Web Appendix

Lemma 1: $c(z,e) = E[c^*(z,X) | e(X) = e]$ for $z \in \{0,1\}$

Proof: By definition, $c^*(z, X) = E[Y_z | Z = 1, X] - E[Y_z | Z = 0, X]$. For $z \in \{0,1\}$, let f(X | Z = z, e(X) = e) denote the conditional distribution of the confounder vector X given the treatment group Z = z and the PS e(X) = e, and f(X | e(X) = e) denote the conditional distribution of X given e(X) = e only. By the definition of the propensity score, Pr(Z = 1 | X, e(X) = e) = e = Pr(Z = 1 | e(X) = e), i.e., $Z \coprod X | e(X) = e$. Then, f(X | Z = z, e(X) = e) = f(X | e(X) = e). Moreover, $E[E(Y_z | Z = 1, X) | e(X) = e]$ $= \int E(Y_z | Z = 1, X) f(X | e(X) = e) dX$ $= \int E(Y_z | Z = 1, X, e(X) = e) f(X | Z = 1, e(X) = e) dX$ $= E[Y_z | Z = 1, e(X) = e]$

Following similar argument, it can be shown that

 $E[E(Y_z \mid Z = 0, X) \mid e(X) = e] = E[Y_z \mid Z = 0, e(X) = e].$ As a direct consequence, we have proved that $c(z, e) = E[c^*(z, X) \mid e(X) = e].$

Lemma 2: Suppose the sensitivity function c(z, e) is correctly specified, then the bias correction term in the SF-corrected estimator will remove the bias due to uncontrolled confounding.

Proof: By definition,

$$Y^{SF} \equiv Y - (E[Y_Z | Z, e(X)] - E[Y_Z | e(X)])$$

=
$$\begin{cases} Y - (1 - e(X))c(1, e) & \text{if } Z = 1 \\ Y + e(X)c(0, e) & \text{if } Z = 0 \end{cases}$$
 (1)

We first consider the daily users with $Z_i = 1$, then $Y_i = Y_{1,i}$,

$$Y_i^{SF} = Y_i - (E[Y_{1,i} | Z_i = 1, e(X_i)] - E[Y_{1,i} | e(X_i)]),$$

and

$$E\left[\frac{Z_{i}}{e(X_{i})}Y_{i}^{SF}\right] = E\left[\frac{Z_{i}}{e(X_{i})}E(Y_{i}^{SF} \mid Z_{i} = 1, e(X_{i}))\right]$$

= $E\left[\frac{Z_{i}}{e(X_{i})}\left\{E(Y_{i} \mid Z_{i} = 1, e(X_{i})) - E[Y_{1,i} \mid e(X_{i})]\right\}\right\}$
= $E\left[\frac{Z_{i}}{e(X_{i})}E[Y_{1,i} \mid e(X_{i})]\right] = E\left[\frac{E[Z_{i} \mid e(X_{i})]}{e(X_{i})}E[Y_{1,i} \mid e(X_{i})]\right]$
= $E(E[Y_{1} \mid e(X)]) = E[Y_{1}]$

Similarly, it can be proved that for the periodic users ($Z_i = 0$), $Y_i = Y_{0,i}$ and

 $E\left[\frac{1-Z_i}{1-e(X_i)}Y_i^{SF}\right] = E[Y_0]. \text{ Apparently, the bias correction term } \left(E[Y_Z \mid Z, e(X)] - E[Y_Z \mid e(X)]\right)$

removes the bias due to uncontrolled confounding.

In addition, for $z \in \{0,1\}$, by the definition of conditional expectation,

$$E[Y_z | e(X)] = E[Y_z | Z = 1, e(X)] Pr(Z = 1 | e(X)) + E[Y_z | Z = 0, e(X)] Pr(Z = 0 | e(X))$$

= $E[Y_z | Z = 1, e(X)] e(X) + E[Y_z | Z = 0, e(X)] (1 - e(X))$

Then, after simple algebra, it can be shown that,

$$E[Y_1 | Z = 1, e(X)] - E[Y_1 | e(X)] = (1 - e(X))c(1, e)$$

$$E[Y_0 | Z = 0, e(X)] - E[Y_0 | e(X)] = -e(X)c(0, e)$$

Furthermore, for any given sensitivity function c(z, e), $\hat{\psi}^{SF}$ can be easily obtained by replacing the unknown PS using $\{\hat{e}(X_i), i = 1, ..., n\}$.