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ABSTRACT
Turnip yellow mosaic virus (TYMV) Val-RNA forms a complex with the pep-

tide elongation factor Tu (EF-Tu) in the presence of GTP: the Val-RNA is pro-
tected by EF-Tu.GTP from non-enzymatic deacylation and nuclease digestion.
The determination of the length of the shortest TYMV Val-RNA fragment that
binds EF-Tu-GTP leads us to conclude that the valylated aminoacyl RNA domain
equivalent in tRNAs to the continuous helix formed by the acceptor stem and
the T arm is sufficient for complex formation. Since the aminoacyl RNAdomain
is also sufficient for adenylation by the ATP(CTP):tRNA nucleotidyltransfer-
ase, an analogy can be drawn between these two tRNA-specific proteins.

INTRODUCTION

The genome of several plant RNA viruses can be aminoacylated at the 3'

terminus with a specific amino acid. Interestingly, folding of the tRNA-like

regions of viral RNAs differs greatly from that of tRNAs (for reviews see ref.

1,2).

The secondary structure of the tRNA-like region of the valine-accepting

turnip yellow mosaic virus (TYMV) RNA (3-5) is presented in fig. 1. In this

structure, the acceptor stem (stem I) is formed by folding of only the 3'

part without participation of the 5' part of the tRNA-like region. Therefore,

the aminoacyl RNA domain, equivalent in tRNAs to the continuous helix formed

by the acceptor stem and the T arm, constitutes an independent part of the

molecule. Because of this unique feature, the determination of the length of

the shortest 3'-terminal viral RNA fragment that can be adenylated led us to

conclude (5,6) that the aminoacyl RNA domain is sufficient for adenylation by

the ATP(CTP):tRNA nucleotidyltransferase (CCA enzyme).

Despite numerous investigations, the structural features in the tRNA

molecule required for ternary complex formation between aminoacyl-tRNA and

EF-Tu-GTP are still not entirely elucidated.

In the present communication, we demonstrate that TYMV Val-RNA forms a

complex with EF-Tu-GTP since EF-Tu-GTP protects TYMV Val-RNA from non-enzym-
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Fig. 1. Secondary structure of the tRNA-like region
of TYMV RNA. I to IV correspond to stems and loops

cc analogous in tRNAs to the acceptor, the T, the
3 A anticodon and the D stems and loops. We consider
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atic deacylation and from nuclease digestion. The determination of the length

of the shortest TYMV Val-RNA fragment that forms a complex with immobilized

EF-Tu-GTP enables us to conclude that the valylated aminoacyl RNA domain ful-

fills the requirements for complex formation.

MATERIALS AND METHODS

Materials

TYMV-infected Chinese cabbage leaves were generously supplied by S.

Astier-Manifacier and P. Cornuet (I.N.R.A., Versailles) and TYMV was purified

by the method of Leberman (7). The viral RNA was extracted (8) under RNase-

free conditions and stored at -70°C. Bulk yeast tRNA was from Sigma.

The Escherichia coli Val-tRNA synthetase (EC 6.1.1.9) was a partiallyor

a highly purified preparation kindly supplied by S. Blanquet (Ecole Polytech-

nique, Palaiseau). Purified E. coli CCA enzyme (EC 2.7.7.25) was a generous

gift of D. Eusebe-Carre. EF-Tu*GDP from E. coli (specific activity 22 kU/mg)

and EF-Tu.GDP from Thermus thermophilus (specific activity 12 kU/mg) were

purified according to Gulewicz et al. (9). RNase T (EC 3.1.27.3) was from

Sankyo, and RNase A (EC 3.1.27.5) and pyruvate kinase (EC 2.7.1.40) were from

Boehringer. The 3H-valine was either from Amersham (30 Ci/mnol) or from New

England Nuclear (60 Ci/mmol).

Aminoacylation
Aminoacylation was performed for 15 min at 37°C in 500 pl containing

50 mM Tris-HCl pH 7.5, 10 mM MgCl2, 10 mM dithiothreitol (DTT), 2 mM ATP,

150 pg of CCA enzyme, 75 pg of partially purified Val-tRNA synthetase, 3.5 pM
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3H-valine (30 Ci/mmol) and 0.5 mg of TYMV RNA or of yeast tRNA; a 5 4l ali-

quot was removed to determine the cold trichloroacetic acid (TCA) precipi-

table radioactivity, the remainder was ethanol precipitated and the pellet

dried and stored at -70°C.
3The H-Val-RNA of TYMV used for partial RNase T1 digestion was prepared

as described above except that the reaction was performed at 300C and that

the incubation mixture contained 3H-valine at 60 Ci/mmol and 2 nM highly
purified Val-tRNA synthetase.

Formation of EF-Tu.GTP

The E. coli EF-Tu.GTP complex was obtained by incubating EF-Tu.GDP (3

nmoles) with 75 mM Tris-HCl pH 7.5, 10 mM MgCl2, 75 mM NH4Cl, 50 mM KCI, 10mM

DTT, 1 mM GTP, 5 mM phosphoenolpyruvate (PEP) and 20 jig of pyruvate kinase in

50 pl for 20 min at 370C and transferring to ice. In these conditions the

EF-Tu.GTP complex was stable for several hours.

Protection from RNase A

A solution (25 pl) containing 50 mM Na borate pH 7, 10 mM MgCl2, 75 mM

NH4Cl, 1 mM DTT, 100 pM GTP and 0.25 pM TYMV H-Val-RNA or yeast H-Val-tRNA

was incubated for 2 min at 30°C with E. coli EF-Tu.GTP as indicated in the

legend of fig. 3 and transferred to ice for 2 min; 5 pl aliquots were removed

to determine the cold TCA precipitable radioactivity (time 0). RNase A (1.5

mU or 2.5 mU for Val-tRNA or TYMV Val-RNA respectively) was added and 5 pl
aliquots were removed after 1 and 2 min at 0°C to determine the cold TCA pre-

cipitable radioactivity.

Protection from deacylation

A solution (100 pl) containg 75 mM Tris-HCl pH 7.5, 10 mM MgCl2, 75 mM

NH4Cl, 5 mM DTT, 100 pM GTP, 2.5 mM PEP, 15 pg of pyruvate kinase and 0.25 pM
3

TYMV H-Val-RNA was incubated at 30°C with or without 5 pM E. coli EF-Tu-GTP.

At different times, 5 pl aliquots were removed to determine the cold TCA pre-

cipitable radioactivity.

Partial RNase T1 digestion of TYMV H-Val-RNA
33

To obtain TYMV H-Val-RNA fragments, 400 pg of TYMV H-Val-RNA were pre-

incubated in 600 pl of 20 mM Na citrate pH 5, 7 M urea and 5 mM EDTA for 5 min

at 370C and then cooled in ice. The sample was divided into four parts, RNase

T1 (1, 2, 5 or 10 mU/jg RNA) was added and incubation performed at 37°C for

20 min. After repeated phenol extraction, the aqueous phases were extracted

with ether to remove residual phenol, pooled and ethanol precipitated; the

dried pellet was stored at -70°C.
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Affinity chromatography of TYMV 3H-Val-RNA fragments

EF-Tu*GDP from Th. thermophilus ("25 mg) covalently bound to cyanogen

bromide-activated Sepharose 4B (X1.5 ml) as described by Derwenskus et al.

(10) was used for affinity chromatography. Matrix-bound EF-Tu-GDP was conver-

ted to EF-Tu.GTP by washing the column (0.3 x 5 cm) with buffer I (50 mMHEPES

pH 7.5, 10 mM MgCl2, 50 mM NH4cl, 50 mM KCl, 1 mM DTT and 1 mM GTP) for about

2 h at room temperature.

The TYMV 3H-Val-RNA fragments ("100 pg) in 250 pl of buffer II (10 mM

HEPES pH 7.5, 10 mM MgCl2, 10 mM NaCl, 1 mM DTT and 50 pM GTP) were applied

to the EF-Tu-GTP column and incubated for 10 min at 30°C. The column was then

successively washed step-wise at room temperature with buffer II, buffer III

(50 mM HEPES pH 7.5, 10 mM MgCl2, 150 mM NaCl, 50 mM NH4Cl, 1 mM DTT and 50

PM GTP) and buffer IV (100 mM Na borate pH 7.5, 10 mM MgCl2, 1 M NaCl, 1 mM

DTT and 50 pM GTP). In a separate experiment, following buffer II, the column

was wahsed with buffer II' (identical to buffer II except that it contained

50 mM NaCl) before applying buffer III. A constant flow-rate of "'100 pl/min
was maintained and fractions of 450 pl were collected.

The elution profile was monitored by determining the radioactivity con-

tained in 5 pl aliquots from each fraction. The appropriate fractions were

pooled and ethanol precipitated; the dried pellets were dissolved in 50 pl of

sample buffer (5 mM Tris-borate pH 7, 7 M urea, 1 mM EDTA, 0.01% xylene

cyanol and 0.01% bromophenol blue) and analyzed by polyacrylamide gel elec-

trophoresis.

TYMV 3H-Val-RNA fragments protected against RNase A

A solution (100 pl) containing 50 mM Na borate pH 7, 10 mM MgCl2, 75 mM

NH4Cl, 1 mM DTT, 100 pM GTP and 50 pg of TYMV H-Val-RNA fragments was incu-

bated for 2 min at 30°C with 5 pM E. coli EF-Tu-GTP and transferred to ice

for 2 min.;RNase A (25 mU) was added and after 1 or 2 min at O'C the reaction
was stopped by phenol and the aqueous phases were ethanol precipitated; the

dried pellets were dissolved in 50 pl of sample buffer and analyzed by poly-

acrylamide gel electrophoresis.

Polyacrylamide gel electrophoresis

Polyacrylamide (12%), bis-acrylamide (0.6%), 7 M urea gels were used at

pH 7 (5,11-13). The reservoir buffers were constantly recycled and electro-

phoresis performed at 4°C. After a pre-run at 450 V overnight, the samples

were loaded and electrophoresis performed at 700 V for 8 h. The gel was trea-

7470



Nucleic Acids Research

ted sequentially with 10% cold TCA, dimethylsulfoxide (DMS0), DMSO-PPO (2,5-

diphenyloxazole), water (14) and finally dried (15) and exposed at -70°C

using a Fuji medical X-ray film.

RESULTS

Complex formation between TYMV Val-RNA and EF-Tu.GTP

The first indication suggesting interaction between TYMV Val-RNA and

E. coli EF-Tu-GTP was reported by Haenni et al. (16): as demonstrated by the

nitrocellulose filter binding assay (17), the radioactivity of the binary

complex EF-Tu.3H-GTP retained on the filter decreased with increasing Val-RNA

added, but not with uncharged RNA. To further verify that TYMV Val-RNA forms

a complex with EF-Tu and GTP, the following approaches were used.

1. Beres and Lucas-Lenard (18) have reported that EF-Tu*GTP effectively
protects aminoacyl-tRNAs from non-enzymatic deacylation. At pH 7.5 and 30°C,

TYMV Val-RNA is deacylated with a pseudo first-order rate and a half-life of

135 min (fig. 2). When incubated with EF-Tu.GTP, the rate of deacylation of

TYMV Val-RNA is significantly slower (half-life "13 h) thus demonstrating

complex formation between TYMV Val-RNA and EF-Tu*GTP.

2. EF-Tu.GTP is known to protect anminoacyl-tRNAs from nuclease digestion

(19). This is verified with Val-tRNA in fig. 3A: after 2 min at 0°C, 90% of

the Val-tRNA (0.25 pM) is protected when incubated with EF-Tu.GTP (2.5 pM) as

opposed to almost complete degradation in the absence of EF-Tu.GTP. Based on

the curves of fig. 3A, about 0.5 pM EF-Tu-GTP protects 50% of the Val-tRNA

after 1 min of incubation. TYMV Val-RNA (0.25 pM) is also protected from

RNase A digestion by EF-Tu.GTP as visible in fig. 3B. However, protection is

less efficient since >2.5 pM EF-Tu*GTP are necessary to obtain 50% protection

of the TYMV Val-RNA after 1 min of incubation. Consequently the affinity of

100 Fig. 2. Protection from non-enzymatic
deacylation of TYMV H-Val-RNA by EF-Tu.GTP.
TYMV Val-RNA (0.25 pM) was incubated at 30°C
and pH 7.5 in the absence (-*-) or in the

* presence (-f-) of 5 pM EF-Tu-GTP. 100%
z 50 ><correspond to 15 000 cpm.

z
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Fig. 3. Protection from RNase A of H-Val-tRNA or of TYMV H-Val-RNA by
EF-Tu.GTP. (A) Val-tRNA or (B) TYMV Val-RNA (0.25 MM) was digested by RNase A
in the absence (-0 -) or in the presence of EF-Tu*GTP (-o- 5 MM, -o- 2.5 MM,
- - 0.75 MM, -x- 0.375 MM). -U-: TYMV Val-RNA digested by RNase A in the
presence of 5 pM EF-Tu'GDP. 100% correspond to 15 000 cpm.

TYMV Val-RNA for EF-Tu*GTP is about 5 times lower than that of Val-tRNA.

Since, when in 20 fold excess, EF-Tu-GTP but not EF-Tu.GDP protects TYMV Val-

RNA from RNase digestion, the conformation adopted by EF-Tu upon GTP binding

is a prerequisite for complex formation.

Binding of TYMV Val-RNA 3'-terminal fragments to immobilized EF-Tu-GTP

To establish the length of the shortest TYMV Val-RNA 3'-terminal frag-

ment that can still form a complex with EF-Tu-GTP, the following strategy was

adopted. TYMV RNA was aminoacylated with 3H-valine and the 3H-Val-RNA was

partially digested by RNase T1. The resulting Val-RNA fragments were chroma-

tographed on a column of immobilized EF-Tu.GTP. This column was recently used

successfully for the selective purification of aminoacylated tRNAs (10). The

Val-RNA fragments appearing in the effluent (buffer II) as well as those

eluting at increased ionic strengths (buffers III and IV) were pooled as indi-

cated in fig. 4 and analyzed by polyacrylamide gel electrophoresis. On the

fluorogram of fig. 5, the Val-RNA fragments that appeared in the effluent

(pool 1 of fig. 4) are presented in lane 3 and those that appeared in the

eluate (pool 2 of fig. 4) are shown in lane 4. A sample of the total Val-RNA

fragments applied to the EF-Tu-GTP column is presented in lane 2, whereas

lane 1 shows the profile of TYMV Val-RNA prior to RNase T1 digestion. A com-

parison of lanes 3 and 4 with lane 2 shows that valylated fragments of 47

nucleotides or longer are retained on the EF-Tu.GTP column. In this experi-
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Fig. 4. Elution profile of the RNase T1 fragments of TYMV H-Val-RNA from the
EF-Tu GTP column. II, III and IV refer to the buffers applied to the column.
Fractions were pooled as indicated.

ment elution of the EF-Tu-GTP-complexed valylated RNA fragments with buffer

III was started before all the short (<47 nucleotides) fragments interacting
only very weakly with immobilized EF-Tu.GTP had been removed from the column.

In another experiment, after loading of the Val-RNA fragments and washingwith

buffer II, buffer II' was applied to the column; lane 5 presents the profile

of the EF-Tu.GTP-complexed Val-RNA fragments that eluted with buffers III and

IV. Only valylated fragments equal to or longer than 47 nucleotides in length

were detected by polyacrylamide gel electrophoresis under these conditions.

A comparison of lanes 4 and 5 indicates that the 47 nucleotide-long fra-

gment is the shortest RNase T1 fragment from the 3' end of TYMV Val-RNA capa-

ble of interaction with EF-Tu*GTP in the conditions defined by buffer II' and

at ambient temperature. The interaction however, is improved when the chain

length is increased: maximal efficiency is achieved at a chain length of 65

nucleotides.
Some degradation of Val-RNA fragments has occurred during chromatography:

in particular the high molecular weight TYMV Val-RNA fragments present in

lane 2 are absent from lanes 3-5.

Shortest TYMV Val-RNA fragment protected from RNase A by EF-Tu.GTP

Since the valylated aminoacyl RNA domain of TYMV RNA is recognized by

EF-Tu.GTP, one could expect it to be protected against RNase A. To verify
this possibility, the RNase T fragments of TYMV 3H-Val-RNA were further

incubated in the presence of EF-Tu-GTP and RNase A. The RNase A-resistant

material recovered after 1 or 2 min was analyzed by polyacrylamide gel elec-
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Fig. 5. Gel electrophoretic determination of the RNase T1 fragments of TYMV
iH-Val-RNA bound to immobilized EF-Tu-GTP. Lane 1: TYMV Val-RNA (30 pg);
lane 2: Val-RNA fragments (50 pg); lanes 3 and 4: unbound (effluent, pool 1
of fig. 4) and bound (eluate, pool 2 of fig. 4) Val-RNA fragments (100 pg)
respectively; lane 5: bound Val-RNA fragments from a separate experiment in
which the column with immobilized EF-Tu*GTP was washed following buffer II
with 5 ml of buffer II'. The specific activity of TYMV Val-RNA was "10 000
cpm/pg. Exposure time: lanes 1, 3-5: 4 days and lane 2: 6 days. All the
samples presented were analyzed on the same gel. Numbering refers to the
length of the TYMV Val-RNA fragments obtained by partial RNase T1 digestion.

trophoresis (fig. 6). All the large Val-RNA fragments complexed to EF-Tu.GTP

tend to be shortened to oligonucleotides between "112 and 55 (or 56), the

latter resulting from cuts within the anticodon loop. Consequently the anti-

codon RNA domain is accessible to RNase A digestion whereas the aminoacyl RNA

domain is not. This is in accordance with the 'footprinting' experiments

performed using aminoacyl-tRNA and EF-Tu.GTP (20,21).
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1 2 3 Fig. 6. Gel electrophoretic determination of the length of
the shortest RNase T1 fragment of TYMV 3H-Val-RNA protected
by EF-Tu*GTP from RNase A. Lane 1: Val-RNA fragments
(30 pg); lanes 2 and 3: Val-RNA fragments (100 pg) incubated
with EF-Tu-GTP, then digested by RNase A for 1 and 2 min
respectively. Numbering is as in fig. 5. The specific
activity of the Val-RNA was "14000 cpm/pg. Exposure time was
9 days.
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DISCUSSION

It is now established that the aminoacyl residue and the backbone of the

single-stranded 3' end in aminoacyl-tRNA are essential for recognition by
EF-Tu*GTP (reviewed in ref. 21); however the possible requirement of other

structural features of tRNA is not well documented.

The present study of the interaction of TYMV Val-RNA fragments with

immobilized EF-Tu GTP desmonstrates that the shortest Val-RNA fragment able

to form a sufficiently stable complex with EF-Tu-GTP is 47 rucleotides long.
Interestingly, in the tRNA-like structure of TYMV RNA (fig. 1), the aminoacyl
RNA domain is formed within the 47 nucleotides from the 3' terminus. Conse-

quently, the aminoacylated aminoacyl RNA domain fulfills the requirements for

complex formation with EF-Tu-GTP and the anticodon RNA domain is not essen-

tial. This conclusion is further supported by the observation that EF-Tu.GTP

protects the valylated aminoacyl RNA domain from digestion by RNase A.
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The studies of Boutorin et al. (20) and Wikman et al. (21) concerning

the protection from RNase digestion of aminoacyl-tRNA complexed to EF-Tu.GTP

have shown that the C-C-A end, the remainder of the acceptor stem and the T

stem are protected. In light of these and our results, we conclude that in

the aminoacylated aminoacyl RNA domain, in addition to the single-stranded 3'

end with the aminoacyl residue, the helix formed by the acceptor stem and the

T stem constitutes an essential feature for EF-Tu.GTP recognition of amino-

acyl-tRNAs.

It can be speculated that the aminoacyl-tRNA binding site on EF-Tu.GTP

comprises a site for the positioning of the single-stranded 3' end with the

aminoacyl residue, as well as a site for the positioning of the 12 continu-

ously stacked base pairs that compose the aminoacyl RNA domain. Several lines

of evidence support this model: (i) 2'-(3')-0-aminoacyl-dinucleoside phos-

phates such as C-A-Phe can interact with E. coli EF-Tu.GTP since they protect

cysteine 81 from modification by L-1-tosylamido-2-phenylethyl chloromethyl

ketone (22,23); (ii) aminoacyl-tRNAs stimulate the kirromycin-induced GTPase

activity of EF-Tu; in the presence of kirromycin, the trinucleotide C-C-A

bearing an aminoacyl residue, or tRNA devoid of C-C-A, can stimulate this

GTPase activity (24); (iii) the 3'-half molecule of Val-tRNAVal, the fragment

U-C-C-A-C-C-A-Ala, or denatured Leu-tRNALeu fail to form a stable complex

with EF-Tu.GTP (25-27).
A similar situation occurs with another tRNA-recognizing enzyme, the

CCA enzyme. Again two regions in the tRNA molecule can be discerned, the

reacting 3' end, and the non-reacting portion which improves the efficiency

of catalysis (28). Each part of the substrate functions independently since

covalent linkage between the two parts of the tRNA is not necessary (for a

review see ref. 29).

By determining the length of the shortest 3'-terminal viral RNA fragment

that can be adenylated by the CCA enzyme, it was previously concluded that

the aminoacyl RNA domain fulfills the requirements for adenylation (5,6);
these results suggest that the non-reacting portion of tRNA molecules must

consist of the continuous stacking of the 12 base pairs of the aminoacyl RNA

domain. Since a continuous stacking of 12 base pairs is recognized by the

bacterial elongation factor Tu and by the CCA enzyme, we would like to pro-

pose the existence of structural similarities between these two proteins.
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