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ABSTRACT  Exact population genetic models of one-locus sib-
to-sib kin selection with an arbitrary number of alleles are studied.
First, a.natural additive scaling is established for the genotypic
value associated with probabilities of performance of altruism.
Two classes of polymorphic equilibria are possible, one corre-
sponding to the usual one-locus viability equilibria and the other
reflecting the kin-selection assumptions of the model. At both, the
covariance between additive genotypic value and genotypic fitness
vanish. Further, the sign of this covariance determines the fate
of rare alleles introduced near the first class of equilibria. In ad-
dition, the covariance explains the differences between Hamilton’s
rule, which results from Hardy-Weinberg assumptions, and exact
initial increase conditions.

Our previous papers introduced exact population genetic
models of kin selection among first-degree relatives (1-3).
These models were constructed in the spirit of Hamilton (4) but
were expressed and analyzed in terms of genotype rather than
of gene frequencies. Gene-frequency treatments (5-7) with
Hardy-Weinberg assumptions produce conditions for initial in-
crease of an altruistic allele that agree with the rule first stated
by Hamilton. Hamilton’s rule is usually understood to entail
that an altruistic allele should increase in frequency when rare
if Bry > v, where B is the gain in fitness to recipients of altru-
ism, 7 is the fitness loss of altruists, and ry is a measure of the
genetic relationship between these participants.

In their exact population genetic treatment, Cavalli-Sforza
and Feldman (1) showed that additive composition of losses and
gains to form genotypic fitnesses usually produced initial in-
crease conditions in agreement with Hamilton’s rule. Further
examination of the exceptions found in ref. 1 led us to suggest
(3) that within the context of additive combination of losses and
gains an appropriate value of ry is the regression of the recip-
ient’s additive genotypic value on that of the altruist.

More generally, Hamilton’s rule suggests that, if ry is fre-
quency dependent, polymorphic equilibria should entail Bry
= . With the correct frequency-dependent interpretation of
ry, this equation was shown (3) to produce a class of poly-
morphic equilibria in models of sib-to-sib-altruism except in
those cases in which the donor was diploid and the recipients
included members of the opposite sex to the altruists. In fact,
two classes of polymorphic equilibria may coexist and, even
when the same condition entails initial increase and local sta-
bility of fixation of the altruistic allele, fixation may not be glob~
ally stable (1).

In this paper, we extend the exact population genetic theory
with additive combination of losses and gains to include an ar-
bitrary number of alleles. We develop a suggestion made by Li
(8), Price (9), and Hamilton (10) concerning:the covariance be-
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tween additive genotypic value and fitness and use it to produce
a unified theory for initial increase and polymorphism.

MODELS OF SIB-TO-SIB ALTRUISM

Consider a set of n alleles {A;} at a single locus. When all in-
dividuals are diploid, the genotypes A,A; have frequencies u,.
When it is necessary to differentiate the sexes in the diploid
case, the male and female frequencies are denoted m, and fi»
respectively. In the haplodiploid case, diploid A,A; females have
frequency f; while that of A; males is m;. In the diploid case,
the frequency of A; (without regard to sex) is p; = u,; + 1/2
2;x; uy. Where it is necessary to differentiate the sexes in the
diploi(qi case and in the haplodiploid case, the frequency of A;
in females is f; = f; + 1/2 2., f,,, with m, the corresponding
value in males. In models in whigh A, can perform altruism,
it does so with probability h;; and, for males of genotype A,, the
corresponding probability is denoted g;. The losses and gains
to the fitnesses of each genotype follow the composition of Cav-
alli-Sforza and Feldman (1) for their additive model, as extended
by. Uyenoyama and Feldman (3). We present the resulting re-
cursions of the genotypic frequencies for the cases of diploid sib-
to-sib altruism and haplodiploid sister-to-brother altruism. Re-
cursions for the other cases of sib altruism can be derived in the
same way as in Uyenoyama and Feldman (3).
Recursions. Diploid, sib-to-sib altruism:
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Haplodiploid, sister-to-brother altruism:

Tsfi = fml = hy) 4]
and, if € # i,
Tyfie = (mi fe + mef)1 = hyey), 5]
Tm; = fi E,: L+ hy) + g.f"‘ 2m
X [1 + EBG"’ + hjk)], (6]
where
T=1-7v2 X fmhy [7a]
and o
T,,,=l+B§:‘§f‘mth. [7b]

Construction of Variances and Covariances. Before regres-
sion coefficients among relatives can be défined, an appropriate
quantitative .value must be assumed to correspond with each
genotype. Following the usual formulation from the theory of
quantitative inheritance (11-13), we assign to the diploid geno-
type AA; the genotypic value (@; + @) and to the haploid geno-

type A, tile genotypic value ¢;. The genotyplc scale coefficients
{a;} are chosen such that the mean-squared deviation between
the genotypic value and the phenotypic value—namely, the
propensity to perform altruism—is minimized in the following
way. In those cases in which the altruists are diploid, the mean-
squared deviation, calculated at birth, before selection, is

2 2 miflty -

where, for example, m, and f; are the gene frequencies in the
parental generation at the time of mating. Here, A,A; performs
altruism with probability h;;, which entails a phenotypic devia-
tion h; — h from the average in the populationk = = = m; fh.
To find expressions for the a; in terms of gene frequencnes and
hy, we differentiate D? w1th resp_gct to ¢; and determine the
genotypic values that minimize D?. This produces the normal
equations for the «;,

> (m,f; + my f)hy — B) — (
j

These linear equations can then be solved for the «;. For the
case of diploid sib-to-sib altruism, in which the sexes are not
distinguished with respect to the performance or reception of
altruism, m; = f; = p, and Eq. 9 reduces to the familiar formula

> phy =) = a. [10]
J

When altruism is performed by males in the haplodiploid sys-
tem, the mean-squared deviation is

= (e + )] = D%, 8]

o+ a)=0i=12,...,n [9]

> fllg; =8 - &l = D, [11]

where g = Z, fig;, from which we immediately have a; = g,
— . The a; obtained according to the above procedure are the
“average effects” defined by Fisher (13).

By using the genotypic values obtained in this way, variances
and covariances of genotypic values among siblings can be com-
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puted for each model. These quantities for the cases of diploid
sib-to-sib and haplodiploid sister-to-brother altruism are as fol-
lows. Diploid, sib-to-sib altruism: (i) sexes not distinguished,

=2 D ppfei — o [12]
L

var(sib)

cov(sib,sib) = E E (pipj - i“”) (a; — aj)2. [13]
i g
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var(sibae) = var(sibgemale)

2 2 (mm; + f; f)a aj)2 [14]
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Haplodiploid, sister-to-brother altruism:

var(s) = 5 50 S tmamy + fflos — o, (6]
L |
cov(SS) = % 2 2 (mimj +fif - ‘-l‘ fg) (0 = a)* [17]
i

cov(SB) = é > (f.~f, - ifg) (= a)f, (18]
i

where S and B refer to haplodiploid sister and brother, and sib
refers to diploids.

Note specifically that, because u;; and f; refer to genotype
frequencies in the parental generatlon after selection, these
quantities cannot properly be replaced by Hardy-Weinberg
combinations of gene frequencies (see refs. 1 and 3).

Covariance Between Fitness and Genotypic Value. Li (8)
and Price (9) have suggested that the covariance between geno-
typic value and genotypic fitness provides a useful device for
describing initial increase conditions and the structure of poly-
morphic equilibria under viability selection at a single locus.
In the present context, we can write, for example,

Tff i = fimidy; [19]

where ¢, is a representation of the fitness of A/A; and f;m; is the
frequency of A, at birth. By using the fitnesses of the geno-
types defined in this way and the genotypic distribution at birth,
the covariance between female (sister) genotype (i.e., its ad-
ditive genotypic value) and female fitness, in the diploid case
is written cov(SG,SF), and

v(SG,SF) = E 2T fy + 2 > (o + )Ty fy
i j#Ei
- TJ’Ef' E m(a; + a) [20]
= 2Tf2 a,-f,- - TfE m; +fi)al

In Eq. 13, T f}; and T,f; represent the right sides of genotypic
recursions for the appropriate model, for example Egs. 1 and
2above. Similarly, the covariance between male (brother) geno-
type and fitness for diploids is written cov(BG, BF) with
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1
cov(BG,BF) = 2 2a,T,mj; + 52 2 (a; + a))T,,;my;
i i jei

=T, (m + ey, [21]
i

Note that Egs. 20 and 21 together imply that for diploids in
which the sexes are distinguished
cov(SG,SF)  cov(BG,BF)

+
T T,

=2 lafmi +f) = afm, + f)] (2]
while, when sexes are not distinguished, we write cov(sib G,sib
F) with

BEDD 23 afri- . 23]

For haplodiploids, the covariance between male (brother)
genotype and fitness is

cov(BG,BF) = > a,T,m; — T, D, fiey. [24]
Then Eq. 24 can be combined with Eq. 20 to form
cov(SG,SF) + cov(BG,BF)
T T,
= ol + 2f) — (m, + 2 [25]
for haplodiploids.

Heuristically, we expect genotypes with positive genotypic
values to increase if the total covariance between genotype and
fitness (Eqs. 22, 23, and 25) is positive. Further, equilibria
should exist at points for which the total covariance is zero.

RESULTS OF ANALYSIS OF THE MODELS
Model I: Diploid; Sib-to-Sib Altruism. Polymorphic equilib-
ria. The equilibrium condition p; = p,, which, from Eq. 16,
entails cov(sib G,sib F) = 0 can be expanded as

B {2 > [m - iu,j] (o — a,)?} —2yX paf=0 [26]
i g i

or
Beov(sib,sib) — yvar(sib) = 0. [27]

Two classes of equilibria may then exist. The first is defined by
var(sib) = 0, which is satisfied only if ; = a; for all i and j. From
the calculation of a;, at these equilibria we have for all i

hi= phy=h. (28]
Jj

The equilibrium gene frequencies are therefore exactly those
that would be obtained in a one-locus viability selection model,
with viability h for A/A;. For this reason, we term this first class
viability-analogous equilibria. In the two-allele case, these are
the points denoted p* in ref. 3.

The second class of equilibria is such that var(sib) # 0 and
satisfies the relationship

Bbsib—>sib =7 [29]

where bg, ,;, is the regression of the recipient sib’s additive.

genotypic value on that of the altruistic donor:
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b5, = cov(sib,sib)/var(sib). [30]

For the multiple-allele situation, we have not obtained explicit
existence conditions for the second class of equilibria, although
in ref. 3, they were obtained explicitly for the two-allele case.
The second class of equilibria will be termed structural to in-
dicate their greater dependence on the detailed interaction be-
tween B, ¥, and the hy,.

In the diploid case, where we identify one sex (e.g., sisters)
as the donor of altruism to the other (brothers), both sides of
Eq. 22 are zero at equilibrium and expansion of either produces

B {z E a{(m,-f} + mjfi)(hy -h) - i 2 ZZ ; (f;jmk‘
i g i J

+ mgfk)(hij - h]k)}/Tm - 'yvar(Sibfemale)/Tf = 0’
[31]

where the a; are derived from Eq. 9. As before, the viability—
analogous equilibria are given by var(sibgnae) = 0, satisfying
a;, = a; for all i and j and the structural equilibria are charac-
terizedj by the ratio of mean fitnesses of males to females at
equilibrium, T,,/T; given by rearranging Eq. 31. In the special
case of no dominance, h; — h = a; + a;, Eq. 24 reduces to

Blbsibtemue—ssibma)/ Tm = ¥/ Ty (32]

where by, .ssiboy. IS the regression of the recipient (male)
genotypic value on that of the donor female. Similar results are
obtained for the case where one sex performs altruism to both
sexes.

Initial increase of a new allele. (i) Introduction of A; near fix-
ation of A;: The analogous result to the two-allele case treated
by Uyenoyama and Feldman (3) is that A; will increase if intro-
duced near the fixation of A, if

(b = hy))(B/2 — ¥ > 0. (33]
Condition 33 is equivalent to
(o = a)[Blim by s, — ¥] > 0, [34]

where lim by, ,;, represents the limiting value of the regression
near fixation of A,;. The condition analogous to [33] in the case
in which female diploid sibs are donors to male diploid sibs is

_ B2 v
(s = b (1 + Bhy; 1 - vyhy

(#i) Introduction of A, near a viability-analogous equilib-
rium at which alleles A,,A,,...,A, are segregating: For this it
is assumed that the viability—analogous equilibrium is stable in
the frequency simplex of A},A,,...,A,. The condition for the
initial increase of A,,, ; on its introduction near this equilibrium
is

) > 0. [35]

((B/2) = N(hysr. — B) >0, (36]

where h,,,. = 2%, ph,.,; and b = =, ppjh,. Condition 36
can be written in a form analogous to [34]—namely,

(@p41 — )Blimbgy, i, — ) >0, [37]

where a; = a; = a = 0for i = 1,2,...,n at the viability-anal-
ogous equilibrium, and limbgy, ., denotes the limit of the
regression. of recipient’s additive genotypic value on the
donor’s.

In the diploid case with sexes distinguished, A,,, increases
when rare if
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7 (_B/2 Y
(hps1. — h) (1 T o l——__yl-;) >0, (38]

which, as with [35], can be represented

Blim b sibfemale>Sibmale Y
(apsy — @ (W- 1= h >0 [39]

with the interpretations already given.

Model 1. Haplodiploid Sibling Altruism. Polymorphic equi-
libria. Both sides of Eq. 25 vanish at equilibrium and, in the
model of sister-to-brother altruism, the resulting identity re-
duces to

B [Z zfimjai(hij - z) - fi 2 Z ; aimjfik
i g i

X (hy — hjk)] / T,, — yvar(S)/T;=0, [40]

where the a; are derived from Eq. 9. Eq. 40 describes two
classes of equilibria. The first is characterized by var(S) = 0,
which is satisfied if and only if @; = a; for all i and j. In this first
equilibrium class, m; = f; and Z; fi(h; — k) = 0 for all i. Such
equilibria are extensions to the muﬁip‘e-dlele case of the points
denoted p* in the haplodiploid models of ref. 3. As in the diploid
case, these equilibrium gene frequencies are exactly those of
a one-locus viability selection model with genotypic fitnesses
hy;. We term this class of equilibria viability—analogous in the
haplodiploid case as well.

The structural equilibria emerge if var(S) # 0. Then the ratio
of the mean fitnesses of males and female at equilibrium, T,/
Ty, is obtained by rearranging Eq. 40. Under the special as-
sumption that there is no dominance in the phenotypic value—
ie., hy — h = a; + a;—Eq. 40 reduces to

Bbs.p _ ¥ -

T, T, [41]

where bg_, is the regression of the brothers’ genotypic values
on those of the sisters”:

bg_,5 = cov(SB)/var(S).

Other cases of sib altruism in haplodiploids exhibit a similar
equilibrium structure. As in models I and I1, there is a viability—
analogous equilibrium of the sister-to-sister model if the h;
viewed as one-locus viabilities would allow a valid polymor-
phism. With sister-to-sister altruism, all equilibria of the second
equilibrium class, the structural equilibria, are described by

Bbs.s = v, (42]

even if the no-dominance restriction on h; does not hold. Under
brother-to-sister altruism, the viability-analogous equilibrium
does not exist and the only equilibrium class is described by

Bbs _ v
T, T [43]
It can be shown that no polymorphic equilibria exist in the

model of brother-to-brother altruism.

Initial increase of a new allele. (i) Introduction of A, near fix-

ation of A;: Fixation of A, is unstable to the introduction of A,

in the sister-to-brother case if

(hiy = hyy) [fi Bl — hyy) — ¥l + huB)] > 0. [44]

Condition 44 is equivalent to
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(e al)[1+h113 = hyy] %

where lim bg_, g represents the limiting value of the regression
near the fixation.

The condition corresponding to [44] for the case of sister-to-
sister altruism is

(hy — hy) (g B- 'y) >0, [45]
For the case of brother-to-sister altruism, the condition is
(&~ &) [; B ve) - 1 + glm] >0 e
and, for brother-to-brother altruism, it is
(g — &) (é B~ 7) >0. (47]
Condition 45 is equivalent to

(o; = ap)[Blimbg 5 — y] >0,

condition 46 is equivalent to

@ al)( I+gB 1-gv >0

and condition 47 is equivalent to

(a; — a))[Blimbg 5 — 7] > 0.

(#i) Introduction of A, ., near a viability-analogous equilib-
rium at which alleles A ,A,,...,A, are segregating: Under the
assumption that the viability—analogous equilibrium is itself sta-
ble, A, will increase in frequency from an initially rare state
in the sister-to-brother case if

(hs1. = h) [i Bl = hoyry) = v1 + ’_'13)] >0, [48]

where b, ;. =3, fjh,,+l SR=250 f; fkhjk, and the fj rep-
resent the equiﬁbrium gene frequencies at the viability—anal-
ogous equilibrium. Condition 48 is equivalent to

Blimbs g Y
(an+l_a)[ 1+ _l—‘y}_z}>0’ [49]

where @; = o, = 0 for j and k from 1,2,...,n as computed at
the viability—analogous equilibrium point, and lim bg_, is the
limiting value of the regression near the equilibrium.

With sister-to-sister altruism, A, , will increase in frequency
near the viability-analogous equilibrium point if

+ (3
(hn+l' - h) (Z B - ‘Y> > 0’ [50]
which is equivalent to
(an+l - a)(ﬁlim bS—»S - 7) > 0’ [5l]

where a; = o, = aforj,k €{1,2,...,n} and lim bg_g is the lim-
iting value of the regression near the viability-analogous equi-
librium. In models involving altruism by brothers, the viability—
analogous equilibrium does not exist.

DISCUSSION

We have extended the analysis of exact population genetic
models of sibling altruism to include an arbitrary number of
alleles at a single locus. Interior equilibria of the models studied
fall into two classes. The first class, termed viability-analogous,
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corresponds to the p* point that we found in the case of two
alleles (ref. 3; see also ref. 14). The second class, termed struc-
tural, corresponds to points at which relatedness is equal to the
cost/benefit ratio in several of our models. Both equilibrium
classes arise naturally from consideration of the covariance be-
tween fitness and genotypic value at equilibrium.

The viability-analogous equilibrium corresponds directly to
the equilibrium obtained in the traditional multiple-allele via-
bility selection model in which the hy; are regarded as viability
parameters. All genotypic scale factors are identical and equal
to zero at this equilibrium. The structure of the viability-anal-
ogous equilibrium is quite different from the second equilib-
rium class at which the connection to a generalized version of
Hamilton’s rule is apparent. This justifies our use of the term
structural for the latter equilibria.

The equality ry; = /B describes a class of genotype fre-
quencies, rather than a special relationship between the param-
eters B and y. We have shown that structural equilibria cor-
responding to ry; = /B do in fact exist in a number of our
models. In model I with diploid sib-to-sib altruism in which the
sexes are not distinguished, structural equilibria are described
by cov(sib,sib)/var(sib) = y/B, where the left side represents
the regression of sib on sib or relatedness in our models. How-
ever, in model II of altruism by sisters toward their brothers
under haplodiploidy, identity between the structural equilibria
of our models and the relationship cov(SB)/var(S) = v/ fails
except in the case of phenotypes for which no dominance among
alleles exists. Nevertheless, all equilibria in this model and the
other models studied here correspond to points at which the
covariance between genotypic value and fitness is equal to zero
without the necessity of imposing restrictions on dominance
among the alleles.

The covariance between genotypic value and fitness has been
shown (8, 9) to be equal to differences between generations of
gene frequencies in one-locus models of viability selection, and
the method has been applied directly to kin selection theory
(vef. 10; see also ref. 15). In our models, this covariance is equal
to differences between generations of averages of the additive
allelic effects. Of course, differences between generations of
any function of gene or genotype frequencies will be intimately
related to initial increase conditions and reduce to zero at equi-
librium, but the particular differences (Eqs. 22, 24, and 25) have
heuristic appeal as covariances between genotypic value and
fitness.
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The covariance approach possesses a number of advantages
over the adaptive topography concept suggested in our previous
paper (ref. 3; see also ref. 14). With the covariance approach,
differences in reproductive value between the sexes, as rep-
resented by separate normalization of male and female fitnesses
by the mean fitness in each sex, arise in a more natural way.
Further, in the models studied here of additive composition of
gains and losses due to altruism, Hamilton’s rule emerges as a
special case within the general covariance framework. Restric-
tion of Hamilton’s rule to the case of no dominance in pheno-
typic values (i.e., hy = a; + @) was noted for models involving
performance of altruism by diploids and reception of benefits
by members of the opposite sex in our earlier paper (3). In that
paper, we suggested that the discrepancies might be due to
either of two reasons: (i) some aspect of our representation of
the verbal theory may have been incorrect or (i) the models
showing these departures in fact represented limits within
which the verbal theory applies. In view of the results reported
here in which a distinct heuristic framework has been shown
to predict all of the results of the exact models, we now favor
the latter interpretation.
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