SUPPLEMENTARY INFORMATION

The MHC I immunopeptidome conveys to the cell surface an integrative view of cellular regulation

Etienne Caron, Krystel Vincent, Marie-Hélène Fortier, Jean-Philippe Laverdure, Alexandre Bramoullé, Marie-Pierre Hardy, Grégory Voisin, Philippe P. Roux, Sébastien Lemieux, Pierre Thibault*, Claude Perreault*

*To whom correspondence should be addressed. E-mail: <u>pierre.thibault@umontreal.ca</u> (P.T.), <u>claude.perreault@umontreal.ca</u> (C.P.)

• Supplementary Methods.

- **Figure S1.** Rapamycin does not affect levels of proteins involved in the antigen processing and presentation pathway.
- **Figure S2.** Rapamycin increases the abundance of MIPs presented by MHC Ia molecules.
- Figure S3. Cellular processes enriched in the DEM source genes or the DEGs.
- **Figure S4.** DEM source genes are involved in cellular processes and signalling events governed by the mTOR network.
- Figure S5. Cytotoxic activity against VNTHFSHL and KALSYASL is MHC-I restricted.
- **Table S1.** Average intensity measured for 422 peptides eluted from untreated or rapamycin treated (for 48h) β 2m-deficient EL4 cells.
- Table S2. Relative abundance of 422 MIPs upon rapamycin treatment.
- Table S3. GO terms enriched in DEM source genes and DEGs.
- **Table S4.** List of 891 unique peptide source genes encoding H2^b-peptides.

- **Table S5.** List of components from a comprehensive mTOR interactome and signalling network.
- **Table S6.** Relative expression of DEM source genes at multiple regulatory layers.
- **Table S7.** List of primers for quantitative real-time PCR analyses.

Supplementary methods

1. Label-free quantitative proteomics approach

Label-free quantitative proteomics analyses were performed using ProteoProfile an in-house software that comprises three different modules. The peptide detection module generates an exportable .csv file that includes peptide features (m/z value, charge, retention time, intensity, score) subsequently used for clustering analyses. Intensity threshold was typically set to 10,000 counts for Orbitrap LC-MS experiments. Peptide identified by Mascot are then aligned with their corresponding peptide maps and their intensities across replicates and conditions are correlated by the clustering module using a complete linkage hierarchical clustering algorithm similar to that of Bellew et al (Bellew M., Coram M., Fitzgibbon M., Igra M., Randolph T., Wang P., May D., Eng J., Fang R., Lin C., Chen J., Goodlett, D., Whiteaker J., Paulovich A., McIntosh M. (2006) A suite of algorithms for the comprehensive analysis of complex protein mixtures using high-resolution LC-MS Bioinformatics 22 1902-1909). Initially, m/z tolerance of ±0.035 Th and a time difference of 1 min are used for clustering. Normalization of retention time is then performed on the initial peptide cluster list using a dynamic and nonlinear correction. A movingaverage time-window interpolation scheme is used to compute the time shifts for each peptide across the different data sets. This alignment confines the retention time distribution to less than \pm 0.1 min (< 0.3% RSD) on average. Following normalization, peptides are then re-clustered using the complete linkage hierarchical clustering algorithm but with a tighter time tolerance (typically 30 seconds). This clustering analysis enables the comparison of abundance distribution for peptide ions sharing the same m/z, time, charge coordinates. We required confident peptide detection in at least two out of three replicate LC-MS analyses to consider a cluster for subsequent analysis. A simple heuristic function referred to as missing peaks was developed to retrieve missing peptide ions. After clustering, missing peaks will query the raw data for any replicates missing within a given cluster due to low intensity or false negative detection errors. The m/z and retention time of the average peptide clusters are used as a starting point in searching the raw data of the missing peptide. By using the time normalisation function, adjustment of target time is performed to efficiently locate the coordinates of missing peptide. Peak apex located within \pm 0.035 Th and ± 1 min of the target peptide coordinates is then considered. The RSD value of the retrieved peak must be within typically ± 25 % of the average cluster intensity to be considered. In 2D LC-MS data, clustering is performed across salt fractions to combine the intensities of the same peptide found over adjacent fractions (typically £ 2). Differentially abundant peptides were selected on the basis of their statistical significance (p≤0.05 using a paired t-test) and reproducibility of the control to challenge peptide-intensity ratio (at least 2-fold in 2 out of 3 replicate runs). The data generated by the clustering program and the peptide maps are available as Excel .csv file and can be included in downstream programs for further analysis. Peptide ions of interest were manually validated using the validation module that enables the verification of all ions assigned to a specific peptide cluster.

2. PHP script for MHC class I peptide selection

```
function isMHCpeptide($pepseq) {
$peplength = strlen($pepseq);
$poslast = substr($pepseq, $peplength -1, 1);
if (peplength \ge 8 \&\& peplength \le 9) {
pos3 = substr(pepseq, 2, 1);
pos5 = substr(pepseq, 4, 1);
pos7 = substr(pepseq, 6, 1);
if (preg_match('/[ILVMF]/', $poslast) && ((preg_match('/[YF]/', $pos3) && $peplength == 8) ||
preg_match('/[YF]/', $pos5) ||
(preg_match('/[H]/', pos7) \&\& peplength == 9) || (preg_match('/[N]/', pos5) \&\& peplength)
== 9))) {
return 1;
} else
if (peplength == 9 \&\& preg_match('/LLL$/', $pepseq)) {
return 1;
}
} else
if (peplength >= 10 \&\& peplength <= 13) {
pos5 = substr(pepseq, 4, 1);
if (preg match('/[N]/', $pos5) && preg match('/[ILVMF]/', $poslast)) {
return 1;
}
}
return 0;
}
```


Figure S1. Rapamycin does not affect levels of proteins involved in the antigen processing and presentation pathway (Jensen *et al.,* 2007). Levels of the indicated proteins were determined by western blotting. β -actin and α -tubulin served as loading controls. Data are representative of three independent experiments.

Figure S2. Rapamycin increases the abundance of MIPs presented by MHC Ia molecules. (**A**) Representation of unsupervised hierarchical clustering of 416 MIPs detected and quantified at different time points. 6 MIPs were detected exclusively after 48h of rapamycin treatment and were not included in the clustering analysis. MIPs are represented vertically, and experimental conditions (i.e., rapamycin time course) are displayed horizontally. Clusters for H2K^b-, H2D^b-, and Qa1/2-associated peptides are shown with the mean temporal profile in A1-A8. The number of MIPs per cluster is indicated in parenthesis. Clusters A1,2,4,5 and 7 show MIPs that were progressively overexpressed upon rapamycin treatment. (**B**) Cell surface expression of MHC I allelic products was evaluated by flow cytometry after 48h of rapamycin treatment. Histogram shows the rapamycin/ctrl mean fluorescence intensity ratio for H2K^b, H2D^b, Qa1, and Qa2. (n=6, **P* < 0.005, Student *t*-test).

Ge ne symbol	Cell cycle/proliferation	Proteasome	Protein complex assembly	Protein transport	DNA replication	Transcription	
Ankrd26							
Ap2a1							
Ap2a2							
Ash1I							
BC066107							
Bptf							
Bub1b							
Ccnf							
Chaf1b							
Copb1							
Dlg7							
Dtl							
Erbb2ip							
Foxj3							
Hivep2							
Mnat1							
Mphosph1							
Myb							
Plagl2							
Psma3							
Psmb8							
Psmb9							
Psmd2							
Ptpn11							
Rcc2							
Rfc2							
Sec24c							
Slc12a6							
Supt16h							
Taf6							
Tfdp2							
Tmod1							
Vps33a							
Yif1a							
Zfp157							
Zfp273							
Zfp62							
Znrd1							

Figure S3. Cellular processes enriched in the DEM source genes or the DEGs. (**A**) Representation of 38 genes encoding DEMs (rows) in 6 cellular processes (columns) that were enriched in the GO analysis. See also Supplementary Table S2.

Gene symbol	Jnfolded protein response	:R-nucleus signaling	signal transduction (small GTPase)	hospholipid metabolic process	teg. of kinase activity	Protein transport	Apoptosis	Ge
Agpat4		-	0,		-		1	
Adpat9								
Akap13								
Ap3m2								
Arf2								
Arfgap3								
Arhgef10								
Arl4a								Ko
Arl9								
Atf5								
Avpl1								
Bcl2l11								N
Bmf								M
Card6								
Casp4								N
Cdkn1a								N
Cebpg								N
Cept1								
Deriz Derko								
Duop16								
Ero1								Γį
Evi5l	-			-	-			
Evici Exoc4								Pin
Fas								Ple
Fcer1a								Pm
Fgd6								Ra
Gadd45a								Ra
Gadd45g								F
Gla								R
Gng3								Ra
Gsk3b								
			-			-		Ra

Figure S3 continued. Cellular processes enriched in the DEM source genes or the DEGs. (B) Representation of 101 underexpressed genes (rows) in 7 cellular processes (columns) that were enriched in the GO analysis. See also Supplementary Table S2.

Figure S3 continued. Cellular processes enriched in the DEM source genes or the DEGs. (**C**) Representation of 70 overexpressed genes (rows) in 8 functional classes (columns) that were enriched in the GO analysis. See also Supplementary Table S2.

Figure S4. DEM source genes are involved in cellular processes and signaling events governed by the mTOR network. Source genes encoding DEMs were analyzed with the STITCH database (http://stitch.embl.de/) and the network was elucidated based upon protein-protein interactions, protein-chemical associations, and functional associations. The emerging network elucidates a total of 30 DEM source genes distributed within different subnetworks, such as apoptosis, cell cycle/proliferation, DNA replication, lipid biosynthesis, proteasome, transcription, translation, mTOR signaling and tyrosine kinase receptors (TKRs) signaling. Rapamycin and everolimus (rapamycin analog) are the 2 unique chemicals that were revealed in the network. Symbols and arrows in the network are illustrated in the legend.

Figure S5. Cytotoxic activity against VNTHFSHL and KALSYASL is MHC-I restricted. Specific lysis against wild-type and β 2-microglobullin deficient CFSE-labeled EL4 cells (Fortier *et al.*, 2008) was estimated as in figure 7 at E:T ratio of 200:1 in the presence or absence of 5mg/ml of anti-CD8 β antibody (clone H35-17.2). Data represent the mean ± SD for three mice per group.

Table S3. GO terms enriched in DEM source genes and DEGs. DAVID bioinformatics resources (http://david.abcc.ncifcrf.gov/) were used to identify enriched biological processes (*P*<0.05) associated to DEGs and to genes coding for DEMs. Functionally related GO terms were annoted within unique cellular processes (last column). Biological processes enriched in DEM source genes are highlighted in blue. Biological processes enriched in over- and underexpressed mRNAs are highlighted in red and green, respectively.

	GO term	GO number	Genes in sample	p value	Gene symbol	Cellular processes in Figure 3 and Supplementary Figure S3
۲	Regulation of progression through cell cycle	GO:0000074	7	0.007	Bub1b, Ccnf, Ptpn11, Psmd2, Slc12a6, Tfdp2, Dlg7	
ji bė	M phase of mitotic cell cycle	GO:000087	5	0.012	Bub1b, Ccnf, Rcc2, Dlg7, Mphosph1	Cell cycle/promeration
che	DNA replication	GO:0006260	4	0.044	Rfc2, Dtl, Chaf1b, Supt16h	DNA replication
es enri 9 genes	Transcription, DNA-dependent	GO:0006351	17	0.042	Hivep2, Mnat1, Myb, Taf6, Zfp62, Plagl2, Znrd1, Zfp157, Chaf1b, Supt16h, Ash1l, Bptf, Tfdp2, Zfp273, Foxj3, Ankrd26, BC066107	Transcription
ocess'	Regulation of transcription, DNA-dependent	GO:0006355	17	0.038	Hivep2, Mnat1, Myb, Taf6, Zfp62, Plagl2, Znrd1, Zfp157, Chaf1b, Supt16h, Ash1l, Bptf, Tfdp2, Zfp273, Foxj3, Ankrd26, BC066107	Tansonption
d M	Protein complex assembly	GO:0006461	4	0.047	Ap2a1, Ap2a2, Tmod1, Copb1	Protein complex assembly
gica DE	Intracellular transport	GO:0046907	8	0.048	Ptpn11, Erbb2ip, Sec24c, Mphosph1, Ap2a1, Ap2a2, Yif1a, Copb1	Protoin transport
siolo	Protein transport	GO:0015031	8	0.043	Ptpn11, Erbb2ip, Sec24c, Vps33a, Ap2a1, Ap2a2, Yif1a, Copb1	Protein transport
Э	Proteasome complex	GO:0000502	4	0.011	Psma3, Psmb8, Psmb9, Psmd2	Proteasome

As)	Translation	GO:0006412	15	0.012	Lama5, Rpl10a, Eif3s9, Mknk2, Wdr46, Rpsa, Eif4a2, Rps15a, Mrpl12, Eftud2, Tnf, Eef1e1, Spn, Tnfrsf7, Rps13	Translation
RN/	DNA replication	GO:0006260	8	0.010	Pole2, Mcm2, Mcm6, Dna2l, Nfix, Orc1l, Phb, Nasp	DNA replication
essed m	Positive regulation of cellular metabolic process	GO:0031325	19	0.037	E2f3, Lef1, Ppargc1b, Smarcc1, Etv5, Hnrpab, Thrap3, Tnf, Tnfrsf7, Rara, Spn, Sox2, Myc, Dhcr24, Aven, Sod2, Tnfrsf7, Dix1, Angptl4	Cell cycle/proliferation
orpro	Steroid biosynthetic process	GO:0006694	9	0.00001	Dhcr7, Dhcr24, Hmgcr, Idi1, Oprs1, Hsd17b7, Mvd, Nsdhl, Hmgcs1	
(over	Steroid metabolic process	GO:0008202	11	0.00006	Konma1, Ldir, Dhcr7, Dhcr24, Hmgcr, Idi1, Oprs1, Hsd17b7, Mvd, Nsdhi, Hmgcs1	
DEGS	Cholesterol metabolic process	GO:0008203	9	0.00001	Dhrc7, Hmgcr, Hsd17b7, LdIr, Nsdhl, Dhcr24, Mvd, Hmgcs1, Idi1	Linid biosynthesis (storol)
ed in I	Lipid biosynthetic process	GO:0008610	15	0.00001	Dhcr7, Fasn, Hmgcr, Hsd17b7, Fabp5, Nsdhl, Oprs1, B4galt6, Pcyt2, Dhcr24, Aacs, Mvd, Hmgcs1, Aytl2, Idi1	
enrich	Sterol metabolic process	GO:0016125	10	0.000001	Dhrc7, Hmgcr, Hsd17b7, Ldir, Nsdhi, Oprs1, Dhcr24, Mvd, Hmgcs1, Idi1	
ses e	Sterol biosynthetic process	GO:0016126	9	0.00000001	Dhrc7, Hmgcr, Hsd17b7, Nsdhl, Oprs1, Dhcr24, Mvd, Hmgcs1, Idi1	
ces	rRNA processing	GO:0006364	6	0.001	Rrp1b, Exosc6, Utp14b, Bop1, Rnu3ip2, Ebna1bp2	rRNA processing
cal pro	RNA processing	GO:0006396	17	0.0001	Sf3b3, Rrp1b, Ppih, 6720458F09Rik, Syncrip, Hnrpab, Magoh, Bop1, Rnu3ip2, Ddx54, Pusl1, Lsm7, Exosc6, Eftud2, Utp14b, Lsm2, Ebna1bp2	
liologi	Positive regulation of transcription, DNA- dependent	GO:0045893	9	0.043	E2f3, Hnrpab, Lef1, Rara, Smarcc1, Eftud2, Tnf, Ppargc1b, Thrap3	Transcription
ш	Positive regulation of transcription	GO:0045941	10	0.047	Etv5, E2f3, Hnrpab, Lef1, Rara, Smarcc1, Eftud2, Tnf, Ppargc1b, Thrap3	

Pyrimidine base metabolic process	GO:0006206	3	0.008	Dhodh, Ecgf1, Umps		
Pyrimidine nucleotide biosynthetic process	e biosynthetic process GO:0006221 4 0.003 Tyki, Dhodh, Ecgf1, Umps		Nucleotide biosynthesis			
Nucleobase metabolic process	GO:0009112	3	0.026	Dhodh, Ecgf1, Umps		
Regulation of cell size	GO:0008361	6	0.044	Cspg5, Sfn, Ruvbl1, Socs1, Rasgrp2, Ppan	Coll growth	
Regulation of cell growth	GO:0001558	6	0.015	Cspg5, Sfn, Ruvbl1, Socs1, Rasgrp2, Ppan	Cell growth	
rRNA metabolic process	GO:0016072	6	0.001	Ebna1bp2, Rrp1b, Exosc6, Utp14b, Bop1, Rnu3ip2	rRNA processing	

	Apoptosis	GO:0006915	29	0.038	1200009F10Rik, Atf5, Bcl2l11, Bmf, Card6, Casp4, Cdkn1a, Cebpg, Ern1, Fas, Fcer1g, Gadd45g, Gsk3b, lfng, lhpk2, Irak2, Jak2, Kras, Litaf, Nme5, Nr4a1, Plekhf1, Pmaip1, Rarg, Sema6a, Traf2, Trib3, Tsc22d3, Ube2z		
As)	Cell death	GO:0008219	30	0.044	1200009F10Rik, Att5, Bcl2l11, Bmf, Card6, Casp4, Cdkn1a, Cebpg, Ern1, Fas, Fcer1g, Gadd45g, Gsk3b, Ifng, Ihpk2, Irak2, Jak2, Kras, Litaf, Nme5, Nr4a1, Plekhf1, Pmaip1, Rarg, Sema6a, Tnfrsf1b, Traf2,		
sed mRN/	Regulation of apoptosis	GO:0042981	22	0.025	Bcl2l11, Casp4, Cdkn1a, Cebpg, Fas, Fcer1g, Tsc22d3, Nr4a1, Kras, Rarg, Traf2, Gsk3b, Pmaip1, 1200009F10Rik, Plekhf1, Nme5, Ihpk2, Ern1, Atf5, Irak2, Bmf, Card6	Apoptosis	
s (underexpres	Positive regulation of programmed cell death	GO:0043068	12	0.040	Bcl2l11, 1200009F10Rik, Casp4, Cdkn1a, Cebpg, Ern1, Fas, Ihpk2, Nr4a1, Plekhf1, Pmaip1, Rarg		
l in DEG	Intracellular protein transport	GO:0006886	26	0.002	Ap3m2, Arf2, Arl4a, Jak2, Rab6, Snap23, Stx1a, Rnf13, Gsk3b, Arfgap3, Tigd2, Sec24d, Optn, Pex26, Tmem81, Stx11, Mxra8, Sytl2, Sytl3, Kdelr3, H47, Derl2, Wdr19, Zfyve16, Stk38l, Sytl1		
sses enriched	Protein transport	GO:0015031	37	0.004	Arf2, Arl4a, Jak2, Lyst, Rab3d, Rab6, Exoc4, Snap23, Stx1a, Vps45, Rnf13, Gsk3b, Ap3m2, Arfgap3, Tigd2, Sec24d, Optn, Pex26, Tmem81, Stx11, Mxra8, Sytl2, Sytl3, Kdel3, H47, Derl2, Mcfd2, Wdr19, Zfyve16, Stk38l, Pgap1, Sytl1, Sft2d2, Rrad, Slc25a14, Slc25a36, Tubb6	Protein transport	
oroces	Membrane lipid metabolic process	GO:0006643	11	0.036	A230097K15Rik, Agpat4, Cept1, Neb, Pcyt1b, Pign, Pigv, Pip5k1b, Samd8, Smpd1, Gla	Phoenholinid matcholic process	
gical I	Phospholipid metabolic process	GO:0006644	10	0.020	A230097K15Rik, Agpat4, Cept1, Neb, Pcyt1b, Pign, Pigv, Pip5k1b, Samd8, Smpd1	Phospholipid metabolic process	
iolo	ER-nuclear signaling pathway	GO:0006984	6	0.0005	Derl2, Ern1, Ero1l, H47, Ifng, Gsk3b	ER-nucleus signaling	
60	Small GTPase mediated signal transduction	GO:0007264	24	0.001	Akap13, Arf2, Arhgef10, Arl4a, Arl9, Evi5l, Fgd6, Kras, Nisch, Rab28, Rab3d, Rab6, Rabl3, Rap2a, Rasa4, Rassf1, Rerg, Rhoc, Rhou, Rit1, Rrad, Rras, Sipa1l2, Wdr67	Signal transduction (small GTPase)	
	Unfolded protein response	GO:0030968	5	0.001	Derl2, Ern1, Ero1l, H47, Ifng	Unfolded protein response	
	Regulation of kinase activity	GO:0043549	11	0.027	Gadd45g, Gng3, Gadd45a, Trib3, Cdkn1a, Irak2, Spred3, Ern1, Avpi1, Dgka, Dusp16	Regulation of kinase activity	

	mR	RNA	Norm polvsom	alized al mRNA	Pro	Protein		MIP	
Gene symbol	FC	p value	FC	p value	FC	p value	FC	p value	
Ap2a2	0.77	0.09	0.78	0.17	n.d.	n.d.	3.39	0.007	
Ap2a1	1.17	0.18	0.64	0.047	n.d.	n.d.	2.58	0.01	
Bptf	1.42	0.06	1.12	0.12	n.d.	n.d.	4.70	0.004	
Bub1b	1.66	0.02	0.64	0.002	n.d.	n.d.	3.62	0.05	
Ccnf	3.07	0.01	0.92	0.04	n.d.	n.d.	6.05	0.02	
Cenpm	1.15	0.16	1.25	0.21	n.d.	n.d.	3.90	0.01	
Chaf1b	1.71	0.01	0.66	0.02	n.d.	n.d.	2.62	0.03	
Chtf18	2.46	0.004	0.61	0.002	n.d.	n.d.	4.47	0.04	
Dhcr7	3.74	0.01	0.75	0.07	n.d.	n.d.	3.81	0.009	
Dtl	1.47	0.048	0.80	0.03	n.d.	n.d.	2.52	0.02	
Erbb2ip	0.95	0.83	0.81	0.13	n.d.	n.d.	4.64	0.03	
Hivep2	0.87	0.30	1.17	0.47	n.d.	n.d.	2.94	0.03	
lgf2r	1.08	0.61	1.40	0.67	n.d.	n.d.	3.18	0.002	
Mnat1	0.65	0.04	0.79	0.002	n.d.	n.d.	3.56	0.01	
Myb	1.54	0.04	0.98	0.08	2.16	0.01	4.34	0.01	
Nsmaf	0.98	0.88	1.05	0.81	n.d.	n.d.	3.47	0.004	
Pabpc1	1.25	0.06	1.77	0.03	0.96	0.23	3.41	0.001	
Pin1	0.92	0.08	1.21	0.23	n.d.	n.d.	3.02	0.02	
Psma3	0.89	0.053	1.02	0.61	n.d.	n.d.	2.60	0.02	
Psmb8	1.05	0.34	0.96	0.54	1.01	0.44	5.39	0.02	
Psmb9	0.96	0.11	1.00	0.46	0.97	0.24	4.67	0.01	
Psmd2	0.98	0.92	0.54	0.001	n.d.	n.d.	3.46	0.02	
Ptpn11	0.84	0.22	1.20	0.42	n.d.	n.d.	2.79	0.02	
Rcc2	1.09	0.43	0.76	0.02	n.d.	n.d.	3.24	0.07	
Rfc2	1.25	0.19	0.88	0.03	1.06	0.18	5.31	0.02	
Rictor	1.26	0.02	1.15	0.17	1.06	0.28	9.73	0.003	
Rpl27	0.91	0.47	1.10	0.53	n.d.	n.d.	4.63	0.001	
Rps15	1.07	0.64	1.14	0.44	n.d.	n.d.	2.52	0.02	
Sgk1	2.30	0.04	1.16	0.07	0.9	0.13	9.21	0.03	
Supt16h	1.31	0.09	0.59	0.004	n.d.	n.d.	8.91	0.01	
Taf6	1.08	0.42	0.77	0.04	n.d.	n.d.	4.07	0.003	
Tfdp2	2.65	0.03	1.11	0.87	1.29	0.04	7.92	0.004	
Tnfsf10	4.58	0.02	2.03	0.04	n.d.	n.d.	8.97	0.01	

Table S6. Relative expression of DEM source genes (blue) at multiple regulatory layers (see also Fig. 3b). Fold change (FC) represents the rapamycin/ctrl abundance ratio. Overexpressed (red) and underexpressed (green): *P*<0.05, no change (grey). n.d.: not determined. (n=3, Student *t*-test).

 Table S7. List of primers for quantitative real-time PCR analyses

Gene symbol	Gene ID	Primer A	Primer B	Probe
Ap2a1	11772	CCTGGCTGTGTCTCGCTTA	TGTAGTCCTGGAGGTCAGTGG	Universal Library probe: #73
Ap2a2	11771	CTGTCTCGCTAGCTGTCTCG	CCTGAAGATCTGTTGATGCAGA	Universal Library probe: #15
Bptf	207165	CACCGTACGATGAGTCCAAA	CCCGTGGTACCAATTCTGAC	Universal Library probe: #76
Bub1b	12236	GTGTCGGAGGTGCTCTGAA	TGGGGAACTGCATTTAGGAA	Universal Library probe: #85
Ccnf	12449	GGCTTTCTGTTGGGGACAT	CCAGGTACTTGAGGTGGGAGT	Universal Library probe: #56
Cenpm	66570	TTGTGTTTGTGATTAACCTGCAC	AGCTGCTGTCCACGTGCT	Universal Library probe: #25
Chaf1b	110749	GCAGATCGCCTTTCAGGA	TTGCCCAGCAAATATCATACA	Universal Library probe: #63
Chtf18	214901	CACCTGATGGGCAGTACCTC	CTTTCGGGCAGGTAGTTCAG	Universal Library probe: #78
Dhcr7	13360	CCTTGTGGGTCAGCTTCC	CCACATAACCTGGCAGAAATC	Universal Library probe: #29
Dtl	76843	GCTGCCTACATTTGGAAGGT	AGAATGACCCAGGAGCACAG	Universal Library probe: #88
Erbb2ip	59079	AAATGGTGCTTACTAATTACATGTTCC	GCAGGATTAAAACTTTCATTATCTGA	Universal Library probe: #66
Hivep2	15273	ATTGATTTCATTGGAACATTCTCTC	ATGATTGTCCTGACGCTTCC	Universal Library probe: #20
lgf2r	16004	TCAGTATGCAAAGTTCCTGTGG	TTGAATATTGGAGGGCCTGT	Universal Library probe: #53
Mnat1	17420	TGCAGCAGGCTCTGAAAAG	AGCAGAGCAACAGGGAGGT	Universal Library probe: #78
Myb*	17863	Mm00501741		
Nsmaf	18201	CTTGCAATGGCTCTTCAGTCT	TCTTTGTAGCATTTTGGATTCCT	Universal Library probe: #10
Pabpc1	18458	GGTGCCAGACCTCATCCA	TGTGAGGAAGCTGGTCTCATC	Universal Library probe: #68
Pin1**	23988	ACAGTTCAGTGATTGCAGCTCTGCCA	AAAGATCACCAGGAGCAAGGAGGA	TGGTTTCTGCATCTGACCTCTGCT
Psma3	19167	GAAGCAGAGAAATATGCCAAGG	GCAACTGTTACAGAAATGTAAACCA	Universal Library probe: #60
Psmb8	16913	CACACTCGCCTTCAAGTTCC	TCTCGATCACTTTGTTCATCCTT	Universal Library probe: #81
Psmb9	16912	GCCCAAGCCATAGCTGAC	GATGTTCTTCACCACGTTTGC	Universal Library probe: #78
Psmd2	21762	AATGGGAGATTCCAAGTCCA	TGACATCTCCATTGCAGGAC	Universal Library probe: #10
Ptpn11	19247	GAACATGACATCGCGGAGA	AACTGCCATCGACTCCTCTG	Universal Library probe: #18
Rcc2	108911	CTATCAGTTGGGGTCCATCG	AGAAGATGCCATCCAGAGTCTT	Universal Library probe: #79
Rfc2	19718	TTGAAGCTCAACGAAATAGTGG	GGGCACATTGCCTTCTCTT	Universal Library probe: #100
Rictor	78757	TTCCACTACAGACACAGTCCAGA	TGGCTAGAAATCGTGCTTCTC	Universal Library probe: #41
Rpl27	19942	TGAAAGGTTAGCGGAAGTGC	TTTCATGAACTTGCCCATCTC	Universal Library probe: #40
Rps15	20054	TCGACCAACTGCTCGACAT	GCGCTTGAGCAGTGAGTGT	Universal Library probe: #82
Sgk1	20393	TGCCAGCAACACCTATGC	GAGGGGTTAGCGTTCATAAGC	Universal Library probe: #92
Supt16h	114741	TCATGAAGACCATTGTTGATGAC	CGTCCTCAGCGTCACTCC	Universal Library probe: #83
Taf6	21343	GGATGTCTGCCTCAAAGCTC	CTCAGCCTTCTGCTGCTCTT	Universal Library probe: #20
Tfdp2	211586	CGCAATGGTCACTCAGACTC	TCTCTAGCTCGTTTTCTATCACTGG	Universal Library probe: #66
Tnfsf10	22035	TGAGAACCTTTCAGGACACCA	GAGCTGCCACTTTCTGAGGT	Universal Library probe: #52

* Pre-designed Taqman gene expression assay from Applied Biosystems

** Custom Taqman probe (Integrated DNA Technologies) specific assay