular Polarity, 1A. The parameter A in Theorem 8.1 pro-
vides a measure ofthe cellular polarity that underlies this asym-
metric diffusion. The parameter , (Appendix) is defined in
terms of the coefficients a and (see Fig. 1); i.e.,

A = aoaja2a/f30O8132f33 = a/P. [4]

If the tonoplast membrane is identical at the two ends of the
vacuole, a, = 12, a2 = I1, and

= aoa3/60,83 = a/13

The physical significance of is as follows. If the concentra-
tion ofauxin at the apical end ofa cell were held at Cowhile auxin
diffused through the cell into a small extracellular reservoir at
the base, diffusional equilibrium would be reached when the
concentration W in the basal wall had risen to COAu. For a file
n cells in length, diffusional equilibrium would therefore be
reached when the concentration at the basal end of the nth cell
was Wn = CO.un. For basipetal transport, cellular polarity is
and A > 1; for acropetal transport, cellular polarity is 1/,u. For
> 1, basipetal transport can proceed against a gradient as long

as Wn < Cohpn. The model therefore accounts for transport
against an external gradient of concentration.

Polar Ratio in Transporting Sections. Although transport to
equilibrium has not been measured in living tissue, we can com-
pare some experimental data on polarity with theory in the fol-
lowing way. The polar ratio has been operationally defined (5)
as the amount of auxin that has passed through a plane at dis-
tance d from an apical source after a period of basipetal trans-
port t, divided by the amount of auxin that has passed through
a plane at distance d from a basal source after t min of acropetal
transport. This ratio increases exponentially with d (5).

In a completely analogous fashion, the polar ratio can be pre-
dicted from the theoretical curves by

n /n

m=d m=d
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FIG. 3. Calculated logarithm of polar ratio of transport (see text
for definition) as a function of length of section, for several values of
,u. Cellular polarity 1Awas adjusted by altering the external (cell wall)
pH, as indicated. Polar ratio increases exponentially with length of
section.

concentration at the distal end does not rise appreciably above
0 in time t. In Fig. 3, was altered by varying the wall pH. The
theory clearly predicts that polar ratio increases exponentially
with distance transported.
What Determines Velocity of Transport? Velocity depends

on two factors: (i) the resistance to movement at the membranes
and in the vacuole, as measured by the permeability and dif-
fusion coefficients, and (ii) the net driving force for auxin across

the cell, as measured by pu. Diffusion coefficient and cell length
influence only i, whereas the permeability coefficients contrib-
ute to both i and ii. If the tonoplast has identical properties at
both ends, its permeability contributes only to i.

Fig. 4 shows the effect on velocity of varying the resistive
parameters D, 1, and the anion permeability of the tonoplast
PAP. With the parameters used, the diffusional resistance of the
vacuole is more important than the barrier presented by the
tonoplast. Velocity should be higher in shorter cells, but it is
not likely to be greatly influenced by the probable magnitude
of any errors in the published measurment of D.

Important as these parameters are, the velocity (and polar
ratio) can be more strongly dependent on p.. As the external

20
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wco

IJ
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0

in which Wb and Wa represent wall concentrations for basipetal
and acropetal transport, respectively, and distance is measured
by number of cells m. Note that Theorems 8.1 and 8.1' require
that Wn = a constant, which is accomplished in both theory and
experiment by making the column of cells long enough that the
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FIG. 4. Effect of changes in diffusion coefficient, cell length,.and
tonoplast permeability on velocity oftransport under conditions ofcon-
stant cellular polarity, j, = 2.437. Parameters are similar to those in
Fig. 2.
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Velocity is more nearly constant the higher the value of ,u
5 (Fig. 5). In the limiting case of ,u = 1, the front decelerates,

as in simple diffusion. A sufficiently high value of u is therefore
necessary to account for the approximate constancy of velocity

$41 as well as its magnitude.
0
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FIG. 5. Calculated pulse velocity (unbroken curves) and polar ratio
per mm (dashed curve) as a function of wall pH. Changes in external
pH alter the cellular polarity IL, as indicated in the figure, but the re-
sistive terms (permeability and diffusion coefficients, cell length) re-
main unchanged. The lower plot of pulse velocity is for a time 9 min
after the upper curve. Velocity therefore slows with time, but the
change is relatively small with larger values of 1i.

(wall) pH is.allowed to rise from 5 to 7, the permeability termb
in a and a remain constant, and 1L (in the specific example under
discussion) falls from 2.437 to 1.008. Fig. S shows the steep
dependence of both velocity and polar ratio on wall pH, and
thus on the cellular polarity a. This analysis leads to the pre-
diction that polarity of transport should be inhibited by buff-
ering the wall space at a less acid pH than is normal, a prediction
for which there is some evidence (unpublished observations).

DISCUSSION
Origin of A. From the definition of /i (Eq. 4) and the de-

pendence of aj and /3j on the permeabilities (Eqs. 3a and 3b),
it would seem that apical/basal differences in either the voltage-
sensitive (PA-) or voltage-insensitive (PA-) components ofanion
flux could contribute to cellular polarity. A realistic kinetic
model for the voltage-insensitive permeation-as an anion-proton
symport-indicates, however, that such a path would contrib-
ute to the transmembrane flux ofauxin but would not constitute
an anion "leak" that lowers the equilibrium uptake of auxin by
the cell (ref. 19). This suggests that the origin of ,u is a difference
in the ratio PA-/(PHA + PA ) at the top and bottom of the cell,
and that the presence of a symport enhances the membrane's
permeability to auxin without collapsing the accumulation of
auxin by the cell.

Magnitude of ,u. The example of Fig. 2 predicts a velocity
oftransport at a wall pH = 5 that is similar to measured values,
but the predicted polar ratios of 10`- mm-' are considerably
larger than the experimental values reported by de la Fuente
and Leopold (5). This is a direct result of a cellular polarity of
2.4 rather than the 1.05-1.1 inferred by Leopold and Hall (6).
The present analysis indicates that, in order to support a velocity
ofabout 10 mm hr-', cellular polarity-must be larger than here-
tofore supposed, and we suggest that with high values of au the
measured polar ratio is inevitably degraded by acropetal dif-
,fusion of auxin through the extracellular wall space. Measured
values ofpolar ratio therefore may not provide an adequate way
to estimate A. The need for cellular polarities ofat least 1.5 has
been independently suggested by Mitchison (18).

APPENDIX
We set forth in this appendix the modifications needed in key
formulas and theorems of ref. 17 to treat the assumption that
the mass flux M across a boundary is a linear combination of the
concentrations on the two sides of the boundary, rather than
simply proportional to the concentration difference. The nu-
meration of ref. 17 is retained.

M = aaOCO- f80C, M = a1C1 - /81C2,

M = a2C2- /2C3, M = a3C3 - 83C4, etc. [1.2]

DCx = P3C2 - a1Cl, DCx = 82C3 - a2C', etc.

C4==(aco + P3c8), a = aoala2a3, /3 = 03(j 4343,

K = [\ srIo + a, + hs)XI2 + a3 + hs)

[1.3]

[5.4]

(/33 + ao + hs - -30ao - a3b3)A]

K = [P cosh(k\/) + QV Ds sinh(k/)J [5.5]

Po = a + /3,

P1 = ala2a3 + aca433 + /3432,3 + ap2Ca3 + 832a3
+ 30a2/3 + aC1%a3 + /3d1a3 + /048/3 + aCOla2

+ aOiJ1/32 + /3/3/2'

P2 = aofI + /30/31 + aOa2 + /3002 + ala2

+ 31/32 + /31a3 + /1/3 + a2a3 + a293,

P3 = /31 + a2,

Qo = al/2/3 + 2I3 + aOala3 + a(,i/32,
Q, = a0a, + ao.2 + /0/32 + aOa3 + /30a3

+ /30/3 + a/32 + aja3 + a433 + A3,
Q2 = ao + /3o+ a, + /32+ a3 + /33,

RO = (Ila2/D)(aOa3 + /3oa3 + P3AQ),
R1 = (3la2/D)(ao + /30 + a3 + /33),

R2 = 31a2/D.

Wr = R(aWr-I + /3Wr+1), r 1,2,

Bo = 1, B1 = 1, B2 = 1 - A2,

B3 = 1 - 2A2, A2 aK2,

Wn-I = an-f B WO + PR Bn 2 n, n = 2, 3, 4-
Bn-1 Bn-2

N/a.B/A = P cosh(k\/s) + QVIis sinh(k\/s),

[5.6']

[5.7]

[5.11]

[5.12]

[7.1]

2V'a cos 0 = P cosh(k\/) + QNIii sinh(kV§). [7.1']

Botany: Goldsmith et aL
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F(h,s) = P cosh(kV) + Q\/¶ sinh(k\/s)

2\/acosq=0,q= 1,...,n-i, [7.2]

corcosh(k\/) +V sinh(ksf) - olcos Oq = 0,

0 = PoV/15Qo, o = 2\/aIj/'Q0. [7.2']

In figure 2 of ref. 17 replace y = oocos 0q by y = ocros Oq.
Note that oal- cro.

Y(h, qqr(h)) =k\DQ + 2I'.COs k7lqrh)

kP + V/iQ - 2Vi5q2r (h)Q8 sink7qr(h)
4+1qr(h)

(1)q+i (n) dn6 sinm

p(bm;sq,(h)) = ( ) B sin Oq sin mOq
t~bm~sq~h)) = n anm)2Y(h, iqr(h))'

p(ar;sr(h)) = 1)q+1 ()m/2 sin Oq sin(n-m)Oqn ~~~~Y(h, nqr(h))
Wm = COFm + C4nGm,

Gm =j~m1 n- Io- p(b;* sr(h)) e
q'i r=.O ?qrh

( q Pd'p = O, d,

F-n _ Am n-I - p(a ;sgr(h)) e

m ,n-1 q=l r 2qr(h)

P cos kq - \I/7Q sin kl- 2/ cos Oq = 0,

IT

Oq = q-, q = 1, ..., n-l,
n

0o t, 0 h _ ho

[7.13]

[7.14]

[8.6]

[8.9]

[8.9']

[8.11]

[8.12]

THEOREM 8. 1. When the outside concentrations Co, C47
are constant, the concentration Wm in the mth wall is given by
Eq. 8.6 in which thefunctions Fm, Gm of t,h defined in Eqs. 8.9
and 8.9' are continuousfunctions of t,h in the interval 8.12. The
residues p(am;sqr(h)), p(bm;sqr(h)) in these expressions are de-
fined in Eqs. 7.13 and 7.14, in which %,qr(h) are the roots of 8.11.
THEOREM 8.1'. When h = 0 and the outside concentra-

tions CO, C4n are constant, the concentration Wm in the mth wall
is given by Eq. 8.6, in which

nl m m/2 n-i o-
Fm= ,A+)q sin Oq sin(n -m)Oq 2

FM n.t1 1
+ 2.~ e

nq=1 r=0 qy(1r

Oq = q-$ p-, p = 0, ..., d,
n n

Proc. Natl. Acad. Sci. USA 78 (1981)

Jm 1 -(n-m)/2= _ L sin Oq Sinm~q 2

A 1 q1l r0O 71qrY(71qr)
a

in which d is the greatest common divisor of m, n, with
k kao + 1 sin k71qr

Y(7qqr) = 2 cos k71qr + 2o- siqr

PO
ViQQo

2Va
= =Q'

and 7lqr are the roots of
o0cos kr - qsin kq - o-L cos Oq = 0

pictured in figure 2 of ref. 17.

In figure 4 of ref. 17 replace - CO by , Co and

-C4n by n C4n.
n A
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