A proton gradient controls a calcium-release channel in sarcoplasmic reticulum

(excitation-contraction coupling/skinned muscle fibers/proton ionophores/proteolipid)

VARDA SHOSHAN*[†], DAVID H. MACLENNAN^{*‡}, AND DONALD S. WOOD[§]

*Banting and Best Department of Medical Research, Charles H. Best Institute, University of Toronto, 112 College Street, Toronto, Ontario, Canada M5G 1L6; and §H. Houston Merritt Clinical Research Center, Department of Neurology, Columbia University, New York, New York 10032

Communicated by David E. Green, May 1, 1981

ABSTRACT Sarcoplasmic reticulum vesicles from mammalian skeletal muscle have previously been shown to develop a proton gradient (alkaline inside) of 0.15-0.5 pH units during active Ca²⁺ uptake. We found that dissipation of this gradient by the proton ionophores gramicidin, nigericin, and carbonyl cyanide ptrichloromethoxyphenylhydrazone caused a rapid transient tension in skinned rabbit psoas muscle fibers. Increases, but not decreases, in medium pH of ≈ 0.2 units over the range from pH 6.5 to pH 7.5 also elicited transient tensions. In isolated vesicles, physiological levels of Ca²⁺ (3.3 μ M), inhibited pH-induced Ca²⁺ release. Dicyclohexylcarbodiimide blocked pH- and ionophore-induced Ca²⁺ release under conditions in which it could bind to sarcoplasmic reticulum proteins but did not inhibit Ca²⁺ uptake. We propose that a proton gradient generated across sarcoplasmic reticulum membranes during Ca^{2+} uptake maintains a Ca^{2+} release channel in a closed conformation and that dissipation of this gradient permits the Ca²⁺ release channel to open. We further propose that elevated myoplasmic Ca^{2+} also causes the Ca^{2+} channel to close, permitting Ca^{2+} uptake through Ca^{2+}/Mg^{2+} -ATPase to function effectively. As the proteolipids of sarcoplasmic reticulum bind dicyclohexylcarbodiimide under conditions in which Ca²⁺ release is blocked and as they have previously been shown to have Ca²⁺ ionophoric activity, we propose that the Ca²⁺-release channel either resides in the proteolipids or is controlled by H⁺ fluxes through the proteolipids.

The sarcoplasmic reticulum controls myoplasmic Ca^{2+} concentrations, thereby regulating the contraction–relaxation cycle of skeletal muscle (1). Calcium uptake is mediated by enzymatic reactions of Ca^{2+}/Mg^{2+} -ATPase (2). Although these reactions are reversible, permitting Ca^{2+} efflux through the ATPase, this mechanism of Ca^{2+} release is unlikely to have a major role in excitation–contraction coupling because it requires concentrations of ATP lower than physiological and because the rate of Ca^{2+} release is 1/100 to 1/10,000 that of the rate of contractile activation (3).

No other pathway for Ca^{2+} efflux has been identified, but Ca^{2+} release, not involving ATPase, can be induced in isolated sarcoplasmic reticulum vesicles and skinned fibers. For example, increasing myofilament space Ca^{2+} or changing $C1^-$ for propionate⁻ elicits Ca^{2+} release and a rapid transient tension in skinned muscle fibers, (4, 5). Ca^{2+} release by either manipulation is not blocked by quercetin, which inhibits both the forward and backward reactions of Ca^{2+}/Mg^{2+} -ATPase. (6). The molecular mechanisms for either Ca^{2+} or anion-induced release are unknown. Ca^{2+} -induced release occurs under physiological conditions in cardiac muscle preparations (7, 8). In skeletal muscle, there is evidence against this mechanism having a major role in excitation–contraction coupling (9), including a

requirement in the reaction for Ca^{2+} levels higher than physiological (4). Anion-induced Ca^{2+} release has been studied as a possible model for effects of depolarization on sarcoplasmic reticulum. However, it has been difficult to determine whether depolarization or some other effect, such as osmotic change, causes Ca^{2+} release (4, 10).

Recent studies suggesting that a H⁺ gradient develops during Ca²⁺ uptake have led us to assess a possible physiological role for H⁺ in Ca²⁺ release from skeletal muscle sarcoplasmic reticulum. Madeira (11) reported that formation of a transmembrane H^+ gradient (alkaline inside) is an early event in Ca²⁺ transport. Chiesi and Inesi (12) found that H⁺ is exchanged for Ca²⁺ during the initial Ca²⁺ uptake phase, and Meissner (13) has postulated that countermovement of H^+ , K^+ , and Na^+ may nullify the membrane potential formed during active Ca^{2+} uptake. The H^+ gradient formed is 0.15-0.5 pH units (11, 14). Nakamaru and Schwartz (15) found that increasing the pH of the medium by 0.5-1 unit caused Ca²⁺ release from isolated sarcoplasmic reticulum vesicles. In skinned muscle fibers, increasing the pH has also been reported to induce Ca²⁺ release. However, Endo (4) found Ca^{2+} release only from fibers that were heavily loaded with Ca^{2+} . Fabiato and Fabiato (16) suggested that, as the Ca^{2+} loading capacity of sarcoplasmic reticulum is pH sensitive, effects of pH change on Ca2+ release could be indirect. Possible stimulation of Ca²⁺ release by pH changes of 0.15-0.5 unit has not been studied in skinned fibers, although net Ca² accumulation has been shown to vary in this range (7).

In this paper, we present observations on skinned fibers and sarcoplasmic reticulum vesicles isolated from skeletal muscle suggesting that dissipation of a H^+ gradient developed during active Ca^{2+} uptake causes a rapid transient Ca^{2+} release. The speed and extent of Ca^{2+} release suggest that it may be a physiologically relevant process.

EXPERIMENTAL PROCEDURES

Materials. ATP, Tris, imidazole, carbonyl cyanide p-trichloromethoxyphenylhydrazone (CCCP), and gramicidin were purchased from Sigma, dicyclohexylcarbodiimide (DCCD) was from Eastman, propionic acid was from Fisher, and ⁴⁵CaCl₂ was from New England Nuclear. Nigericin was a gift from Eli Lilly.

Preparation. Sarcoplasmic reticulum vesicles were prepared from rabbit psoas muscle as described by MacLennan (17) except that an additional sucrose gradient step was used in the final purification (18). Chemically skinned psoas muscle fibers were prepared as described by Wood *et al.* (19).

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U. S. C. §1734 solely to indicate this fact.

Abbreviations: DCCD, dicyclohexylcarbodiimide; CCCP, carbonyl cyanide *p*-trichloromethoxyphenylhydrazone; EGTA, ethylene glycolbis(β -aminoethyl ether)-*N*, *N*, *N'*, *N'*-tetraacetic acid.

[†] Present address: Department of Biology, Ben Gurion University, Beer Sheva, Israel.

[‡]To whom reprint requests should be addressed.

Biochemistry: Shoshan et al.

Assays. Ca²⁺ uptake was assayed by the millipore filtration method (17). Ca^{2+} release was analyzed in the same system except that release was initiated by a rapid change in buffer. Protein was determined according to Lowry et al. (20). In skinned fibers, Ca²⁺ release was assayed by measuring isometric tension. Procedures and solutions for Ca2+ uptake were as described by Wood (21). Ca²⁺ release was initiated by adding the ionophores to 185 mM K propionate/2.5 mM Mg²⁺/2.5 mM ATP/10 mM imidazole, pH 7.00 \pm 0.02. In experiments on pHinduced release, the solution pH changes were made by adding propionic acid or KOH as needed. The concentration of free Ca^{2^+} in the Ca^{2^+} /ethylene glycol bis(β -aminoethyl ether)- N, N, N^1, N^1 -tetraacetic acid (EGTA) used for loading the sarcoplasmic reticulum was calculated with a computer program ⁺, Mg²⁺ for solving the multiple equilibria equations for Ca^{2-1} EGTA, and ATP. An apparent K_a of 2×10^6 M⁻¹ at pH 7.00 was used for $Ca^{2+}/EGTA$ (22).

Tension Measurements in Skinned Fibers. The experimental apparatus has been described (23). A single skinned fiber, 0.5- to 1.0-mm long, was placed in a temperature-controlled, vigorously stirred bath at 21°C. Each end of the fiber was secured in a micro-pinch clamp, one of which was attached to a strain gauge mounted on a micromanipulator. Fibers were stretched from 110% to 120% of slack length. Isometric tension was recorded with a mechanoelectronic transducer (Grass Instruments) using a Gould Brush recorder.

RESULTS

Induction of Ca²⁺ Release by pH Changes. Fig. 1 shows that when sarcoplasmic reticulum vesicles were permitted to carry out ATP-dependent Ca²⁺ uptake and then the pH was suddenly increased, Ca²⁺ was released from the Ca²⁺-loaded vesicles. This confirms observations of Nakamaru and Schwartz (15). More Ca²⁺ was released when the pH was increased by 1 unit than when it was increased by 0.5 unit but the rate of Ca²⁺ release was very rapid under both conditions; $t_{1/2} < 10$ sec. EGTA more than doubled the amount of Ca²⁺ released after a pH increase but was relatively ineffective when the medium was maintained at pH 6.9.

 H^+ Regulated Ca²⁺ Release in Skinned Fibers. To evaluate whether a H^+ gradient developed during active Ca²⁺ uptake is involved in physiological Ca²⁺ release, we challenged skinned

FIG. 1. Release of Ca²⁺ from sarcoplasmic reticulum vesicles by a pH increase. Ca²⁺ release was measured with Ca²⁺-loaded vesicles. The reaction mixture for Ca²⁺ uptake was 20 mM Tris⁻maleate, pH 6.8/ 100 mM KCl/5 mM MgCl₂/5 mM ATP/0.1 mM EGTA/0.1 mM CaCl₂, (containing ⁴⁵Ca, 2 × 10⁷ cpm/µmol; free Ca²⁺ = 3.3 µM) and sarcoplasmic reticulum vesicles at 140 µg/ml. After 6 min at 22°C, the pH of the medium was increased to 7.4 (A) or 7.9 (B) by the addition, respectively, of 5 or 15 µl of 1 M Tris base per ml of assay medium. At the times indicated, samples were assayed for Ca²⁺ content by millipore filtration. Additions: **A**, 1 mM EGTA: **Φ**, Tris base; 0, 1 mM EGTA/ Tris base. Control uptake activity at 6 min (100%) was 0.27 µmol of Ca²⁺/mg of protein.

FIG. 2. Proton ionophore-induced tension in skinned fibers. In separate experiments, skinned fibers (70- or 75- μ m diameter) were bathed in EGTA/Ca²⁺ (free Ca²⁺ = 0.1 μ M) for 1 min to permit Ca²⁺ uptake by the sarcoplasmic reticulum. After the period for Ca²⁺-loading, a wash solution (W) was used to rinse the fiber and remove EGTA/Ca²⁺. The wash solution contained 0.67% ethanol, which did not elicit tension. An ethanolic (0.67%) wash solution of gramicidin (6.7 μ g/ml), CCCP (6.7 μ M), or nigericin (6.7 μ g/ml) caused tension development. R, relaxing solution containing 5 mM EGTA.

fibers with three H⁺ ionophores, CCCP and gramicidin, which are H⁺ carriers, and nigericin, which exchanges H⁺ for K⁺ (24– 26). Fig. 2 shows that, at neutral pH, each ionophore elicited a rapid transient tension. The amount of ionophore required to elicit tension varied from fiber to fiber. The data shown represent the lowest effective level for CCCP and nigericin under the Ca²⁺-loading conditions used—a 1-min exposure of the fiber to EGTA/0.1 μ M free Ca²⁺. Effects of gramicidin were observed at 1.0–10 μ g/ml.

To estimate whether the H⁺ gradient across the sarcoplasmic reticulum of skinned fibers was of the same magnitude (0.15–0.5 pH units) and direction (alkaline inside) as that in isolated vesicles, the effects of changes in bath pH were evaluated. Fig. 3 shows that, when the bath pH was increased from 7.00 to 7.22, a rapid transient tension was obtained. Decreases in pH of up to 0.7 units never elicited tension. These data on skinned fibers are consistent with predictions from studies of isolated vesicles that a H⁺ gradient of \approx 0.2 pH units (alkaline inside) is generated across the sarcoplasmic reticulum membrane and that rapidly reducing the gradient by increasing medium pH stimulates Ca²⁺ release.

In analyzing the tensional responses of skinned fibers to in-

FIG. 3. pH-Induced tension in a single skinned fiber. Ca^{2+} loading of the sarcoplasmic reticulum was as described in the Legend to Fig. 2 (fiber diameter, 70 μ M). Loading and rinses with wash solution (W) were at pH 7.00 \pm 0.02. Tensions were elicted by adding KOH to the wash solution to the indicated pH. pH 7.10 did not elicit tension (not shown). R, relaxing solution containing 5 mM EGTA.

creases in medium pH, however, two other effects of increased pH must be considered: depression of Ca²⁺/Mg²⁺-ATPase activity and increased tensional response of contractile proteins to Ca²⁺ (16, 27). As shown in Fig. 3, pH changes up to pH 7.55 increased tension amplitudes and increases up to pH 8.19 caused pronounced delays in relaxation. The increased tension amplitude is consistent with effects of increased pH on contractile proteins and the delayed relaxation is consistent with decreased Ca²⁺ reuptake by the sarcoplasmic reticulum at elevated pH. It is unlikely, however, that depression of Ca²⁺ reuptake by ATPase could account for the relatively rapid tension development observed within the limits of the recording system. Half-maximal tension occurred in ≈ 0.6 sec at each pH. Efflux of Ca²⁺ from isolated sarcoplasmic reticulum vesicles is relatively slow when Ca²⁺ uptake ceases due to ATP depletion (3). In skinned fiber preparations from rabbit psoas muscle, there is also a relatively slow Ca²⁺ loss after substrate removal with a half-time of 5-7 min (ref. 28; unpublished observations).

To determine whether a H⁺ gradient across the sarcoplasmic reticulum membrane or a specific H⁺ concentration at the outer membrane surface was involved in regulation of Ca²⁺ release, we evaluated the effects of pH changes after Ca²⁺ loading at various H⁺ concentrations (Fig. 4). After Ca²⁺ uptake had proceeded at pH 6.5–7.5, an abrupt increase in bath pH of ≈ 0.2 units always caused Ca²⁺ release and tension development. Because pH affects the K_a for Ca²⁺/EGTA (16, 29) and also the activity of Ca²⁺/Mg²⁺-ATPase, it is unlikely that the Ca²⁺ load in the sarcoplasmic reticulum was the same in each case. None-theless, the results rule out the possibility that release is controlled by a specific H⁺ concentration at the outer surface of the membrane and are consistent with the postulate that a H⁺ gradient regulates Ca²⁺ release.

Effect of Ca^{2+} on pH-Induced Ca^{2+} Release. H⁺ ionophoreand pH-induced Ca^{2+} release was always transient, suggesting that the H⁺-regulated Ca^{2+} channels opened briefly and then closed under our experimental conditions. pH-Induced Ca^{2+} release could be transient due to redevelopment of the H⁺ gradient during Ca^{2+} reuptake. Transient tensions obtained with H⁺ ionophore-induced Ca^{2+} release, however, cannot be so readily explained because the presence of the ionophore should inhibit redevelopment of a H⁺ gradient. We considered, therefore, that the increasing Ca^{2+} concentration in the myofilament

FIG. 4. Relationship between loading pH and release pH on tension development in skinned fibers. After the Ca^{2+} loading and rinse steps with wash solution at the loading pH, the fiber was challenged with wash solution at a higher pH (release pH). Data are the smallest pH increases that elicited tension at each load condition (pH steps of 0.10 ± 0.02 were tested). (*Inset*) Δ pH difference between the pH required for triggering Ca^{2+} release and the Ca^{2+} loading pH vs. pH of the loading solution.

space might also be involved in regulation of Ca^{2+} release. We could not test this point directly in skinned fibers because the need to use EGTA to control medium Ca^{2+} depressed tensional responses due to Ca^{2+} efflux from the sarcoplasmic reticulum. However, we were able to evaluate the effect of Ca^{2+} on Ca^{2+} release from isolated vesicles. As shown in Fig. 5, a physiological concentration of free Ca^{2+} (3.3 μ M) in the release medium decreased by about 40% the total amount of Ca^{2+} released by an increase in pH. Fig. 1 also shows that EGTA in the medium enhanced Ca^{2+} release from isolated vesicles, presumably by decreasing the external free Ca^{2+} concentration. Ca^{2+} itself induced some Ca^{2+} release at pH 6.9, but this was only a small fraction of that released by increased pH.

DCCD Blocks pH- or H⁺ Ionophore-Induced Ca²⁺ Release. DCCD, an effective inhibitor of H⁺ translocation in several membranes (30–35), inhibits the activity of Ca²⁺/Mg²⁺-ATPase (36). Fig. 6A shows that incubation of skinned fibers with DCCD for 15 min at pH 6.5 in the presence of EGTA led to complete inhibition of gramicidin- and pH-induced Ca²⁺ release. Fig. 6B shows that Ca²⁺ in the incubation medium prevented the inhibition by DCCD of both gramicidin- and pHinduced Ca²⁺ release. DCCD inhibition was pH dependent and was not observed when the fibers were incubated with DCCD at pH 7.5 in the presence of EGTA. Inhibition was also time dependent, being observed at 5 min but not at 2 min. DCCD did not inhibit caffeine-induced tensions, indicating that Ca²⁺ uptake was not blocked and that contractile protein function remained under the experimental conditions used (data not shown).

DISCUSSION

Of the events leading to skeletal muscle contraction, those involved in Ca^{2+} release from the sarcoplasmic reticulum are the least understood. Our new observations, however, permit us to develop a hypothesis for the mechanism of Ca^{2+} release from the sarcoplasmic reticulum.

Control Mechanism for the Ca²⁺-Release Channel. Previous studies have shown that H^+ are released from isolated sarcoplasmic reticulum vesicles during Ca²⁺ uptake, resulting in the formation of a transmembrane H^+ gradient (11, 12, 14, 37). This gradient could then serve as a controlling element for a Ca²⁺-release channel.

We have shown that the H^+ ionophores gramicidin, nigericin, and CCCP trigger Ca^{2+} release from the sarcoplasmic reticulum of skinned skeletal muscle fibers (Fig. 2). Each iono-

Fig. 5. Ca^{2+} Inhibition of pH-induced Ca^{2+} release from isolated sarcoplasmic reticulum vesicles. Conditions for the uptake and release of Ca^{2+} were as described in the Legend to Fig. 1. Where indicated, ⁴⁵CaCl₂ at the same specific activity as used in the uptake step was added together with the Tris base. The total Ca^{2+} accumulated by the vesicles before Ca^{2+} release was induced was 50 nmol/mg of protein. Conditions: A, pH 7.9; **B**, pH 7.9, ⁴⁵CaCl₂; **e**, pH 6.9, ⁴⁵CaCl₂.

Correction. In the article "A proton gradient controls a calcium-release channel in sarcoplasmic reticulum" by Varda Shoshan, David H. MacLennan, and Donald S. Wood, which appeared in the August 1981 issue of *Proc. Natl. Acad. Sci. USA* (78, 4828-4832), the authors request that the following correction be noted. In the experiment reported in Fig. 5 and discussed on pages 4830 and 4831, the concentration of Ca²⁺ used to inhibit Ca²⁺ release was, in fact, 100 μ M not 3.3 μ M as reported. Consequently, although Ca²⁺ release was measurably reduced by Ca²⁺ in the experiments of Fig. 5, the data neither support nor preclude the possibility that physiological Ca²⁺ levels ($\leq 10 \ \mu$ M) can inhibit Ca²⁺ release.

FIG. 6. DCCD inhibition of Ca²⁺ release in skinned fibers. (A) Effect of 15-min incubation with 50 μ M DCCD on pH-and gramicidininduced Ca²⁺ release. Incubation was at pH 6.5 in relaxing solution (R) containing 170 mM potassium propionate/2.5 mM Mg²⁺/2.5 mM ATP/5 mM EGTA/10 mM imidizole. (B) The same as in A except that the DCCD incubation solution contained 0.1 μ M free Ca²⁺. W, wash solution.

phore can dissipate a H⁺ gradient, but nigericin could also affect K^+ distribution. We interpret these results as indicating that a H⁺ gradient is generated across the sarcoplasmic reticulum membrane during Ca²⁺ uptake in skinned fibers and that dissipation of this gradient triggers Ca²⁺ release. Increasing the pH of the medium by ≈ 0.2 unit in the range from pH 6.5 to pH 7.5 also triggered Ca²⁺ release while decreasing the pH never elicited Ca²⁺ release. These results indicate that a change in a pH gradient, rather than a specific H^{+} concentration at $\ensuremath{\bar{\text{he}}}$ outer membrane surface, is the critical variable triggering Ca² release. Furthermore, the magnitude of the pH increase leading to Ca^{2+} release and tension was in the same range as the H⁺ gradients measured across the membranes of isolated vesicles during active Ca2+ uptake (11, 12, 14, 37). The possibility that Ca^{2+} release induced by changes in medium pH is due primarily to depression of Ca^{2+} -uptake activity is unlikely. Blocking Ca^{2+} / Mg²⁺-ATPase activity by removing substrate leads to a relatively slow Ca²⁺ loss with a half-time of minutes. However, in our experiments, rates of tension development were rapid; halfmaximal tensions developed in < 0.6 sec, the limit of resolution of the recording system.

 \star

Proton ionophores always elicited a transient tension. Analysis of pH-induced Ca²⁺ release in isolated vesicles showed that a free Ca²⁺ concentration of 3.3 μ M decreased the amount of Ca²⁺ released. Analysis of the relationship between free Ca²⁺ concentration and tension in skinned rabbit psoas fibers indicates that 3.3 μ M Ca²⁺ corresponds to \approx 90% of the maximum isometric tension output (ref. 38; unpublished observations). Thus, Ca²⁺ levels corresponding to peak tension can inhibit Ca²⁺ release from H⁺-regulated Ca²⁺ channels. These observations suggest that myoplasmic Ca²⁺ could control the Ca²⁺.

* Correction - foc, Natl Acad Sel. V79(6) March 1982

release channel after dissipation of the H⁺ gradient. Closing of the H⁺-regulated Ca²⁺ channel by Ca²⁺ would permit the pump to remove Ca²⁺ and account for relaxation in the presence of ionophore. The lower limit of Ca²⁺ effects on the channel was not determined, but our data on pH- and ionophore-induced release in skinned fibers suggest that the H⁺ gradient developed during Ca²⁺ uptake eventually replaces Ca²⁺ in maintaining a closed channel. We emphasize that our results do not preclude other effects of Ca²⁺ on the Ca²⁺ permeability of sarcoplasmic reticulum. Moreover, we do not know whether Ca²⁺ in the myofilament space could act directly to close the Ca²⁺ release channel or indirectly, for example, by activation of a regulatory enzyme. To our knowledge, however, this is the first indication that Ca²⁺, at physiological levels, may shut off a rapid Ca²⁺-release process in skeletal muscle.

Identification of the Ca²⁺-Release Channel. The composition of the Ca²⁺-release channel is unknown. The sarcoplasmic reticulum contains several intrinsic proteins, a glycoprotein (18), Ca²⁺/Mg²⁺-ATPase (17), and one or two proteolipids (39– 41). There is no evidence to suggest that the glycoprotein is involved in Ca²⁺ release. The reversal of Ca²⁺ uptake, as noted above, seems unlikely to be a physiological pathway for Ca²⁺ release, although the possibility remains that a Ca²⁺-release channel could reside in one or more transmembrane passages of the ATPase molecule not involved in formation of the Ca²⁺ uptake channel.

The proteolipid is a possible candidate as a Ca²⁺-release channel. Racker and Eytan (40) and Knowles et al. (41) have shown that proteolipid can promote Ca²⁺ movements in reconstituted systems, and they have interpreted their data as suggesting that the proteolipid is involved in Ca²⁺ uptake. However, we have shown that removal of 96% of the proteolipid from ATPase does not affect its ability to transport Ca2+ in a reconstituted system (42). We have also found that DCCD, an inhibitor of Ca²⁺ uptake (36), binds both to ATPase and to proteolipid with a molar stoichiometry of $\approx 1:1$. (unpublished studies). However, DCCD inhibits proteolipid-depleted AT-Pase very effectively, indicating that it is binding to the ATPase that results in ATPase inhibition. As it is unlikely that Ca^{2+} is released through the Ca^{2+} -uptake channel (6), we propose that DCCD inhibition of pH- and ionophore-induced Ca2+ release (Fig. 6A) is exerted through its binding to the proteolipid. In other proteolipids, DCCD has been found to bind to carboxyl groups of aspartic or glutamic acid within relatively hydrophobic amino acid sequences (43).

Proteolipid-mediated cation transport in reconstituted systems was not specific for Ca^{2+} (41). This would not rule out a role for the proteolipid in Ca^{2+} release, however, as the driving force for Ca^{2+} efflux is the steep Ca^{2+} concentration gradient across the sarcoplasmic reticulum membrane. Also, the need for charge neutrality requires that Ca^{2+} efflux must be accompanied either by comigration of anions or by countermovement for cations. Possibly, the proteolipid serves as a common pathway for these charge movements during Ca^{2+} release.

Proton Gradient Dissipation in Excitation–Contraction Coupling. Our hypothesis concerning the involvement of H⁺ gradients in the control of Ca^{2+} release raises the important question of how the pH gradient could be formed and dissipated in excitation–contraction coupling. Studies with isolated vesicles show that the required H⁺ gradient can be formed during the initial phases of Ca^{2+} uptake (12). At present, mechanisms for dissipation of this gradient are speculative. An increase in myoplasmic pH of ≈ 0.2 pH units during excitation, thereby neutralizing the H⁺ gradient across the sarcoplasmic reticulum membrane and stimulating release, or the opening of a H⁺ channel in the sarcoplasmic reticulum membrane, permitting dissipation of the H⁺ gradient by inward H⁺ diffusion along its concentration gradient, are two possible mechanisms for triggering Ca²⁺ release. Meissner and Young (44) recently found evidence for a H⁺ pathway distinct from the K⁺/Na⁺ pathway in isolated vesicles. Whether the H⁺ pathway is regulated is unknown. Clearly, investigation is needed of H⁺ gradient formation and dissipation in muscle cells or compartments during the excitation-contraction cycle *in vivo*.

We thank Dr. Beverly Britt for the use of facilities in her laboratory to carry out a preliminary experiment. The expert technical assistance of Ms. Geraldine Plynton, Columbia University, is gratefully acknowledged. This research was supported by Grant MT-3399 from the Medical Research Council of Canada and by a grant from the Muscular Dystrophy Association of Canada to D.H.M. D.S.W. was supported by a senior investigatorship from the New York Heart Association of America, by Grant NS 11766 from the National Institutes of Health, and by the Muscular Dystrophy Association of America. V.S. was a Postdoctoral Fellow of the Muscular Dystrophy Association of Canada.

- Ebashi, S., Endo, M. & Ohtsuki, I. (1969) Q. Rev. Biophys. 2, 351-384.
- de Meis, L. & Vianna, A. L. (1979) Annu. Rev. Biochem. 48, 275– 292.
- Martonosi, A. (1972) in Current Topics In Membranes and Transport, eds. Bronner, F. & Kleinzeller, A. (Academic, New York), Vol. 3, pp. 83-197.
- 4. Endo, M. (1977) Physiol. Rev. 57, 71-108.
- Fabiato, A. & Fabiato, F. (1979) Annu. Rev. Physiol. 41, 473–484.
 Shoshan, V., Campbell, K. P., MacLennan, D. H., Frodis, W.
- & Britt, B. A. (1980) Proc. Natl. Acad. Sci. USA 77, 4435-4438. 7. Fabiato, A. & Fabiato, F. (1975) J. Physiol. (London) 249,
- 469-495.
 8. Fabiato, A. & Fabiato, F. (1978) Ann. N.Y. Acad. Sci. 307, 491-522.
- 9. Fabiato, A. & Fabiato, F. (1977) Circ. Res. 40, 119-129.
- 10. Meissner, G. & McKinley, D. (1976) J. Membr. Biol. 30, 79-98.
- 11. Madeira, V. M. C. (1980) Arch. Biochem. Biophys. 200, 319-325.
- 12. Chiesi, M. & Inesi, G. (1980) Biochemistry, 19, 2912-2918.
- 13. Meissner, G. (1981) J. Biol. Chem. 256, 636-643.
- 14. Nomura, K. & Nakamaru, Y. (1976) J. Biochem. 80, 1393-1399.
- 15. Nakamaru, Y. & Schwartz, A. (1970) Biochem. Biophys. Res. Commun. 41, 830-836.
- Fabiato, A. & Fabiato, F. (1978) J. Physiol. (London) 276, 233-255.
- 17. MacLennan, D. H. (1970) J. Biol. Chem. 245, 4508-4518.

- 18. Campbell, K. P. & MacLennan, D. H. (1981) J. Biol. Chem. 256, in press.
- Wood, D. S., Zollman, J., Reuben, J. P. & Brandt, P. W. (1975) Science 187, 1075–1076.
- Lowry, O. H. Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951) J. Biol. Chem. 193, 265-275.
- 21. Wood, D. S. (1978) Expt'l. Neurol. 58, 218-230.
- Orentlicher, M., Reuben, J. P., Grundfest, H. & Brandt, P. W (1974) J. Gen. Physiol. 63, 168-186.
- Reuben, J. P., Wood, D. S. & Eastwood, A. B. (1977) in Pathogenesis of the Human Muscular Dystrophys. eds. Rowland, L. P. (Excerpta Medica, Amsterdam), pp. 259-269.
- 24. Pressman, B. C. (1976) Annu. Rev. Biochem. 45, 501-530.
- Hopfer, U., Lehninger, A. L. & Thompson, T. E. (1968) Proc. Natl. Acad. Sci. USA 59, 484-490.
- Degani, H. & Shavit, N. (1972) Arch. Biochem. Biophys. 152, 339-346.
- Shigekawa, M., Finegan, J.-A. M. & Katz, A. M. (1976) J. Biol. Chem. 251, 6894–6900.
- Wood, D. S., Kahn, D. A., Selinger, S. & Reuben, J. P. (1977) Biophys. J. 17, 201 (abstr.)
- 29. Fabiato, A. & Fabiato, F. (1979) J. Physiol. (Paris) 75, 463-505.
- Racker, E. & Horstman, L. L. (1967) J. Biol. Chem. 242, 2547– 2551.
- Patel, L., Schuldiner, S. & Kaback, H. R. (1975) Proc. Natl. Acad. Sci. USA 72, 3387–3391.
- McCarty, R. E. & Racker, E. (1967) J. Biol. Chem. 242, 3435– 3439.
- Nelson, N., Eytan, E., Nostani, B., Sigrist, H., Sigrist-Nelson, K. & Gitler, C. (1978) Proc. Natl. Acad. Sci. USA 74, 2375–2378.
- 34. Fillingame, R. H. (1976) J. Biol. Chem. 251, 6630-6637.
- 35. Celis, H. (1980) Biochem. Biophys. Res. Commun. 92, 26-31.
- 36. Pick, U. & Racker, E. (1979) Biochemistry 18, 109-113.
- Kodama, T., Kurebayashi, N. & Ogawa, Y. (1980) J. Biochem. 88, 1259-1265.
 B. D. W. C. D. N. & K. et M. (1990) D. P. Millet 4.
- Brandt, P. W., Cox, R. N. & Kawai, M. (1980) Proc. Natl. Acad. Sci. USA 77, 4717-4720.
- MacLennan, D. H., Yip, C. C., Iles, G. H. & Seeman, P. (1972) Cold Spring Harbor Symp. Quant. Biol. 37, 469-478.
- 40. Racker, E. & Eytan, E. (1975) J. Biol. Chem. 250, 7533-7534.
- Knowles, A., Zimniak, P., Alfonzo, M., Zimniak, A. & Racker, E. (1980) J. Membr. Biol. 55, 233-239.
- MacLennan, D. H., Reithmeier, R. A. F., Shoshan V., Campbell K. P. & Lebel, D. (1980) Ann. N.Y. Acad. Sci. 358, 138-148.
- Sebald, W., Hoppe, H. & Wachter, E. (1979) in Function and Molecular Aspects of Biomembrane Transport. ed. Quagliariello, E. (Elsevier/North-Holland, Amsterdam) 63-74.
- 44. Meissner, G. & Young, R. C. (1980) J. Biol. Chem. 255, 6814-6819.