********** MODEL NAME Example model 2 - the glucose transport model reduced to five states with our method. ********** MODEL NOTES The original model was simulated for 0.001s and the state values at that time were is used as initial conditions in the reduced model. ********** MODEL STATES d/dt(Glce) = r1 d/dt(L1) = r2 d/dt(G6Pi) = r3 d/dt(Glci) = r4 d/dt(L2) = r5 Glce(0) = 1.4 L1(0) = 0.005 G6Pi(0) = 0.73 Glci(0) = 0 L2(0) = 0.005 ********** MODEL PARAMETERS alpha = 4.2000000000000001776 beta = 1 K1 = 1.1000000000000000888 K2 = 1.1999999999999999556 K3 = 7.0000000000000001776 K4 = 1.1000000000000000888 ********** MODEL VARIABLES Ltot = L1+L2 Ee = (K1*L1)/(Glce+K1) EGlce = (Glce*L1)/(Glce+K1) Ei = (K2*K3*K4*L2)/(G6Pi*(Glci*K4+K2*K3)+Glci*K3*K4+K2*K3*K4) EGlci = (Glci*K3*K4*L2)/(G6Pi*(Glci*K4+K2*K3)+Glci*K3*K4+K2*K3*K4) EG6Pi = (G6Pi*K2*K3*L2)/(Glci*(G6Pi*K4+K3*K4)+G6Pi*K2*K3+K2*K3*K4) EGlcG6Pi = (G6Pi*Glci*K4*L2)/(G6Pi*Glci*K4+G6Pi*K2*K3+Glci*K3*K4+K2*K3*K4) LE = Ee+Ei+EGlce+EGlci+EG6Pi+EGlcG6Pi LG6P = G6Pi+EG6Pi+EGlcG6Pi LGlc = EGlce+EGlci+EGlcG6Pi+Glce+Glci ********** MODEL REACTIONS r1 = (Glce*(alpha*((Glce*L1)/(Glce+K1)-(Glci*K3*K4*L2)/(G6Pi*(Glci*K4+K2*K3)+Glci*K3*K4+K2*K3*K4))+beta*((K1*L1)/(Glce+K1)-(K2*K3*K4*L2)/(G6Pi*(Glci*K4+K2*K3)+Glci*K3*K4+K2*K3*K4)))*(Glce+K1))/(Glce^2+2*Glce*K1+K1^2+L1*K1)-(((Glce*L1*alpha)/(Glce+K1)-(Glci*K3*K4*alpha*L2)/(G6Pi*(Glci*K4+K2*K3)+Glci*K3*K4+K2*K3*K4))*(Glce+K1)^2)/(Glce^2+2*Glce*K1+K1^2+L1*K1) r2 = -alpha*((Glce*L1)/(Glce+K1)-(Glci*K3*K4*L2)/(G6Pi*(Glci*K4+K2*K3)+Glci*K3*K4+K2*K3*K4))-beta*((K1*L1)/(Glce+K1)-(K2*K3*K4*L2)/(G6Pi*(Glci*K4+K2*K3)+Glci*K3*K4+K2*K3*K4)) r3 = -(G6Pi*(G6Pi^2*Glce*Glci^3*K4^3*L1*alpha+G6Pi^2*Glce*K2^3*K3^3*L1*alpha+Glce*Glci^3*K3^2*K4^3*L1*alpha-Glce*Glci^3*K3^2*K4^3*L2*alpha+G6Pi^2*Glci^3*K1*K4^3*L1*beta+Glce*K2^3*K3^3*K4^2*L1*alpha-Glci^3*K1*K3^2*K4^3*L2*alpha+G6Pi^2*K1*K2^3*K3^3*L1*beta+Glci^3*K1*K3^2*K4^3*L1*beta-Glce*K2^3*K3^3*K4^2*L2*beta+K1*K2^3*K3^3*K4^2*L1*beta-K1*K2^3*K3^3*K4^2*L2*beta-Glce*K2^2*K3^3*K4^2*L2^2*beta-K1*K2^2*K3^3*K4^2*L2^2*beta+2*G6Pi*Glce*Glci^3*K3*K4^3*L1*alpha-G6Pi*Glce*Glci^3*K3*K4^3*L2*alpha+2*G6Pi*Glce*K2^3*K3^3*K4*L1*alpha-G6Pi*Glci^3*K1*K3*K4^3*L2*alpha+2*G6Pi*Glci^3*K1*K3*K4^3*L1*beta-G6Pi*Glce*K2^3*K3^3*K4*L2*beta+2*G6Pi*K1*K2^3*K3^3*K4*L1*beta-G6Pi*K1*K2^3*K3^3*K4*L2*beta+Glce*Glci*K2^2*K3^2*K4^3*L1*alpha+2*Glce*Glci*K2^2*K3^3*K4^2*L1*alpha+2*Glce*Glci^2*K2*K3^2*K4^3*L1*alpha+Glce*Glci^2*K2*K3^3*K4^2*L1*alpha-Glce*Glci*K2*K3^2*K4^3*L2^2*alpha-Glce*Glci*K2^2*K3^3*K4^2*L2*alpha-Glce*Glci^2*K2*K3^2*K4^3*L2*alpha-Glce*Glci^2*K2*K3^3*K4^2*L2*alpha-Glce*Glci*K2^2*K3^2*K4^3*L2*beta-Glce*Glci*K2^2*K3^3*K4^2*L2*beta-Glce*Glci^2*K2*K3^2*K4^3*L2*beta-Glci*K1*K2*K3^2*K4^3*L2^2*alpha-Glci*K1*K2^2*K3^3*K4^2*L2*alpha-Glci^2*K1*K2*K3^2*K4^3*L2*alpha-Glci^2*K1*K2*K3^3*K4^2*L2*alpha+Glci*K1*K2^2*K3^2*K4^3*L1*beta+2*Glci*K1*K2^2*K3^3*K4^2*L1*beta+2*Glci^2*K1*K2*K3^2*K4^3*L1*beta+Glci^2*K1*K2*K3^3*K4^2*L1*beta-Glci*K1*K2^2*K3^2*K4^3*L2*beta-Glci*K1*K2^2*K3^3*K4^2*L2*beta-Glci^2*K1*K2*K3^2*K4^3*L2*beta+Glce*K2^2*K3^2*K4^3*L1*L2*alpha+K1*K2^2*K3^3*K4^2*L1*L2*beta-G6Pi*Glce*K2^2*K3^2*K4^2*L2^2*beta-G6Pi*K1*K2^2*K3^2*K4^2*L2^2*beta+2*G6Pi*Glce*Glci*K2^2*K3^3*K4*L1*alpha+2*G6Pi*Glce*Glci^2*K2*K3*K4^3*L1*alpha-G6Pi*Glce*Glci*K2^2*K3^3*K4*L2*alpha-G6Pi*Glce*Glci^2*K2*K3*K4^3*L2*beta-G6Pi*Glci*K1*K2^2*K3^3*K4*L2*alpha+2*G6Pi*Glci*K1*K2^2*K3^3*K4*L1*beta+2*G6Pi*Glci^2*K1*K2*K3*K4^3*L1*beta-G6Pi*Glci^2*K1*K2*K3*K4^3*L2*beta+Glce*Glci*K2*K3^2*K4^3*L1*L2*alpha+G6Pi*K1*K2^2*K3^3*K4*L1*L2*beta+Glci*K1*K2*K3^3*K4^2*L1*L2*beta+4*G6Pi*Glce*Glci*K2^2*K3^2*K4^2*L1*alpha+4*G6Pi*Glce*Glci^2*K2*K3^2*K4^2*L1*alpha+3*G6Pi^2*Glce*Glci*K2^2*K3^2*K4*L1*alpha+3*G6Pi^2*Glce*Glci^2*K2*K3*K4^2*L1*alpha-G6Pi*Glce*Glci*K2*K3^2*K4^2*L2^2*alpha-2*G6Pi*Glce*Glci^2*K2*K3^2*K4^2*L2*alpha-2*G6Pi*Glce*Glci*K2^2*K3^2*K4^2*L2*beta-G6Pi*Glci*K1*K2*K3^2*K4^2*L2^2*alpha-2*G6Pi*Glci^2*K1*K2*K3^2*K4^2*L2*alpha+4*G6Pi*Glci*K1*K2^2*K3^2*K4^2*L1*beta+4*G6Pi*Glci^2*K1*K2*K3^2*K4^2*L1*beta+3*G6Pi^2*Glci*K1*K2^2*K3^2*K4*L1*beta+3*G6Pi^2*Glci^2*K1*K2*K3*K4^2*L1*beta-2*G6Pi*Glci*K1*K2^2*K3^2*K4^2*L2*beta+2*G6Pi*Glce*K2^2*K3^2*K4^2*L1*L2*alpha+G6Pi^2*Glce*K2^2*K3^2*K4*L1*L2*alpha+G6Pi*K1*K2^2*K3^2*K4^2*L1*L2*beta+G6Pi^2*K1*K2^2*K3^2*K4*L1*L2*beta+G6Pi*Glce*Glci*K2*K3*K4^3*L1*L2*alpha+G6Pi*Glce*Glci*K2*K3^2*K4^2*L1*L2*alpha+G6Pi^2*Glce*Glci*K2*K3*K4^2*L1*L2*alpha+2*G6Pi*Glci*K1*K2*K3^2*K4^2*L1*L2*beta+G6Pi^2*Glci*K1*K2*K3*K4^2*L1*L2*beta))/((Glce+K1)*(G6Pi^3*Glci^3*K4^3+3*G6Pi^3*Glci^2*K2*K3*K4^2+3*G6Pi^3*Glci*K2^2*K3^2*K4+G6Pi^3*Glci*K2*K3*K4^2*L2+G6Pi^3*K2^3*K3^3+G6Pi^3*K2^2*K3^2*K4*L2+3*G6Pi^2*Glci^3*K3*K4^3+6*G6Pi^2*Glci^2*K2*K3^2*K4^2+3*G6Pi^2*Glci^2*K2*K3*K4^3+3*G6Pi^2*Glci*K2^2*K3^3*K4+6*G6Pi^2*Glci*K2^2*K3^2*K4^2+2*G6Pi^2*Glci*K2*K3^2*K4^2*L2+G6Pi^2*Glci*K2*K3*K4^3*L2+3*G6Pi^2*K2^3*K3^3*K4+G6Pi^2*K2^2*K3^3*K4*L2+2*G6Pi^2*K2^2*K3^2*K4^2*L2+3*G6Pi*Glci^3*K3^2*K4^3+G6Pi*Glci^3*K3*K4^3*L2+3*G6Pi*Glci^2*K2*K3^3*K4^2+6*G6Pi*Glci^2*K2*K3^2*K4^3+2*G6Pi*Glci^2*K2*K3^2*K4^2*L2+G6Pi*Glci^2*K2*K3*K4^3*L2+6*G6Pi*Glci*K2^2*K3^3*K4^2+G6Pi*Glci*K2^2*K3^3*K4*L2+3*G6Pi*Glci*K2^2*K3^2*K4^3+2*G6Pi*Glci*K2^2*K3^2*K4^2*L2+G6Pi*Glci*K2*K3^3*K4^2*L2+2*G6Pi*Glci*K2*K3^2*K4^3*L2+G6Pi*Glci*K2*K3^2*K4^2*L2^2+3*G6Pi*K2^3*K3^3*K4^2+G6Pi*K2^3*K3^3*K4*L2+2*G6Pi*K2^2*K3^3*K4^2*L2+G6Pi*K2^2*K3^2*K4^3*L2+G6Pi*K2^2*K3^2*K4^2*L2^2+Glci^3*K3^3*K4^3+Glci^3*K3^2*K4^3*L2+3*Glci^2*K2*K3^3*K4^3+Glci^2*K2*K3^3*K4^2*L2+2*Glci^2*K2*K3^2*K4^3*L2+3*Glci*K2^2*K3^3*K4^3+2*Glci*K2^2*K3^3*K4^2*L2+Glci*K2^2*K3^2*K4^3*L2+Glci*K2*K3^3*K4^3*L2+Glci*K2*K3^2*K4^3*L2^2+K2^3*K3^3*K4^3+K2^3*K3^3*K4^2*L2+K2^2*K3^3*K4^3*L2+K2^2*K3^3*K4^2*L2^2)) r4 = (G6Pi^3*Glce*K2^3*K3^3*L1*alpha-G6Pi^3*Glci^3*K1*K4^3*L1*beta+Glce*K2^3*K3^3*K4^3*L1*alpha-Glci^3*K1*K3^3*K4^3*L1*beta+3*G6Pi*Glce*K2^3*K3^3*K4^2*L1*alpha+3*G6Pi^2*Glce*K2^3*K3^3*K4*L1*alpha+2*Glce*Glci*K2^2*K3^3*K4^3*L1*alpha+Glce*Glci^2*K2*K3^3*K4^3*L1*alpha-Glce*Glci*K2^2*K3^3*K4^3*L2*alpha-Glce*Glci^2*K2*K3^3*K4^3*L2*alpha-3*G6Pi*Glci^3*K1*K3^2*K4^3*L1*beta-3*G6Pi^2*Glci^3*K1*K3*K4^3*L1*beta+Glce*Glci*K2^2*K3^3*K4^3*L2*beta+Glce*Glci^2*K2*K3^3*K4^3*L2*beta-Glci*K1*K2^2*K3^3*K4^3*L2*alpha-Glci^2*K1*K2*K3^3*K4^3*L2*alpha-Glci*K1*K2^2*K3^3*K4^3*L1*beta-2*Glci^2*K1*K2*K3^3*K4^3*L1*beta+Glci*K1*K2^2*K3^3*K4^3*L2*beta+Glci^2*K1*K2*K3^3*K4^3*L2*beta+Glce*K2^3*K3^3*K4^2*L1*L2*alpha-Glci^3*K1*K3^2*K4^3*L1*L2*beta-Glce*Glci*K2^2*K3^3*K4^2*L2^2*alpha-Glce*Glci^2*K2*K3^2*K4^3*L2^2*alpha+Glce*Glci*K2^2*K3^3*K4^2*L2^2*beta+Glce*Glci^2*K2*K3^2*K4^3*L2^2*beta-Glci*K1*K2^2*K3^3*K4^2*L2^2*alpha-Glci^2*K1*K2*K3^2*K4^3*L2^2*alpha+Glci*K1*K2^2*K3^3*K4^2*L2^2*beta+Glci^2*K1*K2*K3^2*K4^3*L2^2*beta+4*G6Pi^2*Glce*Glci*K2^2*K3^2*K4^2*L1*alpha+2*G6Pi^2*Glce*Glci^2*K2*K3^2*K4^2*L1*alpha-G6Pi^2*Glce*Glci^2*K2*K3^2*K4^2*L2*alpha+G6Pi^2*Glce*Glci*K2^2*K3^2*K4^2*L2*beta-G6Pi^2*Glci^2*K1*K2*K3^2*K4^2*L2*alpha-2*G6Pi^2*Glci*K1*K2^2*K3^2*K4^2*L1*beta-4*G6Pi^2*Glci^2*K1*K2*K3^2*K4^2*L1*beta+G6Pi^2*Glci*K1*K2^2*K3^2*K4^2*L2*beta+G6Pi*Glce*K2^3*K3^3*K4*L1*L2*alpha-G6Pi*Glci^3*K1*K3*K4^3*L1*L2*beta+2*G6Pi*Glce*Glci*K2^2*K3^2*K4^3*L1*alpha+4*G6Pi*Glce*Glci*K2^2*K3^3*K4^2*L1*alpha+2*G6Pi*Glce*Glci^2*K2*K3^2*K4^3*L1*alpha+G6Pi*Glce*Glci^2*K2*K3^3*K4^2*L1*alpha+2*G6Pi^2*Glce*Glci*K2^2*K3^3*K4*L1*alpha+G6Pi^2*Glce*Glci^2*K2*K3*K4^3*L1*alpha+2*G6Pi^3*Glce*Glci*K2^2*K3^2*K4*L1*alpha+G6Pi^3*Glce*Glci^2*K2*K3*K4^2*L1*alpha-2*G6Pi*Glce*Glci*K2^2*K3^3*K4^2*L2*alpha-G6Pi*Glce*Glci^2*K2*K3^2*K4^3*L2*alpha-G6Pi*Glce*Glci^2*K2*K3^3*K4^2*L2*alpha-G6Pi^2*Glce*Glci*K2^2*K3^3*K4*L2*alpha+G6Pi*Glce*Glci*K2^2*K3^2*K4^3*L2*beta+G6Pi*Glce*Glci*K2^2*K3^3*K4^2*L2*beta+2*G6Pi*Glce*Glci^2*K2*K3^2*K4^3*L2*beta+G6Pi^2*Glce*Glci^2*K2*K3*K4^3*L2*beta-2*G6Pi*Glci*K1*K2^2*K3^3*K4^2*L2*alpha-G6Pi*Glci^2*K1*K2*K3^2*K4^3*L2*alpha-G6Pi*Glci^2*K1*K2*K3^3*K4^2*L2*alpha-G6Pi^2*Glci*K1*K2^2*K3^3*K4*L2*alpha-G6Pi*Glci*K1*K2^2*K3^2*K4^3*L1*beta-2*G6Pi*Glci*K1*K2^2*K3^3*K4^2*L1*beta-4*G6Pi*Glci^2*K1*K2*K3^2*K4^3*L1*beta-2*G6Pi*Glci^2*K1*K2*K3^3*K4^2*L1*beta-G6Pi^2*Glci*K1*K2^2*K3^3*K4*L1*beta-2*G6Pi^2*Glci^2*K1*K2*K3*K4^3*L1*beta-G6Pi^3*Glci*K1*K2^2*K3^2*K4*L1*beta-2*G6Pi^3*Glci^2*K1*K2*K3*K4^2*L1*beta+G6Pi*Glci*K1*K2^2*K3^2*K4^3*L2*beta+G6Pi*Glci*K1*K2^2*K3^3*K4^2*L2*beta+2*G6Pi*Glci^2*K1*K2*K3^2*K4^3*L2*beta+G6Pi^2*Glci^2*K1*K2*K3*K4^3*L2*beta+Glce*Glci*K2^2*K3^2*K4^3*L1*L2*alpha+Glce*Glci*K2^2*K3^3*K4^2*L1*L2*alpha+Glce*Glci^2*K2*K3^2*K4^3*L1*L2*alpha-Glci*K1*K2^2*K3^3*K4^2*L1*L2*beta-Glci^2*K1*K2*K3^2*K4^3*L1*L2*beta-Glci^2*K1*K2*K3^3*K4^2*L1*L2*beta+2*G6Pi*Glce*Glci*K2^2*K3^2*K4^2*L1*L2*alpha-2*G6Pi*Glci^2*K1*K2*K3^2*K4^2*L1*L2*beta+G6Pi*Glce*Glci^2*K2*K3*K4^3*L1*L2*alpha-G6Pi*Glci*K1*K2^2*K3^3*K4*L1*L2*beta)/((Glce+K1)*(G6Pi^3*Glci^3*K4^3+3*G6Pi^3*Glci^2*K2*K3*K4^2+3*G6Pi^3*Glci*K2^2*K3^2*K4+G6Pi^3*Glci*K2*K3*K4^2*L2+G6Pi^3*K2^3*K3^3+G6Pi^3*K2^2*K3^2*K4*L2+3*G6Pi^2*Glci^3*K3*K4^3+6*G6Pi^2*Glci^2*K2*K3^2*K4^2+3*G6Pi^2*Glci^2*K2*K3*K4^3+3*G6Pi^2*Glci*K2^2*K3^3*K4+6*G6Pi^2*Glci*K2^2*K3^2*K4^2+2*G6Pi^2*Glci*K2*K3^2*K4^2*L2+G6Pi^2*Glci*K2*K3*K4^3*L2+3*G6Pi^2*K2^3*K3^3*K4+G6Pi^2*K2^2*K3^3*K4*L2+2*G6Pi^2*K2^2*K3^2*K4^2*L2+3*G6Pi*Glci^3*K3^2*K4^3+G6Pi*Glci^3*K3*K4^3*L2+3*G6Pi*Glci^2*K2*K3^3*K4^2+6*G6Pi*Glci^2*K2*K3^2*K4^3+2*G6Pi*Glci^2*K2*K3^2*K4^2*L2+G6Pi*Glci^2*K2*K3*K4^3*L2+6*G6Pi*Glci*K2^2*K3^3*K4^2+G6Pi*Glci*K2^2*K3^3*K4*L2+3*G6Pi*Glci*K2^2*K3^2*K4^3+2*G6Pi*Glci*K2^2*K3^2*K4^2*L2+G6Pi*Glci*K2*K3^3*K4^2*L2+2*G6Pi*Glci*K2*K3^2*K4^3*L2+G6Pi*Glci*K2*K3^2*K4^2*L2^2+3*G6Pi*K2^3*K3^3*K4^2+G6Pi*K2^3*K3^3*K4*L2+2*G6Pi*K2^2*K3^3*K4^2*L2+G6Pi*K2^2*K3^2*K4^3*L2+G6Pi*K2^2*K3^2*K4^2*L2^2+Glci^3*K3^3*K4^3+Glci^3*K3^2*K4^3*L2+3*Glci^2*K2*K3^3*K4^3+Glci^2*K2*K3^3*K4^2*L2+2*Glci^2*K2*K3^2*K4^3*L2+3*Glci*K2^2*K3^3*K4^3+2*Glci*K2^2*K3^3*K4^2*L2+Glci*K2^2*K3^2*K4^3*L2+Glci*K2*K3^3*K4^3*L2+Glci*K2*K3^2*K4^3*L2^2+K2^3*K3^3*K4^3+K2^3*K3^3*K4^2*L2+K2^2*K3^3*K4^3*L2+K2^2*K3^3*K4^2*L2^2)) r5 = alpha*((Glce*L1)/(Glce+K1)-(Glci*K3*K4*L2)/(G6Pi*(Glci*K4+K2*K3)+Glci*K3*K4+K2*K3*K4))+beta*((K1*L1)/(Glce+K1)-(K2*K3*K4*L2)/(G6Pi*(Glci*K4+K2*K3)+Glci*K3*K4+K2*K3*K4)) ********** MODEL FUNCTIONS ********** MODEL EVENTS ********** MODEL MATLAB FUNCTIONS