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ABSTRACT A population genetical theory is developed to
treat the amount of selfish DNA in a genome. We assume that the
selfish DNA consists of replicating units and that it evolves by
multiplication within a genome, exchange between genomes, and
random genetic drift at reproduction. Special reference is made
to the mean and variance of the number of replicating units per
genome in the population. Under the assumption of no systematic
evolutionary pressure, the number of units changes randomly
with time, and its variance increases by replication process. Al-
though under certain circumstances the variance increases also by
exchange process, under ordinary circumstances this process
tends to decrease the variance. Random genetic drift also reduces
the variance. The relationship between the mean and variance at
equilibrium of the number of replicating units per genome in the
population was derived. The results obtained will be useful in un-
derstanding various observations on repeated DNA which pre-
sumably does not contain genetic information and which is likely
to be selectively neutral.

We consider. the process of selfish DNA evolving under rep-
lication within a genome and under random genetic drift at re-
production within a population. In addition, we assume that
exchange of replicating units occasionally occurs at reproduc-
tion between the two genomes in a diploid individual-i.e., we
consider a population of sexually reproducing diploid orga-
nisms. To simplify the treatment, we first neglect the effect of
natural selection, although its effect will be discussed later.

Let f and a-.2 be the mean and variance, respectively, of the
amount of selfish DNA per individual genome in the population
so that

2N

i = E nJ2N
i=l

and

[1]

Doolittle and Sapienza (1) and Orgel and Crick (2) discussed the
evolution of what they call "selfish DNA." This is a piece of
DNA that has little or no phenotypic effect yet spreads in the
species because of its rapid replication within the genome.
Highly and moderately repetitive nucleotide sequences in eu-
karyotes are considered to belong to this class of DNA. Their
papers suggest a need for a treatment, based on population ge-
netical'theory, of the-problem of DNA segments spreading
within a genome and subsequently spreading within a popu-
lation. On the other hand, the repeated gene families such as
transfer and ribosomal RNA, histone, and immunoglobulin
genes are called multigene families (3). Population genetical
consequences of such genetic systems have been worked out
(4, 5) by assuming that the gene family size (i.e., the number
of repeated genes per family) stays fairly constant over the gen-
erations because of its functional requirements. Under such an
assumption, the nature of gene diversity was investigated. Also,
the family size and proportion of defective genes were examined
by Monte Carlo simulation experiments by Hood et aL (6).

For a proper treatment of the evolution of selfish DNA, how-
ever, we have to take into account the possibility that its total
amount changes with time. The purpose of this note is to pre-
sent a theoretical treatment of the amount of selfish DNA based
on population genetics.

BASIC THEORY

Let us assume that selfish DNA consists of replicating units and
let ni be the number of such replicating units in the ith genome
in the population. (ni may increase or decrease by unequal cross-
ing-over as in multigene families (7) or by an integration mech-
anism as in transposons and insertion sequences of bacteria (2).
LetN be the number of breeding individuals in the population.

an2 =E ni2/2N- f2.
753 [2]

We now investigate the rates of change of the mean and vari-
ance due to various forces.

Multiplication of replicating units may occur through the fol-
lowing two processes: unequal crossing-over as in multigene
families (3, 7), and integration as in mobile genetic elements
(2, 8). For our purpose, however, we consider the following two
types of replication.

(i) Duplication or deletion which occurs independently for
each unit; each unit of selfish DNA has a constant probability
a, of either duplicating or being deleted in a genome in each
generation. This may be called single replication.

(ii) A certain number of units are simultaneously duplicated
or deleted in a genome (say, the ith genome) and this number
depends on the total number n. This may be called cluster
replication.

In the first type, single replication (sr), the mean and variance
of the change of ni for a given i are

Ms,(AnjIi) = 0

and [3]
Vsr(Anli) = alni,

where M and V denote operators for taking the mean and the
variance, respectively, and the subscript sr means that these
operations refer to single replication. Ani is the change of n, in
one generation. Note that these are conditional expectations for
a given i.

In the second type of process, cluster replication (cr), we
assume that the mean number of simultaneously duplicated or
deleted units is equal to ani. Also, let a2 be the probability of
such a duplication or deletion occurring in each generation.
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Then the mean and variance of the change of n, due to cluster
replication are

Mcr(Aniji) = 0

and [4]
Vcr(,nili)=a2a=ni',

where the subscript cr refers to cluster replication. Therefore,
the expected value of ft does not change whereas o,.2 increases
on the average through replications in one generation as follows.

Erep(Acon2) = I E (a1ni + cr2a2ni2)
2Ni [5]

= aft + a2a2(i2 + Or 2)
where E stands for taking the expectation and the subscript rep
refers to the replication process.

Next we consider the change of ni by intergenome exchange
such as interchromosomal crossing-over at-meiosis. It is con-
venient to treat the following two processes separately. The first
is the treatment of the selfish DNA which is dispersed in the
whole genome (8-12), and the second is that of the clustered
gene families. Let us call the former the dispersed exchange
process, and the latter the clustered exchange process. We shall
first formulate the dispersed exchange process. At meiosis, the
dispersed replicating units are likely to be equally distributed
to the two daughter cells. We assume that, with the rate (31 per
generation, the genomes exchange their selfish DNA with each
other, and the dispersed units are equally divided. Then, when
the genomes with ni and nj units exchange their selfish DNA,
the expected number of the units per daughter genome is (n,
+ nj)/2.

In order to derive the variance of the change of ni, we first
ask what fraction of the units in the two genomes share ho-
mologous positions on the chromosome. If the two units share
the same position on homologous chromosomes, they are dis-
tributed one/one to the daughter genomes, whereas if they
occupy different positions and are thus hemizygous, they would
be distributed two/zero, one/one, and zero/two in the ratio
1:2:1-that is, they follow the binomial distribution. We con-
sider the state in which the fraction of homologous units are held
in equilibrium between transposition of the units (which de-
creases homozygosity) and random genetic drift (which in-
creases it). It is assumed that each unit has a probability a, of
either duplicating or deleting itself each with equal probability
of aJ/2 in one generation. When duplication occurs, it is as-
sumed that one of the two units jumps to a different position
while the other unit remains in the same site. Thus, with prob-
ability u = a1/2, a transposable unit occupies a new position.
In other words, al/2 is the probability of a new hemizygous unit
being created in a new position. This site later may become
homozygous by random drift of chromosomes. Let h be the
probability that one unit of a randomly chosen genome has a
homozygous partner in another randomly chosen genome. Fol-
lowing the method used by Kimura and Crow (13). for deriving
the probability of allele identity, we can show that, in one gen-
eration of random drift and jumping of units, h changes to h'
according to .the following equation.

h=(12N)( 2 )h 2N

The value of h at equilibrium, which we denote by /, may be
obtained by putting h = h' in the above formula, and it
becomes,

/i = 1/(1-+ 2Nal). [6]
In terms of this fraction, and by letting ,B be the rate of dis-
persed exchange process, the variance of the change of ni due
to segregation is

- 31 hn + n)Vds.,,.(AnjjQ~)-= 4 Al - h)n j [71

Natl,(ni + )

2(1 + 2Nal)
where the subscript ds.ex. denotes the dispersed exchange pro-
cess. On the other hand, the variance of n between genomes
is halved by recombination so that, 'the mean change of an2 in
one generation is

n2) =-f a2 + Nalph
2 (1 +2Nal) [8]

The clustered exchange process through crossing-over is
more complicated. Let us assume that the two genomes in-
volved in the exchange have segments with ni and n. units, re-
spectively, and that n; > ni as in Fig. 1. Let e be the number
of unpaired units on the longer segment that lie to the left of
the left end of the shorter segment (point0 in the figure), taking
negative values when the pairing is so skewed that point 0 lies
to the left of the left end of the longer segment. Thus, # takes
values between -ni and +n.. The upper diagram shows the
probability density of point 0. This probability density function
implies that the pairing is equally likely for the region 0 c e
< nj - ni and it becomes less frequent for e < 0 or e> n. -
ni. Let us denote these three regions as I, II, and III, calling
the middle region region I and the left and the right ones regions
II and III. Let I be the crossing-over frequency per generation
in region I (0 I(<nc - ni), and let (I, and (311 be the fre-
quencies of regions II (-ni < e <0) and III (nj- nj< e < n;).
Thus, the total rate of the clustered exchange is P3I + (II + 3III.
After recombination as in Fig. 1, the resulting chromosomes
have ni + ( and n3 - e units. In order to calculate the changes
of the mean (ni) and variance (an'2) of nis, let us first evaluate
the mean and mean square of ni + (.
The mean and the mean square of ni' = ni + e under the

condition that one crossing-over occurs while point 0 lies in
region I (0 c e2 c nj - ni) following the uniform probability
distribution are

EI(ni'jni,n) = 2 and
2

EI(n,'2In,,nj) = !(ni2+ nj2+ nin,).
19]

I~~~~~~~~~~~~~~~~~~~
Probability density

_of point L

nj

FIG. 1. Diagram showing the model of exchange process of the
clustered repeating DNA. Upper diagram illustrates the probability
function of the point 0; lower figure shows the crossing-over between
the DNA segments with ni and nj repeating units.
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These are conditional expectations, given that one crossing-over
occurs while 0 lies in region I. Next, when one crossing-over
occurs while 0 lies in region II or in region III, we assume that
the probability density function of e follows the distribution
(ni + e)/(ni2) for region II and (no- e)/(ni2) for region III, so
that the total probability is. unity for the regions II and III. By
using these density functions, the mean and the mean square
become,

EII11(nit'ninj) - 2

and [10]

ElIIII(ni'2Jn,,nj) = ni2 + 2 nj2 + - ninj.t 3 2 3 '

These are conditional expectations given that one crossing-over
occurs while 0 lies in region II or III. Let /1' (= PI + /III) be
the rate of crossing-over for the regions II and III per gener-
ation. Taking the expectations of the right hand sides of for-
mulae 9 and 10, the mean and the mean square of the number
of units per genome after one generation of interchromosomal
recombination are

Ecf.ex.(ni') = 7

and [11]

Ece.ex.(n2)= ,2 + cn2 + ,tf2
PI

+
Pil 2

where the subscript cf.ex. denotes. the clustered exchange pro-
cess and HI and HI' are assumed to be much less than unity.
Therefore, the mean number of the units does not change, but
the variance of the number changes on the. average by the
amount,

Ectex.40j) 6n ( + 6O'n . [12]cf~ex.\" 6 \3 6,![2
It is expected that, in reality A >> 8I'-that is, highly skewed
chromosomal pairings (f < 0 or e > nj - ni) occur dispropor-
tionately less as compared with more symmetric pairings. From
this, we expect that- the variance of the unit number decreases
by the exchange process.
By sampling of gametes at reproduction, the mean of nis does

not change but its variance decreases. This may be seen by
writing the expected value of the variance as

[2_ 2N (2N)21

(2N)2E{(2N ni

-,E ninj
i joi

E(ni2) - E (nin>).
jot

Through sampling, the fraction, 1/(2N) of Ej+i(ninj) becomes
equal to E(ni2), because the two randomly sampled chromo-
somes happen to be identical with probability 1/(2N). Since the
expected value of ni2 does not change by sampling, we have

Esmp(A 2N)= ' [13]

where the subscript smp denotes the sampling process. The
variance, o.,,2, is decreased by 1/(2N).

Taking all the preceding factors into account, the variance
among nis at equilibrium may be obtained by putting

Erep(A57n2) + Eds.ex.(AO(n2) + Ect.ex.(ACT,,2) + ESmp(AO'n2) = 0,

which leads to

& 2 6a11{1 + N31 + 2Nal)-} + ,2(6a2a2 + p3')
(Tn - 3,f + 281 + /3' + 3N-1 - 6a2a2 [14]

where the circumflex on o-r2 denotes that it refers to the equi-
librium value. One has to understand that there is no stable
equilibrium in our model and A (the mean number in a particular
population) actually varies with time. Nevertheless, the rela-
tionship between the mean and variance at a given moment may
be predicted by the above equation. In particular, it is expected
that, when the exchange rates /, PI, and /l' are small, the var-
iance becomes large compared with the mean. Under extreme
situations, these quantities are so small that 6a2a2 > 313 + 2/3k
+ P3I' + 3N-1. In such cases, the denominator becomes zero
or negative, and the above formula no longer holds. Theoreti-
cally, this means that the variance increases indefinitely with
time.

In applying Eq. 14 to actual examples, we must choose dif-
ferent parameter values depending on the kind of selfish DNA.
For dispersed repeated DNA, a2, PI, and /I' are likely to be
zero. Then, the last term of the numerator vanishes and c.2 may
become quite small. On the other hand, for highly repeated
sequences, gene exchange may be very limited (14), and/3, I3i,
and Pi' may take very small values and therefore r,,,2 may be-
come large.

For example, let us consider a dispersed repeated DNA with
= 20. If a2 = PI = /I' = 0 and a, = 10-4, p = 1073, and

N = 104, 0n2 becomes 15.8. If a, is smaller and is 10-5, with
the same value for other parameters, cr. 2 becomes 3.4. Com-
pared with this, a larger variance would be associated with the
clustered repeated sequence. Let fi = 102, a, = /3 = 0, a =
0.1, a2 = 1o-3, PI = 10-2, ho' = 10-3, and N = 104. Then
0.2 becomes 500. If a2 is 10 times larger (i.e., a2 = 10-2) with
the same values for the other parameters, a,,2 becomes 773.
Also, negative natural selection may be responsible for elimi-
nating the genomes having too large an amount of selfish DNA,
and its effect awaits future investigation.
The present result may be compared with that of Crow and

Kimura (ref. 15, pp. 295-296) where they treated the distri-
bution of the number of repeated units under equilibrium be-
tween stabilizing selection and the generation of new units by
unequal crossing-over. In their model, it is assumed that the
increase or decrease of the number of replicating units per ge-
nome per generation is independent of ni and follows a normal
distribution and that selection is of the centripetal type such
that the fitness of a genome with ni units is 1 - s(ni - nop)2,
where no is the optimum number of units per genome and e
is the selection coefficient which is assumed to be positive.
Then, at equilibrium, the mean and variance of n, become (15),

ri = n

and [15]

CTn2= X 's'

where u is the rate at which a chromosome with a certain num-
ber of repeats is converted into something else and x2 is the
variance of the change in the number of repeating units due to
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duplication or deletion in one generation. It is assumed that the
mean change of the number of units is zero. In our model, the
variance is a function of ni and ux2 corresponds to ai + a2a2(Ai2
+ on2) (Eq. 5). The model used by Crow and Kimura is pre-
sumably better suited than the present model for treating mul-
tigene families having some important function such as ribo-
somal RNA or histone gene families. Selfish DNA is more likely
to be selectively neutral or nearly neutral unless the amount
becomes too large (2), and the present model may be more suit-
able to treat it because, in this model, random genetic drift,
intergenome exchange, and the independently replicating
property of each unit are taken into account.

If ni is assumed to be normally distributed in the population,
it is possible to combine the two models. This assumption is
valid for the steady-state distribution investigated by Crow and
Kimura but may not hold in our case because the variance of
Ani depends upon ni. In the following, we tentatively assume
that ni is normally distributed at equilibrium and we consider
the mean and variance of the distribution. Then, it can be shown
that ii = nop and the variance ar,2 is reduced through selection
by the amount 2son4. Therefore, at -equilibrium, we have

Erep(lAon2) + EdS.&X.(O" 2) + Ect2ex.(An2)
+ Esmp(AO~n2) - 2scn4 = 0

Solving the above equation, we get, as the-equilibrium variance,

[16]affn =
4s BI,

where A = Eaia{1 + [Nf3/(1 + 2Naj)]} + ?i2(a2a2 + [PI'/6])
and B = (P/2) + (WBJ3) + (f3'/6) + (1/2N) - a2a2. When B

= ° = 1PI' = 1/(2N) = a2 = 0], formula 16 reduces
to Vajn/(2s). In other words, when random drift, exchange
process, and cluster replication process are negligible, the
result agrees with Eq. 15 because aln corresponds to ux2 of
Crow and Kimura (15) under such an assumption. Eq. 16 may
be applied to treat observed polymorphisms of the repeat
length of some gene families. An interesting example is the
.length polymorphism of the silk fibroin gene which possesses
an internally repetitive structure (16). It is likely that unequal
crossing-over, random drift, and natural selection are respon-
sible for the length heterogeneity.

DISCUSSION

,In applying the present results to real observations, one may
choose parameter values depending upon the kind of selfish
DNA. As already mentioned, the parameters are likely to be
quite different for the clustered and the dispersed repetitive
DNA. For the former, the "cluster" type replication and ex-

change processes would prevail (a2>> a, and /I + 1HI' >> $),
whereas for the dispersed repeating DNA, the single replication
and the "dispersed" type exchange would- predominate (a,
>> a2 and P >> PI + f31').
Our theory is limited to the cases in which the selfish DNA

segment has no tendency for systematic increase or decrease.
In other words, we assumed that the mean change per gener-
ation of the number of replicating units is zero, and therefore
the course of change in the amount of selfish DNA is left to
chance. There may exist truly selfish DNA in the sense that it
tends to increase deterministically, such as the B chromosomes
observed in some plant species. A notable example is a super-
numerary or B chromosome calledfe in-the lily Lilium callosum
(17). This is a large telocentric chromosome which appears to
show no phenotypic effect except that when more than one copy

exists in an individual, pollen and seed fertility of the plant are
reduced. However, it has a tendency to increase in number due
to preferential segregation in embryosac mother cells in a plant
with onef chromosome, so that thefe chromosome is included
in the egg cell in about 80% of the cases. No such preferential
segregation occurs in pollen formation. In natural populations
of this lily, this chromosome is contained in nearly 70% of in-
dividuals due to the balance between preferential segregation
and negative natural selection. An analogous situation occurs
with the SD factor in Drosophila melanogaster (18). Different
formulation is needed in order to understand evolution of this
kind.
A problem related to the amount of selfish DNA is the so

called "C value paradox"-i.e., the problem that too much DNA
exists in a cell as compared with the estimated gene number in
higher organisms (19). At the moment, we do not know which
of the following concepts is applicable to this paradox: (i) poly-
ploidization and subsequent degeneration (20), (ii) truly selfish
DNA such as B chromosomes, (iii) highly and middle repetitive
sequences with no phenotypic effects as considered in this pa-
per, and (iv) pseudogenes such as found in 5S ribosomal DNA
(21) and in hemoglobin a loci (22, 23). Quantitative analyses
based on population genetics theory would be required for a
correct understanding of their relative importance. Also, in the
future, the effect of natural selection in eliminating genomes
with too large an amount of selfish DNA has to be investigated.

We thank Dr. K. Aoki for carefully going over the first draft of this
paper and for making many useful suggestions to improve the
presentation.
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