********** MODEL NAME Example model 2 - the glucose transport model reduced to four states with our method. ********** MODEL NOTES The original model was simulated for 0.001s and the state values at that time were is used as initial conditions in the reduced model. ********** MODEL STATES d/dt(Glce) = -(Glce^2*K2*L2E*beta - Glci*K1^2*L2E*alpha + Glce*Glci*K1*L1*alpha - Glce*Glci*K1*L2E*alpha - Glce*Glci*K1*L1*beta + Glce*K1*K2*L1*alpha - Glce*K1*K2*L1*beta + Glce*K1*K2*L2E*beta)/((Glci + K2)*(Glce^2 + 2*Glce*K1 + K1^2 + L1*K1)) d/dt(L1) = - alpha*((Glce*L1)/(Glce + K1) - (Glci*L2E)/(Glci + K2)) - beta*((K1*L1)/(Glce + K1) - (K2*L2E)/(Glci + K2)) d/dt(Glci) = -((Glci*K3*K4 + Glci*K4*L2E + K2*K3*K4 + K2*K3*L2E)*(Glce*Glci*K2^3*K3^2*L2E^3*alpha + Glce*Glci^3*K2*K4^2*L2E^3*alpha - Glce*Glci*K2^3*K3^2*L2E^3*beta - Glce*Glci^3*K2*K4^2*L2E^3*beta + Glci*K1*K2^3*K3^2*L2E^3*alpha + Glci^3*K1*K2*K4^2*L2E^3*alpha - Glce*K2^4*K3^2*K4^2*L1*alpha - Glci*K1*K2^3*K3^2*L2E^3*beta + Glci^4*K1*K3^2*K4^2*L1*beta - Glci^3*K1*K2*K4^2*L2E^3*beta - Glce*K2^4*K3^2*L1*L2E^2*alpha + Glci^4*K1*K4^2*L1*L2E^2*beta + Glci^2*K1*K2^2*K3^2*L1*L2E^2*beta - 2*Glce*K2^4*K3^2*K4*L1*L2E*alpha - Glce*K2^4*K3^2*K4*L1*LG6P*alpha + 2*Glci^4*K1*K3*K4^2*L1*L2E*beta + Glci^4*K1*K3*K4^2*L1*LG6P*beta - 3*Glce*Glci*K2^3*K3^2*K4^2*L1*alpha - Glce*Glci^3*K2*K3^2*K4^2*L1*alpha + 2*Glce*Glci*K2^3*K3^2*K4*L2E^2*alpha + Glce*Glci*K2^3*K3^2*K4^2*L2E*alpha + 2*Glce*Glci^2*K2^2*K3*K4*L2E^3*alpha + 2*Glce*Glci^3*K2*K3*K4^2*L2E^2*alpha + Glce*Glci^3*K2*K3^2*K4^2*L2E*alpha - 2*Glce*Glci*K2^3*K3^2*K4*L2E^2*beta - Glce*Glci*K2^3*K3^2*K4^2*L2E*beta - 2*Glce*Glci^2*K2^2*K3*K4*L2E^3*beta - 2*Glce*Glci^3*K2*K3*K4^2*L2E^2*beta - Glce*Glci^3*K2*K3^2*K4^2*L2E*beta - Glce*Glci*K2^3*K3^2*L1*L2E^2*alpha - Glce*Glci^3*K2*K4^2*L1*L2E^2*alpha + 2*Glci*K1*K2^3*K3^2*K4*L2E^2*alpha + Glci*K1*K2^3*K3^2*K4^2*L2E*alpha + 2*Glci^2*K1*K2^2*K3*K4*L2E^3*alpha + 2*Glci^3*K1*K2*K3*K4^2*L2E^2*alpha + Glci^3*K1*K2*K3^2*K4^2*L2E*alpha + Glci*K1*K2^3*K3^2*K4^2*L1*beta + 3*Glci^3*K1*K2*K3^2*K4^2*L1*beta - 2*Glci*K1*K2^3*K3^2*K4*L2E^2*beta - Glci*K1*K2^3*K3^2*K4^2*L2E*beta - 2*Glci^2*K1*K2^2*K3*K4*L2E^3*beta - 2*Glci^3*K1*K2*K3*K4^2*L2E^2*beta - Glci^3*K1*K2*K3^2*K4^2*L2E*beta + Glci*K1*K2^3*K3^2*L1*L2E^2*beta + Glci^3*K1*K2*K4^2*L1*L2E^2*beta - 3*Glce*Glci^2*K2^2*K3^2*K4^2*L1*alpha + 2*Glce*Glci^2*K2^2*K3*K4^2*L2E^2*alpha + 2*Glce*Glci^2*K2^2*K3^2*K4*L2E^2*alpha + 2*Glce*Glci^2*K2^2*K3^2*K4^2*L2E*alpha - 2*Glce*Glci^2*K2^2*K3*K4^2*L2E^2*beta - 2*Glce*Glci^2*K2^2*K3^2*K4*L2E^2*beta - 2*Glce*Glci^2*K2^2*K3^2*K4^2*L2E*beta - Glce*Glci^2*K2^2*K4^2*L1*L2E^2*alpha + 2*Glci^2*K1*K2^2*K3*K4^2*L2E^2*alpha + 2*Glci^2*K1*K2^2*K3^2*K4*L2E^2*alpha + 2*Glci^2*K1*K2^2*K3^2*K4^2*L2E*alpha + 3*Glci^2*K1*K2^2*K3^2*K4^2*L1*beta - 2*Glci^2*K1*K2^2*K3*K4^2*L2E^2*beta - 2*Glci^2*K1*K2^2*K3^2*K4*L2E^2*beta - 2*Glci^2*K1*K2^2*K3^2*K4^2*L2E*beta - 2*Glce*Glci*K2^3*K3*K4*L1*L2E^2*alpha - 2*Glce*Glci*K2^3*K3*K4^2*L1*L2E*alpha - 4*Glce*Glci*K2^3*K3^2*K4*L1*L2E*alpha - 2*Glce*Glci^3*K2*K3*K4^2*L1*L2E*alpha - 3*Glce*Glci*K2^3*K3^2*K4*L1*LG6P*alpha - Glce*Glci^3*K2*K3^2*K4*L1*LG6P*alpha + Glce*Glci*K2^3*K3^2*K4*L2E*LG6P*alpha + Glce*Glci^3*K2*K3^2*K4*L2E*LG6P*alpha - Glce*Glci*K2^3*K3*K4^2*L2E*LG6P*beta - Glce*Glci^3*K2*K3*K4^2*L2E*LG6P*beta + Glci*K1*K2^3*K3^2*K4*L2E*LG6P*alpha + Glci^3*K1*K2*K3^2*K4*L2E*LG6P*alpha + 2*Glci*K1*K2^3*K3^2*K4*L1*L2E*beta + 2*Glci^3*K1*K2*K3*K4*L1*L2E^2*beta + 4*Glci^3*K1*K2*K3*K4^2*L1*L2E*beta + 2*Glci^3*K1*K2*K3^2*K4*L1*L2E*beta + Glci*K1*K2^3*K3*K4^2*L1*LG6P*beta + 3*Glci^3*K1*K2*K3*K4^2*L1*LG6P*beta - Glci*K1*K2^3*K3*K4^2*L2E*LG6P*beta - Glci^3*K1*K2*K3*K4^2*L2E*LG6P*beta - 2*Glce*Glci^2*K2^2*K3*K4*L1*L2E^2*alpha - 4*Glce*Glci^2*K2^2*K3*K4^2*L1*L2E*alpha - 2*Glce*Glci^2*K2^2*K3^2*K4*L1*L2E*alpha - 3*Glce*Glci^2*K2^2*K3^2*K4*L1*LG6P*alpha + 2*Glce*Glci^2*K2^2*K3^2*K4*L2E*LG6P*alpha - 2*Glce*Glci^2*K2^2*K3*K4^2*L2E*LG6P*beta + 2*Glci^2*K1*K2^2*K3^2*K4*L2E*LG6P*alpha + 2*Glci^2*K1*K2^2*K3*K4*L1*L2E^2*beta + 2*Glci^2*K1*K2^2*K3*K4^2*L1*L2E*beta + 4*Glci^2*K1*K2^2*K3^2*K4*L1*L2E*beta + 3*Glci^2*K1*K2^2*K3*K4^2*L1*LG6P*beta - 2*Glci^2*K1*K2^2*K3*K4^2*L2E*LG6P*beta))/((Glce + K1)*(Glci^5*K3^3*K4^3 + 3*Glci^5*K3^2*K4^3*L2E + Glci^5*K3^2*K4^3*LG6P + 3*Glci^5*K3*K4^3*L2E^2 + Glci^5*K3*K4^3*L2E*LG6P + Glci^5*K4^3*L2E^3 + 5*Glci^4*K2*K3^3*K4^3 + 3*Glci^4*K2*K3^3*K4^2*L2E + Glci^4*K2*K3^3*K4^2*LG6P + 12*Glci^4*K2*K3^2*K4^3*L2E + 4*Glci^4*K2*K3^2*K4^3*LG6P + 6*Glci^4*K2*K3^2*K4^2*L2E^2 + 2*Glci^4*K2*K3^2*K4^2*L2E*LG6P + 9*Glci^4*K2*K3*K4^3*L2E^2 + 3*Glci^4*K2*K3*K4^3*L2E*LG6P + 3*Glci^4*K2*K3*K4^2*L2E^3 + 2*Glci^4*K2*K4^3*L2E^3 + 10*Glci^3*K2^2*K3^3*K4^3 + 12*Glci^3*K2^2*K3^3*K4^2*L2E + 4*Glci^3*K2^2*K3^3*K4^2*LG6P + 3*Glci^3*K2^2*K3^3*K4*L2E^2 + Glci^3*K2^2*K3^3*K4*L2E*LG6P + 18*Glci^3*K2^2*K3^2*K4^3*L2E + 6*Glci^3*K2^2*K3^2*K4^3*LG6P + 18*Glci^3*K2^2*K3^2*K4^2*L2E^2 + 6*Glci^3*K2^2*K3^2*K4^2*L2E*LG6P + 3*Glci^3*K2^2*K3^2*K4*L2E^3 + 9*Glci^3*K2^2*K3*K4^3*L2E^2 + 3*Glci^3*K2^2*K3*K4^3*L2E*LG6P + 6*Glci^3*K2^2*K3*K4^2*L2E^3 + Glci^3*K2^2*K4^3*L2E^3 + Glci^3*K2*K3^3*K4^3*L2E + Glci^3*K2*K3^3*K4^2*L2E*LG6P + 3*Glci^3*K2*K3^2*K4^3*L2E^2 + Glci^3*K2*K3^2*K4^3*L2E*LG6P + 2*Glci^3*K2*K3^2*K4^2*L2E^2*LG6P + Glci^3*K2*K3^2*K4^2*L2E*LG6P^2 + 3*Glci^3*K2*K3*K4^3*L2E^3 + Glci^3*K2*K3*K4^3*L2E^2*LG6P + Glci^3*K2*K3*K4^2*L2E^3*LG6P + Glci^3*K2*K4^3*L2E^4 + 10*Glci^2*K2^3*K3^3*K4^3 + 18*Glci^2*K2^3*K3^3*K4^2*L2E + 6*Glci^2*K2^3*K3^3*K4^2*LG6P + 9*Glci^2*K2^3*K3^3*K4*L2E^2 + 3*Glci^2*K2^3*K3^3*K4*L2E*LG6P + Glci^2*K2^3*K3^3*L2E^3 + 12*Glci^2*K2^3*K3^2*K4^3*L2E + 4*Glci^2*K2^3*K3^2*K4^3*LG6P + 18*Glci^2*K2^3*K3^2*K4^2*L2E^2 + 6*Glci^2*K2^3*K3^2*K4^2*L2E*LG6P + 6*Glci^2*K2^3*K3^2*K4*L2E^3 + 3*Glci^2*K2^3*K3*K4^3*L2E^2 + Glci^2*K2^3*K3*K4^3*L2E*LG6P + 3*Glci^2*K2^3*K3*K4^2*L2E^3 + 3*Glci^2*K2^2*K3^3*K4^3*L2E + 3*Glci^2*K2^2*K3^3*K4^2*L2E^2 + 3*Glci^2*K2^2*K3^3*K4^2*L2E*LG6P + Glci^2*K2^2*K3^3*K4*L2E^2*LG6P + 6*Glci^2*K2^2*K3^2*K4^3*L2E^2 + 3*Glci^2*K2^2*K3^2*K4^3*L2E*LG6P + 6*Glci^2*K2^2*K3^2*K4^2*L2E^3 + 6*Glci^2*K2^2*K3^2*K4^2*L2E^2*LG6P + 3*Glci^2*K2^2*K3^2*K4^2*L2E*LG6P^2 + Glci^2*K2^2*K3^2*K4*L2E^3*LG6P + 3*Glci^2*K2^2*K3*K4^3*L2E^3 + 2*Glci^2*K2^2*K3*K4^3*L2E^2*LG6P + 3*Glci^2*K2^2*K3*K4^2*L2E^4 + 2*Glci^2*K2^2*K3*K4^2*L2E^3*LG6P + 5*Glci*K2^4*K3^3*K4^3 + 12*Glci*K2^4*K3^3*K4^2*L2E + 4*Glci*K2^4*K3^3*K4^2*LG6P + 9*Glci*K2^4*K3^3*K4*L2E^2 + 3*Glci*K2^4*K3^3*K4*L2E*LG6P + 2*Glci*K2^4*K3^3*L2E^3 + 3*Glci*K2^4*K3^2*K4^3*L2E + Glci*K2^4*K3^2*K4^3*LG6P + 6*Glci*K2^4*K3^2*K4^2*L2E^2 + 2*Glci*K2^4*K3^2*K4^2*L2E*LG6P + 3*Glci*K2^4*K3^2*K4*L2E^3 + 3*Glci*K2^3*K3^3*K4^3*L2E + 6*Glci*K2^3*K3^3*K4^2*L2E^2 + 3*Glci*K2^3*K3^3*K4^2*L2E*LG6P + 3*Glci*K2^3*K3^3*K4*L2E^3 + 2*Glci*K2^3*K3^3*K4*L2E^2*LG6P + 3*Glci*K2^3*K3^2*K4^3*L2E^2 + 3*Glci*K2^3*K3^2*K4^3*L2E*LG6P + 6*Glci*K2^3*K3^2*K4^2*L2E^3 + 6*Glci*K2^3*K3^2*K4^2*L2E^2*LG6P + 3*Glci*K2^3*K3^2*K4^2*L2E*LG6P^2 + 3*Glci*K2^3*K3^2*K4*L2E^4 + 2*Glci*K2^3*K3^2*K4*L2E^3*LG6P + Glci*K2^3*K3*K4^3*L2E^2*LG6P + Glci*K2^3*K3*K4^2*L2E^3*LG6P + K2^5*K3^3*K4^3 + 3*K2^5*K3^3*K4^2*L2E + K2^5*K3^3*K4^2*LG6P + 3*K2^5*K3^3*K4*L2E^2 + K2^5*K3^3*K4*L2E*LG6P + K2^5*K3^3*L2E^3 + K2^4*K3^3*K4^3*L2E + 3*K2^4*K3^3*K4^2*L2E^2 + K2^4*K3^3*K4^2*L2E*LG6P + 3*K2^4*K3^3*K4*L2E^3 + K2^4*K3^3*K4*L2E^2*LG6P + K2^4*K3^3*L2E^4 + K2^4*K3^2*K4^3*L2E*LG6P + 2*K2^4*K3^2*K4^2*L2E^2*LG6P + K2^4*K3^2*K4^2*L2E*LG6P^2 + K2^4*K3^2*K4*L2E^3*LG6P)) d/dt(L2E) = ((alpha*((Glce*L1)/(Glce + K1) - (Glci*L2E)/(Glci + K2)) + beta*((K1*L1)/(Glce + K1) - (K2*L2E)/(Glci + K2)))*(Glci*K3*K4 + Glci*K4*L2E + K2*K3*K4 + K2*K3*L2E)*(Glci^4*K3^2*K4^2 + 2*Glci^4*K3*K4^2*L2E + Glci^4*K4^2*L2E^2 + 4*Glci^3*K2*K3^2*K4^2 + 2*Glci^3*K2*K3^2*K4*L2E + 6*Glci^3*K2*K3*K4^2*L2E + 2*Glci^3*K2*K3*K4*L2E^2 + 2*Glci^3*K2*K4^2*L2E^2 + 6*Glci^2*K2^2*K3^2*K4^2 + 6*Glci^2*K2^2*K3^2*K4*L2E + Glci^2*K2^2*K3^2*L2E^2 + 6*Glci^2*K2^2*K3*K4^2*L2E + 4*Glci^2*K2^2*K3*K4*L2E^2 + Glci^2*K2^2*K4^2*L2E^2 + Glci^2*K2*K3^2*K4^2*L2E + 2*Glci^2*K2*K3*K4^2*L2E^2 + LG6P*Glci^2*K2*K3*K4^2*L2E + LG6P*Glci^2*K2*K3*K4*L2E^2 + Glci^2*K2*K4^2*L2E^3 + 4*Glci*K2^3*K3^2*K4^2 + 6*Glci*K2^3*K3^2*K4*L2E + 2*Glci*K2^3*K3^2*L2E^2 + 2*Glci*K2^3*K3*K4^2*L2E + 2*Glci*K2^3*K3*K4*L2E^2 + 2*Glci*K2^2*K3^2*K4^2*L2E + 2*Glci*K2^2*K3^2*K4*L2E^2 + 2*Glci*K2^2*K3*K4^2*L2E^2 + 2*LG6P*Glci*K2^2*K3*K4^2*L2E + 2*Glci*K2^2*K3*K4*L2E^3 + 2*LG6P*Glci*K2^2*K3*K4*L2E^2 + K2^4*K3^2*K4^2 + 2*K2^4*K3^2*K4*L2E + K2^4*K3^2*L2E^2 + K2^3*K3^2*K4^2*L2E + 2*K2^3*K3^2*K4*L2E^2 + K2^3*K3^2*L2E^3 + LG6P*K2^3*K3*K4^2*L2E + LG6P*K2^3*K3*K4*L2E^2))/(Glci^5*K3^3*K4^3 + 3*Glci^5*K3^2*K4^3*L2E + Glci^5*K3^2*K4^3*LG6P + 3*Glci^5*K3*K4^3*L2E^2 + Glci^5*K3*K4^3*L2E*LG6P + Glci^5*K4^3*L2E^3 + 5*Glci^4*K2*K3^3*K4^3 + 3*Glci^4*K2*K3^3*K4^2*L2E + Glci^4*K2*K3^3*K4^2*LG6P + 12*Glci^4*K2*K3^2*K4^3*L2E + 4*Glci^4*K2*K3^2*K4^3*LG6P + 6*Glci^4*K2*K3^2*K4^2*L2E^2 + 2*Glci^4*K2*K3^2*K4^2*L2E*LG6P + 9*Glci^4*K2*K3*K4^3*L2E^2 + 3*Glci^4*K2*K3*K4^3*L2E*LG6P + 3*Glci^4*K2*K3*K4^2*L2E^3 + 2*Glci^4*K2*K4^3*L2E^3 + 10*Glci^3*K2^2*K3^3*K4^3 + 12*Glci^3*K2^2*K3^3*K4^2*L2E + 4*Glci^3*K2^2*K3^3*K4^2*LG6P + 3*Glci^3*K2^2*K3^3*K4*L2E^2 + Glci^3*K2^2*K3^3*K4*L2E*LG6P + 18*Glci^3*K2^2*K3^2*K4^3*L2E + 6*Glci^3*K2^2*K3^2*K4^3*LG6P + 18*Glci^3*K2^2*K3^2*K4^2*L2E^2 + 6*Glci^3*K2^2*K3^2*K4^2*L2E*LG6P + 3*Glci^3*K2^2*K3^2*K4*L2E^3 + 9*Glci^3*K2^2*K3*K4^3*L2E^2 + 3*Glci^3*K2^2*K3*K4^3*L2E*LG6P + 6*Glci^3*K2^2*K3*K4^2*L2E^3 + Glci^3*K2^2*K4^3*L2E^3 + Glci^3*K2*K3^3*K4^3*L2E + Glci^3*K2*K3^3*K4^2*L2E*LG6P + 3*Glci^3*K2*K3^2*K4^3*L2E^2 + Glci^3*K2*K3^2*K4^3*L2E*LG6P + 2*Glci^3*K2*K3^2*K4^2*L2E^2*LG6P + Glci^3*K2*K3^2*K4^2*L2E*LG6P^2 + 3*Glci^3*K2*K3*K4^3*L2E^3 + Glci^3*K2*K3*K4^3*L2E^2*LG6P + Glci^3*K2*K3*K4^2*L2E^3*LG6P + Glci^3*K2*K4^3*L2E^4 + 10*Glci^2*K2^3*K3^3*K4^3 + 18*Glci^2*K2^3*K3^3*K4^2*L2E + 6*Glci^2*K2^3*K3^3*K4^2*LG6P + 9*Glci^2*K2^3*K3^3*K4*L2E^2 + 3*Glci^2*K2^3*K3^3*K4*L2E*LG6P + Glci^2*K2^3*K3^3*L2E^3 + 12*Glci^2*K2^3*K3^2*K4^3*L2E + 4*Glci^2*K2^3*K3^2*K4^3*LG6P + 18*Glci^2*K2^3*K3^2*K4^2*L2E^2 + 6*Glci^2*K2^3*K3^2*K4^2*L2E*LG6P + 6*Glci^2*K2^3*K3^2*K4*L2E^3 + 3*Glci^2*K2^3*K3*K4^3*L2E^2 + Glci^2*K2^3*K3*K4^3*L2E*LG6P + 3*Glci^2*K2^3*K3*K4^2*L2E^3 + 3*Glci^2*K2^2*K3^3*K4^3*L2E + 3*Glci^2*K2^2*K3^3*K4^2*L2E^2 + 3*Glci^2*K2^2*K3^3*K4^2*L2E*LG6P + Glci^2*K2^2*K3^3*K4*L2E^2*LG6P + 6*Glci^2*K2^2*K3^2*K4^3*L2E^2 + 3*Glci^2*K2^2*K3^2*K4^3*L2E*LG6P + 6*Glci^2*K2^2*K3^2*K4^2*L2E^3 + 6*Glci^2*K2^2*K3^2*K4^2*L2E^2*LG6P + 3*Glci^2*K2^2*K3^2*K4^2*L2E*LG6P^2 + Glci^2*K2^2*K3^2*K4*L2E^3*LG6P + 3*Glci^2*K2^2*K3*K4^3*L2E^3 + 2*Glci^2*K2^2*K3*K4^3*L2E^2*LG6P + 3*Glci^2*K2^2*K3*K4^2*L2E^4 + 2*Glci^2*K2^2*K3*K4^2*L2E^3*LG6P + 5*Glci*K2^4*K3^3*K4^3 + 12*Glci*K2^4*K3^3*K4^2*L2E + 4*Glci*K2^4*K3^3*K4^2*LG6P + 9*Glci*K2^4*K3^3*K4*L2E^2 + 3*Glci*K2^4*K3^3*K4*L2E*LG6P + 2*Glci*K2^4*K3^3*L2E^3 + 3*Glci*K2^4*K3^2*K4^3*L2E + Glci*K2^4*K3^2*K4^3*LG6P + 6*Glci*K2^4*K3^2*K4^2*L2E^2 + 2*Glci*K2^4*K3^2*K4^2*L2E*LG6P + 3*Glci*K2^4*K3^2*K4*L2E^3 + 3*Glci*K2^3*K3^3*K4^3*L2E + 6*Glci*K2^3*K3^3*K4^2*L2E^2 + 3*Glci*K2^3*K3^3*K4^2*L2E*LG6P + 3*Glci*K2^3*K3^3*K4*L2E^3 + 2*Glci*K2^3*K3^3*K4*L2E^2*LG6P + 3*Glci*K2^3*K3^2*K4^3*L2E^2 + 3*Glci*K2^3*K3^2*K4^3*L2E*LG6P + 6*Glci*K2^3*K3^2*K4^2*L2E^3 + 6*Glci*K2^3*K3^2*K4^2*L2E^2*LG6P + 3*Glci*K2^3*K3^2*K4^2*L2E*LG6P^2 + 3*Glci*K2^3*K3^2*K4*L2E^4 + 2*Glci*K2^3*K3^2*K4*L2E^3*LG6P + Glci*K2^3*K3*K4^3*L2E^2*LG6P + Glci*K2^3*K3*K4^2*L2E^3*LG6P + K2^5*K3^3*K4^3 + 3*K2^5*K3^3*K4^2*L2E + K2^5*K3^3*K4^2*LG6P + 3*K2^5*K3^3*K4*L2E^2 + K2^5*K3^3*K4*L2E*LG6P + K2^5*K3^3*L2E^3 + K2^4*K3^3*K4^3*L2E + 3*K2^4*K3^3*K4^2*L2E^2 + K2^4*K3^3*K4^2*L2E*LG6P + 3*K2^4*K3^3*K4*L2E^3 + K2^4*K3^3*K4*L2E^2*LG6P + K2^4*K3^3*L2E^4 + K2^4*K3^2*K4^3*L2E*LG6P + 2*K2^4*K3^2*K4^2*L2E^2*LG6P + K2^4*K3^2*K4^2*L2E*LG6P^2 + K2^4*K3^2*K4*L2E^3*LG6P) + (K2*K3*K4*L2E*LG6P*(K3 - K4)*((Glce*L1*alpha)/(Glce + K1) - (Glci*L2E*alpha)/(Glci + K2))*(Glci + K2)^2*(Glci*K3*K4 + Glci*K4*L2E + K2*K3*K4 + K2*K3*L2E))/(Glci^5*K3^3*K4^3 + 3*Glci^5*K3^2*K4^3*L2E + Glci^5*K3^2*K4^3*LG6P + 3*Glci^5*K3*K4^3*L2E^2 + Glci^5*K3*K4^3*L2E*LG6P + Glci^5*K4^3*L2E^3 + 5*Glci^4*K2*K3^3*K4^3 + 3*Glci^4*K2*K3^3*K4^2*L2E + Glci^4*K2*K3^3*K4^2*LG6P + 12*Glci^4*K2*K3^2*K4^3*L2E + 4*Glci^4*K2*K3^2*K4^3*LG6P + 6*Glci^4*K2*K3^2*K4^2*L2E^2 + 2*Glci^4*K2*K3^2*K4^2*L2E*LG6P + 9*Glci^4*K2*K3*K4^3*L2E^2 + 3*Glci^4*K2*K3*K4^3*L2E*LG6P + 3*Glci^4*K2*K3*K4^2*L2E^3 + 2*Glci^4*K2*K4^3*L2E^3 + 10*Glci^3*K2^2*K3^3*K4^3 + 12*Glci^3*K2^2*K3^3*K4^2*L2E + 4*Glci^3*K2^2*K3^3*K4^2*LG6P + 3*Glci^3*K2^2*K3^3*K4*L2E^2 + Glci^3*K2^2*K3^3*K4*L2E*LG6P + 18*Glci^3*K2^2*K3^2*K4^3*L2E + 6*Glci^3*K2^2*K3^2*K4^3*LG6P + 18*Glci^3*K2^2*K3^2*K4^2*L2E^2 + 6*Glci^3*K2^2*K3^2*K4^2*L2E*LG6P + 3*Glci^3*K2^2*K3^2*K4*L2E^3 + 9*Glci^3*K2^2*K3*K4^3*L2E^2 + 3*Glci^3*K2^2*K3*K4^3*L2E*LG6P + 6*Glci^3*K2^2*K3*K4^2*L2E^3 + Glci^3*K2^2*K4^3*L2E^3 + Glci^3*K2*K3^3*K4^3*L2E + Glci^3*K2*K3^3*K4^2*L2E*LG6P + 3*Glci^3*K2*K3^2*K4^3*L2E^2 + Glci^3*K2*K3^2*K4^3*L2E*LG6P + 2*Glci^3*K2*K3^2*K4^2*L2E^2*LG6P + Glci^3*K2*K3^2*K4^2*L2E*LG6P^2 + 3*Glci^3*K2*K3*K4^3*L2E^3 + Glci^3*K2*K3*K4^3*L2E^2*LG6P + Glci^3*K2*K3*K4^2*L2E^3*LG6P + Glci^3*K2*K4^3*L2E^4 + 10*Glci^2*K2^3*K3^3*K4^3 + 18*Glci^2*K2^3*K3^3*K4^2*L2E + 6*Glci^2*K2^3*K3^3*K4^2*LG6P + 9*Glci^2*K2^3*K3^3*K4*L2E^2 + 3*Glci^2*K2^3*K3^3*K4*L2E*LG6P + Glci^2*K2^3*K3^3*L2E^3 + 12*Glci^2*K2^3*K3^2*K4^3*L2E + 4*Glci^2*K2^3*K3^2*K4^3*LG6P + 18*Glci^2*K2^3*K3^2*K4^2*L2E^2 + 6*Glci^2*K2^3*K3^2*K4^2*L2E*LG6P + 6*Glci^2*K2^3*K3^2*K4*L2E^3 + 3*Glci^2*K2^3*K3*K4^3*L2E^2 + Glci^2*K2^3*K3*K4^3*L2E*LG6P + 3*Glci^2*K2^3*K3*K4^2*L2E^3 + 3*Glci^2*K2^2*K3^3*K4^3*L2E + 3*Glci^2*K2^2*K3^3*K4^2*L2E^2 + 3*Glci^2*K2^2*K3^3*K4^2*L2E*LG6P + Glci^2*K2^2*K3^3*K4*L2E^2*LG6P + 6*Glci^2*K2^2*K3^2*K4^3*L2E^2 + 3*Glci^2*K2^2*K3^2*K4^3*L2E*LG6P + 6*Glci^2*K2^2*K3^2*K4^2*L2E^3 + 6*Glci^2*K2^2*K3^2*K4^2*L2E^2*LG6P + 3*Glci^2*K2^2*K3^2*K4^2*L2E*LG6P^2 + Glci^2*K2^2*K3^2*K4*L2E^3*LG6P + 3*Glci^2*K2^2*K3*K4^3*L2E^3 + 2*Glci^2*K2^2*K3*K4^3*L2E^2*LG6P + 3*Glci^2*K2^2*K3*K4^2*L2E^4 + 2*Glci^2*K2^2*K3*K4^2*L2E^3*LG6P + 5*Glci*K2^4*K3^3*K4^3 + 12*Glci*K2^4*K3^3*K4^2*L2E + 4*Glci*K2^4*K3^3*K4^2*LG6P + 9*Glci*K2^4*K3^3*K4*L2E^2 + 3*Glci*K2^4*K3^3*K4*L2E*LG6P + 2*Glci*K2^4*K3^3*L2E^3 + 3*Glci*K2^4*K3^2*K4^3*L2E + Glci*K2^4*K3^2*K4^3*LG6P + 6*Glci*K2^4*K3^2*K4^2*L2E^2 + 2*Glci*K2^4*K3^2*K4^2*L2E*LG6P + 3*Glci*K2^4*K3^2*K4*L2E^3 + 3*Glci*K2^3*K3^3*K4^3*L2E + 6*Glci*K2^3*K3^3*K4^2*L2E^2 + 3*Glci*K2^3*K3^3*K4^2*L2E*LG6P + 3*Glci*K2^3*K3^3*K4*L2E^3 + 2*Glci*K2^3*K3^3*K4*L2E^2*LG6P + 3*Glci*K2^3*K3^2*K4^3*L2E^2 + 3*Glci*K2^3*K3^2*K4^3*L2E*LG6P + 6*Glci*K2^3*K3^2*K4^2*L2E^3 + 6*Glci*K2^3*K3^2*K4^2*L2E^2*LG6P + 3*Glci*K2^3*K3^2*K4^2*L2E*LG6P^2 + 3*Glci*K2^3*K3^2*K4*L2E^4 + 2*Glci*K2^3*K3^2*K4*L2E^3*LG6P + Glci*K2^3*K3*K4^3*L2E^2*LG6P + Glci*K2^3*K3*K4^2*L2E^3*LG6P + K2^5*K3^3*K4^3 + 3*K2^5*K3^3*K4^2*L2E + K2^5*K3^3*K4^2*LG6P + 3*K2^5*K3^3*K4*L2E^2 + K2^5*K3^3*K4*L2E*LG6P + K2^5*K3^3*L2E^3 + K2^4*K3^3*K4^3*L2E + 3*K2^4*K3^3*K4^2*L2E^2 + K2^4*K3^3*K4^2*L2E*LG6P + 3*K2^4*K3^3*K4*L2E^3 + K2^4*K3^3*K4*L2E^2*LG6P + K2^4*K3^3*L2E^4 + K2^4*K3^2*K4^3*L2E*LG6P + 2*K2^4*K3^2*K4^2*L2E^2*LG6P + K2^4*K3^2*K4^2*L2E*LG6P^2 + K2^4*K3^2*K4*L2E^3*LG6P) Glce(0) = 1.3999999999999999 L1(0) = 0.0050000000000000001 Glci(0) = 0 L2E(0) = 0.0050000000000000001 ********** MODEL PARAMETERS alpha = 4.2000000000000002 beta = 1 K1 = 1.1000000000000001 K2 = 1.2 K3 = 7 K4 = 1.1000000000000001 LG6P = 0.72999999999999998 ********** MODEL VARIABLES Ee = (K1*L1)/(Glce + K1) EGlce = (Glce*L1)/(Glce + K1) EGlci = (Glci*L2E)/(Glci + K2) Ei = (K2*L2E)/(Glci + K2) EG6Pi = (K2*K3*L2E*LG6P)/(Glci*(K3*K4 + K4*L2E) + K2*K3*K4 + K2*K3*L2E) EGlcG6Pi = (Glci*K4*L2E*LG6P)/(K3*(Glci*K4 + K2*K4 + K2*L2E) + Glci*K4*L2E) G6Pi = (K3*K4*LG6P*(Glci + K2))/(Glci*K3*K4 + Glci*K4*L2E + K2*K3*K4 + K2*K3*L2E) ********** MODEL REACTIONS ********** MODEL FUNCTIONS ********** MODEL EVENTS ********** MODEL MATLAB FUNCTIONS