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ABSTRACT Exact population genetic models ofone-locus sib-
to-sib kin selection with an arbitrary number ofalleles are studied.
First, a natural additive scaling is established for the genotypic
value associated with probabilities of performance of altruism.
Two classes of polymorphic equilibria are possible, one corre-
sponding to the usual one-locus viability equilibria and the other
reflecting the kin-selection assumptions of the model. At both, the
covariance between additive genotypic value and genotypic fitness
vanish. Further, the sign of this covariance determines the fate
of rare alleles introduced near the first class of equilibria. In ad-
dition, the covariance explains the differences between Hamilton's
rule, which results from Hardy-Weinberg assumptions, and exact
initial increase conditions.

Our previous papers introduced exact population genetic
models of kin selection among first-degree relatives (1-3).
These models were constructed in the spirit of Hamilton (4) but
were expressed and analyzed in terms of genotype rather than
of gene frequencies. Gene-frequency treatments (5-7) with
Hardy-Weinberg assumptions produce conditions for initial in-
crease of an altruistic allele that agree with the rule first stated
by Hamilton. Hamilton's rule is usually understood to entail
that an altruistic allele should increase in frequency when rare
ifprH> y, where 18 is the gain in fitness to recipients of altru-
ism, y is the fitness loss of altruists, and rH is a measure of the
genetic relationship between these participants.

In their exact population genetic treatment, Cavalli-Sforza
and Feldman (1) showed that additive composition of losses and
gains to form genotypic fitnesses usually produced initial in-
crease conditions in agreement with Hamilton's rule. Further
examination of the exceptions found in ref. 1 led us to suggest
(3) that within the context of additive combination of losses and
gains an appropriate value of rH is the regression of the recip-
ient's additive genotypic value on that of the altruist.

More generally, Hamilton's rule suggests that, if rH is fre-
quency dependent, polymorphic equilibria should entail P3rH
= y. With the correct frequency-dependent interpretation of
rH, this equation was shown (3) to produce a class of poly-
morphic equilibria in models of sib-to-sib altruism except in
those cases in which the donor was diploid and the recipients
included members of the opposite sex to the altruists. In fact,
two classes of polymorphic equilibria may coexist and, even
when the same condition entails initial increase and local sta-
bility of fixation of the altruistic allele, fixation may not be glob-,
ally stable (1).

In this paper, we extend the exact population genetic theory
with additive combination of losses and gains to include an ar-
bitrary number of alleles. We develop a suggestion made by Li
(8), Price (9), and Hamilton (10) concerning the covariance be-

tween additive genotypic value and fitness and use it to produce
a unified theory for initial increase and polymorphism.

MODELS OF SIB-TO-SIB ALTRUISM
Consider a set of n alleles {Ai} at a single locus. When all in-
dividuals are diploid, the genotypes AAj have frequencies us.
When it is necessary to differentiate the sexes in the diploid
case, the male and female frequencies are denoted mu and fu,
respectively. In the haplodiploid case, diploidAA females have
frequency fy while that of Ai males is mi. In the diploid case,
the frequency of Ai (without regard to sex) is p, = uo + 1/2
ax~i u... Where it is necessary to differentiate the sexes in the

diploiA case and in the haplodiploid case, the frequency of A,
in females is fi = jii + 1/2 Xj , ft with mi the corresponding
value in males. In models in which AAj can perform altruism,
it does so with probability hiL and, for males of genotype Ai, the
corresponding probability is denoted gi. The losses and gains
to the fitnesses ofeach genotype follow the composition ofCav-
alli-Sforza and Feldman (1) for their additive model, as extended
by Uyenoyama and Feldman (3). We present the resulting re-
cursions ofthe genotypic frequencies for the cases ofdiploid sib-
to-sib altruism and haplodiploid sister-to-brother altruism. Re-
cursions for the other cases of sib altruism can be derived in the
same way as in Uyenoyama and Feldman (3).

Recursions. Diploid, sib-to-sib altruism:

Tuii = Uii {uii[1 + (P -)hI,] + EUi
joi

x 1+ 1 3(hii + hio) - hiiy]} + >Uik UY

x [1 + 3(hii + hy + hik + h,) - hijy1}
and, if e # i,

TUe = 2ui, {uee[l + (13 - y)hie] + > uej

x[i + -13(h4, + hie) - hie + Y Uik.{Uee [

+-13(h + h -ic]hie] t +13(hitih

+ hek + hjk) - hiey

where

[1]

[2]

T = 1 + (13-y) E Epipjhy>
i j
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Haplodiploid, sister-to-brother altruism:

Tff!i. = fimi(l - hijy)
and, if fi i,

Tffe = (mife + mefi)(l - hiey),

Tmmp = fii > mj(l + hVf3) + 2
i kgi j

puted for each model. These quantities for the cases of diploid
sib-to-sib and haplodiploid sister-to-brother altruism are as fol-

[4] lows. Diploid, sib-to-sib altruism: (i) sexes not distinguished,

[5]

X [1 + PB(hy + hj ], [6]

where

Tf = 1 - yI E fimjh,,
i i

[7a]

var(sib) = E> pip,(ai - aj)2
i j

cov(sib,sib) = - (a, - a)4

[12]

[13]

(ii) Sexes distinguished,

var(sibmane) = var(sibfemale)

= >I E (mimj + fjf)(ai- aj)2 [14]2i i

and

Tm = 1 + P3 2fimjhij.
i i

[7b]

Construction of Variances, and Covariances. Before regres-
sion coefficients among relatives can be defined, an appropriate
quantitative value must be assumed to correspond with each
genotype. Following the usual formulation from the theory of
quantitative inheritance (11-13), we assign to the diploid geno-
type AA. the genotypic value (ai + aj) and to the haploid geno-
type Ai tle genotypic value ai. The genotypic scale coefficients
{aji are chosen such that the mean-squared deviation between
the genotypic value and the phenotypic value-namely, the
propensity to perform altruism-is minimized in the following
way. In those cases in which the altruists are diploid, the mean-
squared deviation, calculated at birth, before selection, is

I,I,mifj(hij - h)- ai+ j)]2 = D2' [8]

where, for example, mi and fi are the gene frequencies in the
parental generation at the time of mating. Here, AAj performs
altruism with probability hij, which entails a phenotypic devia-
tion hi -T from the average in the population h = SIjj mifjh
To find expressions for the ai in terms of gene frequencies and
h., we differentiate i with respect to ai and determine the
genotypic values that minimize D. This produces the normal
equations for the aj,

2 (mifj + mjfi)[(hy, - h) - (ai + aj)] = 0; i = 1,2,...,n. [9]

These linear equations can then be solved for the ai. For the
case of diploid sib-to-sib altruism, in which the sexes are not
distinguished with respect to the performance or reception of
altruism, mi = Li = pi and Eq. 9 reduces to the familiar formula

I pj(hij - h) = a,. [10]

When altruism is performed by males in the haplodiploid sys-
tem, the mean-squared deviation is

[11]

where g = Xj figi, from which we immediately have ai = g
- g. The ai obtained according to the above procedure are the
"average effects" defined by Fisher (13).

By using the genotypic values obtained in this way, variances
and covariances of genotypic values among siblings can be com-

cov(sibmale,-5ibfemae)

21.1 [Mmim + fifj (myx + gg)] (ai -aj)2.
Haplodiploid, sister-to-brother altruism:

var(S) = 2E 2 [mimj + ]ifj](ai -aj)2
i j

cov(SS) = 2 (mim4+ fjj- (ai -j)

cov(SB) = -2 , 4 fy (a j),

[15]

[16]

[17]

[18]

where S and B refer to haplodiploid sister and brother, and sib
refers to diploids.

Note specifically that, because uij and hij refer to genotype
frequencies in the parental generation after selection, these
quantities cannot properly be replaced by Hardy-Weinberg
combinations of gene frequencies (see refs. 1 and 3).

Covariance Between Fitness and Genotypic Value. Li (8)
and Price (9) have suggested that the covariance between geno-
typic value and genotypic fitness provides a useful device for
describing initial increase conditions and the structure of poly-
morphic equilibria under viability selection at a single locus.
In the present context, we can write, for example,

Tffi=fimi=ii [19]
where 4i is a representation ofthe fitness ofAA, andftm, is the
frequency of AA, at birth. By using the fitnesses of the geno-
types defined in this way and the genotypic distribution at birth,
the covariance between female (sister) genotype (i.e., its ad-
ditive genotypic value) and female fitness, in the diploid case
is written cov(SG,SF), and

cov(SG,SF) = E 2aTffjc + 12E E (ai + aj)Tffj
i joi

- Tf f,i m,(ai + a.)
i i

[20]

= 2TfI aif - 2 (mi +]i)ai.
i i

In Eq. 13, Tffii and Tffij represent the right sides of genotypic
recursions for the appropriate model, for example Eqs. 1 and
2 above. Similarly, the covariance between male (brother) geno-
type and fitness for diploids is written cov(BG, BF) with
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cov(BG,BF) = + 21 E (ai +aj)TmT
i i joi

- Tm> (mi + fi)a.

bsib-sib = cov(sib,sib)/var(sib).

[21]

Note that Eqs. 20 and 21 together imply that for diploids in
which the sexes are distinguished
cov(SG,SF) cov(BG,BF)

Tf Tm

= 2>2,[aj(mi + fi) - ai(mi + Di)] [22]

while, when sexes are not distinguished, we write cov(sib G, sib
F) with

cov(sib G, sib F)
T 2>;apip).T~~~~~~~~~~~

[30]

For the multiple-allele situation, we have not obtained explicit
existence conditions for the second class of equilibria, although
in ref. 3, they were obtained explicitly for the two-allele case.
The second class of equilibria will be termed structural to in-
dicate their greater dependence on the detailed interaction be-
tween 13, y, and the hi,.

In the diploid case, where we identify one sex (e.g., sisters)
as the donor of altruism to the other (brothers), both sides of
Eq. 22 are zero at equilibrium and expansion ofeither produces

(31>;>2 ai(mifj + mjf)(hij-- - >; ;> ai (fijmk
i j k i j

+ miifo)(hij - hjk
[23]

1/ Tm - yvar(sibfemaje)/Tf = 0,

[31]

For haplodiploids, the covariance between male (brother)
genotype and fitness is

cov(BG,BF) = 2 aiTm! - Tm E; fai. [24]
i i

Then Eq. 24 can be combined with Eq. 20 to form
cov(SG,SF) cov(BG,BF)

Tf Tm

= E ai [(mi + 2fl) - (mi + 2fi)] [25]

for haplodiploids.
Heuristically, we expect genotypes with positive genotypic

values to increase if the total covariance between genotype and
fitness (Eqs. 22, 23, and 25) is positive. Further, equilibria
should exist at points for which the total covariance is zero.

RESULTS OF ANALYSIS OF THE MODELS
Model I: Diploid; Sib-to-Sib Altruism. Polymorphic equilib-

ria. The equilibrium condition pi = pi, which, from Eq. 16,
entails cov(sib G,sib F) = 0 can be expanded as

or {2, 2, [Pi~y- Uy (ai-a,)' - 2yZ piaF = [26]

or

,(cov(sib,sib) - yvar(sib) = 0. [27]
Two classes of equilibria may then exist. The first is defined by
var(sib) = 0, which is satisfied only if ai = aj for all i andj. From
the -calculation of a,, at these equilibria we have for all i

hi = E; pjhu = h.
j

where the ai are derived from Eq. 9. As before, the viability-
analogous equilibria are given by var(sibfemAe) = 0, satisfying
ai = a for all i andj and the structural equilibria are charac-
terized by the ratio of mean fitnesses of males to females at
equilibrium, TJTf given by rearranging Eq. 31. In the special
case ofno dominance, hi9 - h = ai + aj, Eq. 24 reduces to

(8(bsibfmiem -sibmaie)/Tm = Y/Tf, [32]

where bsibfemaie sibmale is the regression of the recipient (male)
genotypic value on that of the donor female. Similar results are
obtained for the case where one sex performs altruism to both
sexes.

Initial increase ofa new allele. (i) Introduction ofAi near fix-
ation of A1: The analogous result to the two-allele case treated
by Uyenoyama and Feldman (3) is that Ai will increase if intro-
duced near the fixation ofAl if

(hi, - h1j)[f3/2 - y] > 0.

Condition 33 is equivalent to

(a - al)[/3 lim bribsib - }] > 0,

[33]

[34]

where lim bsibsib represents the limiting value ofthe regression
near fixation of Al. The condition analogous to [33] in the case
in which female diploid sibs are donors to male diploid sibs is

(hi, - hil) 132 1 -y ) 0. [35]

(ii) Introduction of A,,, near a viability-analogous equilib-
rium at which alleles A1,A2,...,An are segregating: For this it
is assumed that the viability-analogous equilibrium is stable in
the frequency simplex of A1,A2,.A.n The condition for the
initial increase ofAn+l on its introduction near this equilibrium

[28] is

The equilibrium gene frequencies are therefore exactly those
that would be obtained in a one-locus viability selection model,
with viability hi for AAj. For this reason, we term this first class
viability-analogous equilibria. In the two-allele case, these are
the points denoted p* in ref. 3.
The second class of equilibria is such that var(sib) # 0 and

satisfies the relationship

bsibsib. = y, [29]
where bsibsau is the regression of the recipient sib's additive
genotypic value on that of the altruistic donor:

[((/2) - y](hn+1.- h) > 0, [36]

where h+. = 7 i and h = yij pipjh. Condition 36
can be written in a form analogous to [34]-namely,

(an-+1-a)(3lim b-sibyib-) > 0, [37]
where a, = a, = a = 0 for i = 1,2,....,n at the viability-anal-
ogous equilibrium, and lim bsibsib denotes the limit of the
regression of recipient's additive genotypic value on the
donor's.

In the diploid case with sexes distinguished, A,,, increases
when rare if

Proc. Natl. Acad. Sci. USA 78 (1981)
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(hn+l.-h) + , =1-h) >0,

which, as with [35], can be represented

(a+,- a) (3 lrn bsibfcme sibm,, e - >01 + $h 1 -y~h

[38]

[39]

with the interpretations already given.
Model II. Haplodiploid Sibling Altruism. Polymorphic equi-

libria. Both sides of Eq. 25 vanish at equilibrium and, in the
model of sister-to-brother altruism, the resulting identity re-
duces to

/3 [ fimjai(hij - h) - aimjfik
Li j i j k

x (h - hjk)] Tm - yvar(S)/Tf= 0, [40]

where the ai are derived from Eq. 9. Eq. 40 describes two
classes of equilibria. The first is characterized by var(S) = 0,
which is satisfied if and only if ai = aj for all i and j. In this first
equilibrium class, mi = fi and Xjf(h'. - T) = 0 for all i. Such
equilibria are extensions to the multtipie-allele case ofthe points
denoted p* in the haplodiploid models ofref. 3. As in the diploid
case, these equilibrium gene frequencies are exactly those of
a one-locus viability selection model with genotypic fitnesses
hy. We term this class of equilibria viability-analogous in the
haplodiploid case as well.
The structural equilibria emerge ifvar(S) # 0. Then the ratio

of the mean fitnesses of males and female at equilibrium, Tn/
Tp is obtained by rearranging Eq. 40. Under the special as-
sumption that there is no dominance in the phenotypic value-
i.e., h. - h = ai + aj-Eq. 40 reduces to

ObSes 7=
Tm Tf [41]

where bS-,B is the regression of the brothers' genotypic values
on those of the sisters':

bs MOB = cov(SB)/var(S).
Other cases of sib altruism in haplodiploids exhibit a similar

equilibrium structure. As in models I and II, there is a viability-
analogous equilibrium of the sister-to-sister model if the hi,
viewed as one-locus viabilities would allow a valid polymor-
phism. With sister-to-sister altruism, all equilibria ofthe second
equilibrium class, the structural equilibria, are described by

Abs.s = y, [42]
even ifthe no-dominance restriction on hi does not hold. Under
brother-to-sister altruism, the viability-analogous equilibrium
does not exist and the only equilibrium class is described by

PbB-s y=b_TMTf Tm [43]

(a -a,) [1limbSB _ V 1>0(a -al 1 + hjjP 1 - hily~
where lim bS.B represents the limiting value of the regression
near the fixation.

The condition corresponding to [44] for the case of sister-to-
sister altruism is

(hi, - hlj) tX3P >0 [5

For the case of brother-to-sister altruism, the condition is

(gi - gi) [ (1- Ygi) - (1 + g)] > 0 [46]

and, for brother-to-brother altruism, it is

(gi - g,) 13 - >0.

Condition 45 is equivalent to

(ai - al)[13lim bsps - y] > 0,

condition 46 is equivalent to

[47]

(ai- a,) (
limbBs
+ ) >0,1+ g,1 1-g7I

and condition 47 is equivalent to

(ai - al)[,8lim bBB - Y] > 0-

(ii) Introduction of A,+, near a viability-analogous equilib-
rium at which alleles A,,A2,...,An are segregating: Under the
assumption that the viability-analogous equilibrium is itself sta-
ble, An+1 will increase in frequency from an initially rare state
in the sister-to-brother case if

(hn+l. - h) - 3(1 - h+,.y) - y(l + h13)] > 0, [48]

where hn+,. - X1 jjh + 1,n1=-IJ=1Xk=1j fkhjk, and thefj rep-
resent the equilibrium gene frequencies at the viability-anal-
ogous equilibrium. Condition 48 is equivalent to

[49]

where a, = ak =0 forj and k from 1,2,.. .,n as computed at
the viability-analogous equilibrium point, and lim bS-FB is the
limiting value of the regression near the equilibrium.

With sister-to-sister altruism, An+, will increase in frequency
near the viability-analogous equilibrium point if

(h +l ) (- 3 -l) >0,

which is equivalent to

(an+1 - a)(f8lim bs s - y) > 0,

[50]

[51]

It can be shown that no polymorphic equilibria exist in the

model of brother-to-brother altruism.
Initial increase of a new allele. (i) Introduction ofAi near fix-

ation of Al: Fixation ofAl is unstable to the introduction of Ai
in the sister-to-brother case if

(hi, - h,,)
1

13(1 - hily) - 'y(l + hj113] > 0. [44]

Condition 44 is equivalent to

where a. = ak = a forj,k E {1,2,. . .,n} and lim bs,.s is the lim-
iting value of the regression near the viability-analogous equi-
librium. In models involving altruism by brothers, the viability-
analogous equilibrium does not exist.

DISCUSSION
We have extended the analysis of exact population genetic
models of sibling altruism to include an arbitrary number of
alleles at a single locus. Interior equilibria ofthe models studied
fall into two classes. The first class, termed viability-analogous,

(a.+, a) 81im bSB y > 0,
1 + h,8 1 );h-
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corresponds to the p* point that we found in the case of two
alleles (ref. 3; see also ref. 14). The second class, termed struc-
tural, corresponds to points at which relatedness is equal to the
cost/benefit ratio in several of our models. Both equilibrium
classes arise naturally from consideration of the covariance be-
tween fitness and genotypic value at equilibrium.
The viability-analogous equilibrium corresponds directly to

the equilibrium obtained in the traditional multiple-allele via-
bility selection model in which the hi, are regarded as viability
parameters. All genotypic scale factors are identical and equal
to zero at this equilibrium. The structure of the viability-anal-
ogous equilibrium is quite different from the second equilib-
rium class at which the connection to a generalized version of
Hamilton's rule is apparent. This justifies our use of the term
structural for the latter equilibria.
The equality rH = y/,3 describes a class of genotype fre-

quencies, rather than a special relationship between the param-
eters /3 and y. We have shown that structural equilibria cor-
responding to rH = y/,f do in fact exist in a number of our
models. In model I with diploid sib-to-sib altruism in which the
sexes are not distinguished, structural equilibria are described
by cov(sib,sib)/var(sib) = y/f3, where the left side represents
the regression of sib on sib or relatedness in our models. How-
ever, in model II of altruism by sisters toward their brothers
under haplodiploidy, identity between the structural equilibria
of our models and the relationship cov(SB)/var(S) = y/P fails
except in the case ofphenotypes for which no dominance among
alleles exists. Nevertheless, all equilibria in this model and the
other models studied here correspond to points at which the
covariance between genotypic value and fitness is equal to zero
without the necessity of imposing restrictions on dominance
among the alleles.

The covariance between genotypic value and fitness has been
shown (8, 9) to be equal to differences between generations of
gene frequencies in one-locus models of viability selection, and
the method has been applied directly to kin selection theory
(ref. 10; see also ref. 15). In our models, this covariance is equal
to differences between generations of averages of the additive
allelic effects. Of course, differences between generations of
any function of gene or genotype frequencies will be intimately
related to initial increase conditions and reduce to zero at equi-
librium, but the particular differences (Eqs. 22, 24, and 25) have
heuristic appeal as covariances between genotypic value and
fitness.

The covariance approach possesses a number of advantages
over the adaptive topography concept suggested in our previous
paper (ref. 3; see also ref. 14). With the covariance approach,
differences in reproductive value between the sexes, as rep-
resented by separate normalization ofmale and female fitnesses
by the mean fitness in each sex, arise in a more natural way.
Further, in the models studied here of additive composition of
gains and losses due to altruism, Hamilton's rule emerges as a
special case within the general covariance framework. Restric-
tion of Hamilton's rule to the case of no dominance in pheno-
typic values (i.e., hU, = ai + qj) was noted for models involving
performance of altruism by diploids and reception of benefits
by members of the opposite sex in our earlier paper (3). In that
paper, we suggested that the discrepancies might be due to
either of two reasons: (i) some aspect of our representation of
the verbal theory may have been incorrect or (ii) the models
showing these departures in fact represented limits within
which the verbal theory applies. In view ofthe results reported
here in which a distinct heuristic framework has been shown
to predict all of the results of the exact models, we now favor
the latter interpretation.
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