********** MODEL NAME Example model 1 - the reduced model. ********** MODEL NOTES ********** MODEL STATES d/dt(S) = -LE*M1*S*k2*(M1^2*S^2+2*M1*M3*P*S+2*M1*S+M3^2*P^2+2*M3*P+LE*M3+1)/psi d/dt(P) = LE*M1*S*k2*(M1^2*S^2+2*M1*M3*P*S+2*M1*S+M3^2*P^2+2*M3*P+LE*M1+1)/psi S(0) = 0.73205080756887697 P(0) = 0 ********** MODEL PARAMETERS M1 = 0.5 M3 = 3 k2 = 1 ********** MODEL VARIABLES LE = 1 psi = LE^2*M1*M3+LE*M1^2*M3*P*S+LE*M1^2*M3*S^2+LE*M1^2*S+LE*M1*M3^2*P^2+LE*M1*M3^2*P*S+2*LE*M1*M3*P+2*LE*M1*M3*S+LE*M1+LE*M3^2*P+LE*M3+M1^3*S^3+3*M1^2*M3*P*S^2+3*M1^2*S^2+3*M1*M3^2*P^2*S+6*M1*M3*P*S+3*M1*S+M3^3*P^3+3*M3^2*P^2+3*M3*P+1 E = LE/(1+M1*S+M3*P) CS = M1*S/(1+M1*S+M3*P) CP = M3*P/(1+M1*S+M3*P) ********** MODEL REACTIONS ********** MODEL FUNCTIONS ********** MODEL EVENTS ********** MODEL MATLAB FUNCTIONS