SUPPORTING INFORMATION

Positive GABA_A Receptor Modulators from *Acorus calamus* L. and Structural Analysis of (+)-Dioxosarcoguaiacol by 1D and 2D NMR and Molecular Modeling

Janine Zaugg[†], Eva Eickmeier[†], Samad Ebrahimi[†], Igor Baburin[‡], Steffen Hering[‡], and Matthias Hamburger^{*,†}

[†]Division of Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland

[‡]Departement of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria

*To whom correspondence should be addressed. Tel: +41 61 267 1425. Fax: +41 61 267 1474. E-mail: matthias.hamburger@unibas.ch Table S1. Spectral characterization data for (1) (NMR spectra recorded in CDCl₃)

β-Asarone CAS Nr.: 5273-86-9

m/z (ESITOFMS)

231. 0998 [M+Na⁺] (Calc.: 231.0992)

position	$\delta_{\rm C}{}^{a,b}$	$\delta_{\rm H}$ (I, m, J in Hz) ^a
1	142.6	-
1-OCH ₃	56.5	3.57 (CH ₃ , s)
2	148.9	-
$2-OCH_3$	55.8	3.6 (CH ₃ , s)
3	98.4	6.30 (CH, s)
4	151.8	-
4-OCH ₃	56.0	3.52 (CH ₃ , s)
5	118.0	-
5- CH =CHCH ₃	124.9	6.28 (CH, dq, 11.5, 2.0)
5-CH =CH CH ₃	124.8	5.49 (CH, dq, 11.5, 7.0)
5-CH=CHCH ₃	14.3	1.61 (CH ₃ , dd, 7.0, 2.0)
6	115.0	6.64 (CH, s)

^{*a*}Reference data can be found in A. Patra et al., J. Nat. Prod. 1981, 44, 668-669 ^{*b*}Calculated ¹³C shift of HSQC- and HMBC-NMR experiments. Spin systems evaluated by HSQC-NMR experiment

Table S2. Spectral characterization data for (3) (NMR spectra recorded in CDCl₃)

Relative configuration detected by 1D NOE NMR. Critical correlations highlighted by red and blue arrows.

m/z (ESITOFMS) 243.1722 [M+Na⁺] (Calc.: 243.1719)

 $[\alpha]_{D}(21.4^{\circ}C)$

 $+100^{\circ} (c = 0.19, \text{CHCl}_3)^a$

position	$\delta_{C}^{b,c}$	$\delta_{\rm H}$ (I, m, J in Hz) ^c		
1	209.6	-		
2	66.9	2.99 (CH, s)		
$2-CCH_2CH_3$	139.7	-		
2-CCH ₂ CH ₃	116.5	$4.70 (CH_2, s)$ $4.93 (CH_2, s)$		
2-CCH ₂ CH ₃	24.1	1.70 (CH ₃ , s)		
3	46.2	-		
3-CH ₃	18.9	0.98 (CH ₃ , s)		
3- CH CH ₂	146.6	5.76 (CH, dd, 11.0, 17.8)		
3-CH CH ₂	110.7	4.89 (CH ₂ , dd, 11.0, 1.0)		
		4.91 (CH ₂ , dd, 17.8, 1.0)		
4	39.3	Hα: 1.56, CH ₂ , m		
		Hβ: 1.86, CH ₂ , ddd (5.2, 13.2, 13.2)		
5	24.8	1.59 (CH ₂ , m)		
		1.96 (CH ₂ , m)		
6	56.4	2.09 (CH, m)		
6-CH(CH ₃) ₂	26.3	2.09 (CH, m)		
6-CH(CH ₃) ₂	18.3	0.82 (CH ₃ , d, 6.4)		
6-CH(CH ₃) ₂	21.0	0.86 (CH ₃ , d, 6.4)		
^{a} No reference value could be found in literature. Relative configuration detected by 1D NOF NMP				

⁴No reference value could be found in literature. Relative configuration detected by 1D NOE NMR experiments. Important correlations highlighted by red (plain) and blue (dashed) arrows. ^bCalculated ¹³C shift of HSQC-NMR and HMBC-NMR experiments. Spin systems evaluated by HSQC- NMR experiment

(+)-Preisocalamenediol CAS Nr.: 25645-19-6			
m/z (ESITOFM	S) 243.1731 [M+Na ⁺]	(Calc.: 243.1719)	
$[\alpha]_D(20.3^\circ C)$	+61.6° ($c = 0.71$, CH	$(Cl_3)^a$	
position	$\delta_{\rm C}{}^{b,c}$	$\delta_{\rm H}$ (I, m, J in Hz) ^a	
1	207.2	-	
2	60.0	2.20 (CH, ddd, 1.0, 4.9, 10.9)	
2-CH(CH ₃) ₂	30.5	1.61 (CH, m)	
2-CH(CH ₃) ₂	19.5	0.82 (CH ₃ , d, 6.9)	
	20.5	0.77 (CH ₃ , d, 6.9)	
3	28.2	1.43 (CH ₂ , dm, 13.5)	
		2.03 (CH ₂ , m)	
4	40.6	1.75 (CH ₂ , dt, 3.4, 12.8)	
		1.98 (CH ₂ , m)	
5	137.9	-	
6	125.6	5.15 (CH, dd, 3.0, 10.7)	
7	29.2	1.96 (CH ₂ , m)	
		2.11 (CH ₂ , m)	
8	36.7	1.94 (CH ₂ , m)	
		2.27 (CH ₂ , m)	
9	142.6	-	
10	53.4	2.85 (CH ₂ , d, 14.8)	
		3.21 (CH ₂ , d, 14.8)	
5-CH ₃	15.2	1.30 (CH ₃ , s)	
$9=CH_2$	116.5	4.77 (CH ₂ , s)	
		4.90 (CH ₂ , s)	
^a Reference value can be found in C. Zdero et al. Phytochemistry 1989, 28, 531-542			
^b Calculated ¹³ C shift of HSQC- and HMBC-NMR experiments. Spin systems evaluated by HSQC-			

Table S3. Spectral characterization data for (4) (NMR spectra recorded in CDCl₃)

NMR experiment ^cReference data can be found in D.M. Delvalle et al. Planta Med. 1987, 87, 230.

(-)-Isoshyobunone CAS Nr.: 21698-46-4			
m/z (ESITOFMS)	243.1730 [M+Na ⁺]	(Calc.: 243.1719)	
$[\alpha]_D(21.5^\circ C)$	-156° (<i>c</i> = 0.61, CHC)	$\left _{3}\right)^{a}$	
position	$\delta_{C}^{b, c}$	$\delta_{\rm H}$ (I, m, J in Hz) ^{b,c}	
1	209.4	-	
2	140.1	-	
3	44.4	-	
4	39.3	1.33 (CH ₂ , ddd, 14.0, 6.8, 3.6)	
5	21.4	1.44 (CH ₂ , ddd, 14.0, 10.7, 3.3) 1.79 (CH ₂ , m) 1.60 (CH ₂ , m)	
6	55.2	2.11 (CH. ddd. 9.0, 9.0, 6.3)	
$2-\mathbf{C}(\mathbf{CH}_3)$	146.6	-	
$2-C(CH_3)_2$	23.5	$1.69 (CH_3, 8)$	
- (- 5)1	24.2	$1.74 (CH_3, s)$	
3-CH ₃	24.5	$1.29 (CH_3, s)$	
3- CH CH ₂	146.4	5.83 (CH, dd, 10.4, 17.9)	
3-CH CH₂	110.7	4.91 (CH ₂ , dd, 10.4, 1.2) 4.90 (CH ₂ , dd, 17.9, 1.2)	
6- CH (CH ₃) ₂	29.4	2.00 (CH, m)	
6-CH(CH ₃) ₂	18.4	0.79 (CH3, d, 6.8)	
(),-	20.6	0.84 (CH3, d, 6.8)	
^{<i>a</i>} Reference value can be found in M. Niwa et al. Chem. Lett. 1977, 12, 1415-1418 ^{<i>b</i>} Calculated ¹³ C shift of HSQC- and HMBC-NMR experiments. Spin systems evaluated by HSQC- NMR experiment			
^c Reference data can be found in P. Weyerstahl et al. Liebigs Ann. Chem. 1987, 2, 89-101			

Table S4. Spectral characterization data for (5) (NMR spectra recorded in CDCl₃)

Table S5. Spectral characterization data for (6) (NMR spectra recorded in CDCl₃)

(-)-Acorenone CAS Nr.: 5956-05-8

-

<i>m/z</i> (ESITOFMS)	243.1730 [M+Na ⁺]	(Calc.: 243.1719)
$[\alpha]_D(21.5^\circ C)$	-27° (<i>c</i> = 0.37, CHCl ₃	$)^{a}$
position	$\delta_{\rm C}{}^{a, b}$	$\delta_{\rm H} \left({\rm I, m, J \ in \ Hz} \right)^{a, c}$
1	56.9	1.24 (CH, m)
$1-CH(CH_3)_2$	28.9	1.49 (CH, o, 6.5)
1-CH(CH ₃) ₂	21.5	0.73 (CH ₃ , d, 6.8)
	24.0	0.84 (CH ₃ , d, 6.8)
2	25.4	1.24 (CH ₂ , m)
		$1.60 (CH_2, m)$
3	29.9	1.14 (CH ₂ , m)
		1.57 (CH ₂ , m)
4	47.0	1.57 (CH, m)
4-CH ₃	16.1	0.70 (CH ₃ , d, 6.8)
5	47.9	-
6	38.8	2.16 (CH ₂ , d, 16.6)
0	36.8	2.21 (CH ₂ , d, 16.6)
7	200.3	-
8	134.6	-
8-CH ₃	15.6	1.63 (CH ₃ , s)
9	144.4	6.54 (CH, s)
10	37 /	2.01 (CH ₂ , dm, 19.9)
10	<i>J</i> 1 . T	2.53 (CH ₂ , dm, 19.9)

^{*a*}Reference value can be found in S.W. Baldwin et al., Tetrahedron Lett. 1982, 23, 1235-1238 ^{*b*}Calculated ¹³C shift of HSQC- and HMBC-NMR experiments. Spin systems evaluated by HSQC-NMR experiment

^cReference data can be found in W. Rascher et al., Tetrahedron, 33, 575-577

Figure S1: Predominant conformers of the four possible stereoisomers of (+)-dioxosarcoguaiacol (2) within a 1 kcal/mol energy window from the particular global minimum. Conformational analysis was performed at the OPLS_2005 level in chloroform. A: 4R*8S*10R*, B: 4S*8S*10S*, C: 4R*8S*10S*, D: 4S*8S*10R*

NMR observations	Matching geometrically optimized conformers ^a				
	4R*8S*10R*	4S*8S*10R*	4R*8S*10S*	4S*8S*10S*	
$J_{2b,3b} = 0$ Hz , NOESY: H-3b \leftrightarrow H-2a	yes	yes	yes	yes	
$J_{9b,10} = 5.2 \text{ Hz},$ $J_{9a,10} = 13.4 \text{ Hz}$	yes	yes	yes	yes	
NOESY: H-6 \leftrightarrow H-12,13	yes	yes	no	no	
NOESY: H-2a \leftrightarrow H-15	yes	yes	no	no	
NOESY: H-3a \leftrightarrow H-4, H-3b \leftrightarrow H-14	yes	no	no	yes	

Table S6. Comparison of NMR Data (${}^{3}J_{HH}$ -Coupling Constants and NOESY Correlations) with Geometrically Optimized Conformers of the Four Stereoisomers of (+)-Dioxosarcoguaiacol (2)

^{*a*}Conformers were found by conformational analysis in CHCl₃ and further geometrically optimized based on Density function theory (DFT) on the B3LYP/6-31G* level in gas-phase.

Figure S2. ¹H-NMR spectrum of (**2**) (NS: 64, DS: 2, CDCl₃).

Figure S3. COSY-NMR spectrum (*cosygpqf*, NS: 4, DS: 8) of (2) in CDCl₃.

Figure S4. Overlay of DEPTedited HSQC-NMR spectrum (*hsqcedetgp*, NS: 8, DS: 16; black/grey) and HMBC spectrum (*hmbcgp*, NS: 128, DS: 16, optimized for 10 Hz; blue) of (**2**) in CDCl₃.

Figure S5. NOESY NMR spectrum (*noesygpphpp*, NS: 32, DS: 16, mixing time 0.75 s) of (2) in CDCl₃.