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We give a brief introduction to Lasso-type methods in Section 1. We provide the theoretical

justification of Adaptive Group Lasso (AGL) in Section 2. Then we provide details of our

optimization algorithm for AGL model fitting in Section 3. We also give more experimental

results in Section 4. Finally, we provide the models and their parameter settings used in

simulation studies in Section 5.

1 Lasso-type methods

In this section, we shall give a brief introduction to Lasso-type methods.

In the usual linear regression setup, we have a continuous response y ∈ R
N , an N×p design

matrix X and a parameter vector β ∈ R
p+1. The Lasso estimator [7] is defined as:

β̂
L
(γ) = arg min

β
R(L)(β) = arg min

β=[β0,β1,··· ,βp]T





1

2N

∥

∥

∥

∥

∥

y − (β0 +

p
∑

j=1

xjβj)

∥

∥

∥

∥

∥

2

2

+ γ

p
∑

j=1

|βj |



, (1)

where γ is a regularization parameter, xj is an N×1 vector corresponding to the j-th column of

the design matrix X and ‖v‖22 =
∑n

i=1 v2
i for any vector v ∈ R

n. The sparsity penalty
∑p

j=1 |βj |
encourages many βjs to be zero.

When categorical predictors (i.e., factors represented by dummy variables) are present in

linear regression, the Lasso solution is not satisfactory since it only selects dummy variables

individually. To address this issue, Yuan and Lin [10] proposed to treat the dummy variables

as a group, and then imposed a sparsity constraint at the group level.

For convenience, we shall use the following notations to describe the model with grouped

variables: Suppose we have a response variable y ∈ R
N and an N×p design matrix X collecting

N samples with p variables. These p variables are partitioned into J disjoint groups with the
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j-th group consisting of pj variables. Clearly, we have
∑

j pj = p. We shall use Xj, a submatrix

of size N × pj , to denote the columns of X corresponding to the j-th group. Similarly, Xij, a

submatrix of size 1× pj , corresponds to the i-th sample and the j-th group. We also use βj to

denote the coefficient vector corresponding to the j-th group.

For the regression problem of J groups with j-th group consisting of pj variables, the Group

Lasso estimator [10] is defined as:

β̂
GL

(γ) = arg min
β

R(GL)(β) = arg min
β=[β0,β1,··· ,βJ ]T





1

2N

∥

∥

∥

∥

∥

y − (β0 +

J
∑

j=1

Xjβj)

∥

∥

∥

∥

∥

2

2

+ γ

J
∑

j=1

√
pj‖βj‖2



,

(2)

where βj = [βj,1, βj,2, · · · , βj,pj
]T for j = 1, · · · , J , and β0 is the intercept in the linear model.

Term ‖βj‖2 =
√

β2
j,1 + β2

j,2 + · · ·+ β2
j,pj

imposes a constraint to select a group of variables

rather than a single variable. Notice that regularization term
∑J

j=1

√
pj‖βj‖2 involves the

2-norm ‖βj‖2 of βj rather than the squared 2-norm ‖βj‖22. The “Lasso” term in the name

“Group Lasso” refers the sum of the absolute value of the 2-norm, i.e.,

J
∑

j=1

√
pj

∣

∣‖βj‖2
∣

∣ =

J
∑

j=1

√
pj‖βj‖2. (3)

In the GL model, the group structure is assumed to be known. This structure is explicitly

made use of in regularization.

Elastic net introduced in [12] is another type of regularization method to model grouping

effects. The Elastic net estimator is defined as:

β̂
EN

(γ1, γ2) = arg min
β

R(EN)(β)

= arg min
β=[β0,β1,··· ,βp]T





1

2N

∥

∥

∥

∥

∥

y − (β0 +

p
∑

j=1

xjβj)

∥

∥

∥

∥

∥

2

2

+ γ1

p
∑

j=1

|βj |+
γ2

2

p
∑

j=1

β2
j



 ,
(4)

Notice that the regularization term
∑p

j=1 β2
j is the squared 2-norm ||β||22 of β. In Elastic model

(4), no group structure is explicitly imposed. For two variables xi and xj with correlation ρ,

however, their estimated coefficients βi and βj will tend to be shrunken to the same value as

γ2 and ρ increase. This is known as the grouping effects encouraged in Elastic net.

In this paper, we are aiming at identify main effects and interactions by analyzing SNP

data. For main effects, Lasso and Elastic net can be used with a presumed model structure,

e.g., an additive model. Group Lasso can be used without a presumed model structure. This

issue has been carefully discussed in the main text of this paper.

For interactions, two-locus models consider 9 genotypes (5) for any two SNPs:

G2 , {AABB, AABb, AAbb, AaBB, AaBb, Aabb, aaBB, aaBb, aabb}. (5)
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Thus, a two-locus model can be represented by using 9 dummy variables coding 9 genotypes.

Further the group structure of these 9 dummy variables arises naturally based on the two-locus

model. Hence, Group Lasso model could serve as a basic model for identifying interactions.

Based on this consideration, we propose our Adaptive Group Lasso model. Lasso and Elastic net

could also be applied for identifying interactions. One way is imposing model structure (e.g.,an

additive model) which is the same as what has done for identifying main effects. Another way

is using 9 dummy variables coding a two-locus model. Notice that no correlation exists among

the 9 dummy variables, i.e., ρ = 0. Thus, these dummy variables can not be grouped by Elastic

net. In this sense, both Lasso and Elastic net could only do variable selection at the variable

level rather than the group level.

2 Theoretical Justification of Adaptive Group Lasso

2.1 Connection with the Majorization-Minimization algorithm

Our iteratively reweighted algorithm is a special case of Majorization-Minimization (MM) al-

gorithms [4]. To establish the connection, consider the problem

min
β

(

−ℓ(β) + γ
J
∑

j=1

√
pj log (‖βj‖2)

)

, (6)

where ℓ(β) is the log-likelihood of logistic regression:

ℓ(β) =
1

N

N
∑

i=1

[

yi(β0 +

J
∑

j=1

Xijβj)− log

(

1 + exp(β0 +

J
∑

j=1

Xijβj)

)]

. (7)

The problem (6) can be rewritten as

min
β,v

J
∑

j=1

√
pj log (vj) (8)

subject to −ℓ(β) ≤ α,

‖βj‖2 ≤ vj .

The problem is in the form

min
v

f(v) (9)

subject to v ∈ convex set.

This is a problem that minimizes a concave function on a convex set. Instead of minimizing a

concave function, we can minimize its tangent at a local point v0 since concave functions are

upper bounded by its tangent:

min
v

f(v) = min f(v0) +∇f(v0)(v− v0). (10)
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Therefore, the problem (8) can be further written as

min
β,v

J
∑

j=1

√
pj

v
(0)
j

vj (11)

subject to −ℓ(β) ≤ α,

‖βj‖2 ≤ vj.

Finally, the problem (11) can be rewritten as

min
β

(

−ℓ(β) + γ
J
∑

j=1

(wj

√
pj‖βj‖2)

)

, (12)

where wj = 1

v
(0)
j

. This is the form we propose in Algorithm 1 in the paper.

2.2 Properties

The theoretical reason for minimizing the negative log-likelihood with a concave penalty (e.g.,

with log function as in (6)) is given in [1]. The basic idea is that the estimation of important

variables should be shrunken less than those of unimportant ones. Based on this idea, Zou

proposed the Adaptive Lasso [11] and one-step estimator [13].

Wang et al. [9] have considered the Adaptive Group Lasso in the following form:

min
β

(

−ℓ(β) +

L
∑

j=1

γj‖βj‖2)
)

. (13)

They show that the Adaptive Group Lasso could do group selection consistently under some

mild conditions. However, they do not show how to choose γj adaptively. In this paper, we

adaptively choose γj by using the MM algorithm. The convergence of our algorithm can be

proved following the idea in [13].

3 Optimization Algorithm

3.1 Details of the algorithm

We first solve the Group Lasso problem (14).

β̂
GL

(γ) = arg min
β

R(GL)(β) = arg min
β





1

2N

∥

∥

∥

∥

∥

y− (β0 +
J
∑

j=1

Xjβj)

∥

∥

∥

∥

∥

2

2

+ γ
J
∑

j=1

√
pj‖βj‖2



.

(14)

It serves as the basis to solve the problem (15).

β̂
AGL

(γ) = arg min
β

R(AGL)(β) = arg min
β

(

−ℓ(β) + γ

L
∑

j=1

wj

√
pj‖βj‖2

)

, (15)
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where ℓ(β) is the log-likelihood of logistic regression:

ℓ(β) =
1

N

N
∑

i=1

[

yi(β0 +
L
∑

j=1

Xijβj)− log

(

1 + exp(β0 +
L
∑

j=1

Xijβj)

)]

. (16)

For convenience, we standardize the block matrix Xj such that 1
N
XT

j X = Ipj
, where Ipj

is

a pj × pj identity matrix. After model fitting, the estimated coefficients β will be transformed

back in the original scale. Notice that the standardization can be done efficiently: The inner

product of any two dummy variables within the same group is always zero. Thus, 1
N
XT

j X

is diagonal. Simple scaling can convert it to an identity matrix. General orthogonalization

techniques such as QR decomposition is not necessary.

Now let us consider a coordinate descent algorithm to solve (14). Suppose we have the

estimation β̃0 and β̃l for l 6= j, and we like to optimize (14) with respect to βj . We compute

the gradient at β = β̃ when β̃j 6= 0:

∂R(GL)

∂βj

|β=β̃ = − 1

N
XT

j (y− β̃0 −
∑

l 6=j

Xlβ̃l −Xjβj) + γ
√

pj

βj

‖βj‖
= 0. (17)

When β̃j = 0, we have

‖ − 1

N
XT

j (y− β̃0 −
∑

l 6=j

Xlβ̃l)‖ ≤ γ
√

pj . (18)

Expressions (17) and (18) are actually the Karush-Kuhn-Tucker conditions given in [10]. They

can be rewritten as

rj = βj + γ
√

pj

βj

‖βj‖
, (19)

‖rj‖ ≤ γ
√

pj , (20)

where

rj =
1

N
XT

j (y − ỹ(j)), (21)

ỹ(j) = β̃0 +
∑

l 6=j

Xlβ̃l. (22)

After combining (19) and (20), the coordinate-wise update has the form

βj =

(

1−
γ
√

pj

‖rj‖

)

+

rj, (23)

where (·)+ is the operator

(v)+ =







v if v ≥ 0

0 if v < 0
. (24)
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Therefore, iteratively updating βj by (23) for j = 1, · · · , L gives the solution of (14).

Now let us consider Logistic Group Lasso problem (15). We form a quadratic approximation

to the log-likelihood based on current estimation β̃:

ℓ(β) ≈ ℓQ(β) = ℓ(β̃) + (β − β̃)T∇ℓ(β̃) +
1

2
(β − β̃)TH(β − β̃). (25)

Here ∇ℓ(β̃) and H are the gradient and the Hessian matrix of ℓ(·) evaluated at β̃, respectively:

∇ℓ(β̃) =
1

N
XT (y− p̃), (26)

H =
1

N
XTUX, (27)

where U is a diagonal matrix with diagonal element ui = p̃(Xi)(1− p̃(Xi)) and

p̃(Xi) =
1

1 + exp(−β̃0 −
∑

j Xijβ̃j)
. (28)

Rearranging expressions (25) ∼ (28), we obtain

ℓQ(β) = − 1

2N

N
∑

i

ui(zi − β0 −
L
∑

j

Xijβj)
2 + C(β̃), (29)

where

zi = β̃0 +
∑

j

Xjβ̃j +
y − p̃(Xi)

p̃(Xi)(1− p̃(Xi))
, (30)

ui = p̃(Xi)(1− p̃(Xi)), (31)

p̃(Xi) =
1

1 + exp (−β̃0 −
∑

j Xjβ̃j)
, (32)

and C(β̃) is a constant term only involving β̃. Then, the problem (15) is converted to the least

square problem with a Group Lasso constraint:

min
β
{−ℓQ(β0, β) + γ

L
∑

j=1

wj

√
pj‖βj‖2}. (33)

Further making use of the upper bound of Hessian terms ui as given in [3], we set ui = 0.25

in (29) which saves computation effort for calculating the Hessian matrix, then problem (33)

becomes

min
β
{− 1

2N

N
∑

i

0.25(zi − β0 −
L
∑

j

Xijβj)
2 + γ

L
∑

j=1

wj

√
pj‖βj‖2}. (34)

Problem (34) is exactly in the form (14) with equal weight, and thus can be solved by coordinate

descent updating formula

βj =

(

1−
4γwj

√
pj

‖rj‖

)

+

rj , (35)

where rj is the vector with the i-th elements 1
N
XT

ij

(

zi − β̃0 −
∑

l 6=j Xilβ̃l

)

. The intercept β0

is not penalized. It is initialized as β̃0 = log( p0

1−p0
), where p0 =

∑

i yi/N . We update it by using

β0 ← β̃0 +
P

i(yi−p̃i)
P

i p̃i(1−p̃i)
.
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3.2 Implement issues

The parameter γ is typically unknown. Here we use cross-validation to determine its value. As

cross-validation needs a sequence of γ values, we construct the sequence as follows: We set the

maximum value and the minimum value as γmax = maxj

‖XT
j (y−p0)‖2

Nwj
√

pj
, γmin = ǫγmax, respectively.

Then, we construct a sequence of γ values decreasing from γmax to γmin uniformly on log scale

γ = [γmax = γ1 > γ2 > · · · > γK = γmin]. To solve β(γk) k = 1, . . . , K, we exploit the warm

starts technique: by using β(γk) as the initial point for β(γk+1). In doing so, we are able to do

cross-validation on γ values efficiently. In our experiment, we typically set K = 100, ǫ = 0.001

when N > L, when N < L, we set ǫ = 0.05.

We also know that many βjs remain as zero during the whole optimization process from

expression (35). Naive cycling optimization on all groups in iteration process loses efficiency.

We make use of this property as in [2], which leads to considerable speedup:

• Step 1: We complete a cycle through all groups, and identify the active set (nonzero βj).

• Step 2: We iterative only on the active set until convergence.

• Step 3: We form a cycling through all groups again. If this does not change the active

set, the optimization process converges; otherwise go to Step 2.

4 More Results

4.1 Comparison with MDR

We choose MDR [6] for comparison because MDR is a very popular method. Our approach is

similar to MDR in the sense that both methods enumerate all possible interactions during model

fitting process. The difference is that our approach analyzes all interactions simultaneously,

while MDR searches the best model in a sequential manner.

During the comparison with MDR, we use six benchmark epitasis models [5] (details are in

the supplementary document). Various sources of noise, such as genotyping error (GE), missing

data (MS), phenocopy (PC), and genetic heterogeneity (GH) are added in the simulated data.

The reader is referred to [5] for details of these six models and data simulation procedure.

The MDR algorithm is one of the most popular tools for gene-gene interaction detection.

It has a very good power for identifying associated SNPs in the presence of various kinds of

noise except that its power decreases significantly in the presence of genetic heterogeneity. Our

method is similar to MDR in the sense that both methods enumerate all possible interactions.

The difference is that MDR searches all interactions in a sequential manner and pick the best

one, while our method simultaneously analyzes all interactions. The comparison results are

shown in Table 1. The novelty of our method is that it significantly increases the power when

the genetic heterogeneity is present. Concretely, for Model 2-1, Model 2-3, Model 2-4, Model
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2-5 and Model 2-6, the power of MDR drops from greater than 80% to only 5%. For Model

2-2, its power drops from 100% to 41%. While the power of our method drops from around

100% to 50% for Model 2-3, Model 2-4, Model 2-5 and Model 2-6, and the power remains the

same for Model 2-1 and Model 2-2. This clearly shows that our method is more robust in the

presence of genetic heterogeneities.

MDR searches for all possible combinations of SNPs. Thus, it is able to detect high-order

interactions even when the main effects and low-order effects are not significant. However,

it is difficult for MDR to characterize additive structures between associated SNPs. Genetic

heterogeneity is such a case that MDR performs poorly.

In contrast, our method does better when genetic heterogeneities are present. The reason

is that our model is able to approximate genetic heterogeneity model by making use of the

additive structure. Given the genetic heterogeneity model:

log
Pr(y = 0|SNPk1, SNPk2)

Pr(y = 1|SNPk1, SNPk2)
=

∑

g∈G2

αg
k1,k2
· I ((SNPk1 , SNPk2) = g), (36)

log
Pr(y = 0|SNPk3, SNPk4)

Pr(y = 1|SNPk3, SNPk4)
=

∑

g∈G2

αg
k3,k4
· I ((SNPk3 , SNPk4) = g), (37)

where αg depends on a particular disease model and I(expression) is the indicator function:

I(expression) =







1 if expression is true,

0 otherwise.

Suppose half of the disease samples comes from model (36) and another half comes from the

model (37). Our model approximates the genetic heterogeneity model in the following form:

log
Pr(y = 0|SNPk1, SNPk2 , SNPk3, SNPk4)

Pr(y = 1|SNPk1, SNPk2 , SNPk3, SNPk4)

=
∑

g∈G2

[

βg
k1,k2
· I ((SNPk1 , SNPk2) = g) + βg

k3,k4
· I ((SNPk3, SNPk4) = g)

]

,
(38)

where the coefficients βg
k1,k2

and βg
k3,k4

can be estimated by our proposed method. Noise SNPs

are unlikely to enter the final model due to the sparsity penalty.

We show a typical coefficient pattern in Fig. 1 when genetic heterogeneity is present. The

interaction term (SNPk1 , SNPk2) enters the model first and is followed by (SNPk3 , SNPk4).

The interaction terms borrow strength from each other and enter the model. Other noise

terms enter the model gradually as γ decreases. Finally, the signals of (SNPk1 , SNPk2)

and (SNPk3, SNPk4) become unobvious among noise terms. We also show the coefficients

estimated at γ∗ which is determined by cross-validation. One can see that the signals of

(SNPk1 , SNPk2) and (SNPk3 , SNPk4) are much stronger than noise terms (the middle panel

of Fig. 1). Reweighted estimation weakens noise terms further (the right panel of Fig. 1).
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Table 1: Power comparison between MDR and our method in detecting the interacting SNPs.

Various sources of noise are simulated (GE, 5% genotyping error; GH, 50% genetic heterogene-

ity; PC, 50% phenocopy; MS, 5% missing data). Notice that the results involving the GH noise

are marked by gray color.

MDR/Our method Power(%)

Source of noise Model 2-1 Model 2-2 Model 2-3 Model 2-4 Model 2-5 Model 2-6

None 100/100 100/100 99/100 99/100 82/99 84/100

GE 100/100 100/100 100/100 97/100 80/96 92/100

GH 3/100 41/100 2/53 3/56 4/46 4/60

PC 90/97 99/100 45/50 32/38 30/46 32/62

MS 100/100 100/100 99/100 97/100 82/97 87/100

GE+GH 4/99 41/100 2/53 3/56 4/46 6/60

GE+PC 94/96 99/99 41/51 48/50 28/57 33/64

GE+MS 100/100 100/100 98/100 98/100 74/96 84/100

GH+PC 0/30 1/59 0/13 0/5 0/24 0/14

GH+MS 5/99 38/100 0/56 2/53 4/43 6/59

PC+MS 96/97 99/100 42/50 43/52 14/35 16/48

GE+GH+PC 1/36 1/58 0/10 0/8 0/13 0/16

GE+GH+MS 6/98 34/100 2/49 1/51 3/82 7/52

GH+PC+MS 0/31 0/61 0/10 0/6 0/14 0/19

GE+PC+MS 94/97 100/100 48/48 42/47 18/38 16/46

GE+GH+PC+MS 0/33 1/54 0/12 1/14 0/12 0/16

9



0 0.5 1

1

2

3

4

5

6
N

or
m

 o
f G

ro
up

ed
 C

oe
ffi

ci
en

t

γ

← Cross
   Validation

The Coefficient Norm Path

 

 
SNPpair

1

SNPpair
2

100 200 300 400

−0.5

0.0

0.5

(SNP
k

1

, SNP
k

2

)→

(SNP
k

3

, SNP
k

4

)

        →

V
ar

ia
bl

e 
C

oe
ffi

ci
en

ts
 

Variable Index

Coefficients at γ(0)
*

100 200 300 400

−2

0.0

2

(SNP
k

1

, SNP
k

2

)→

(SNP
k

3

, SNP
k

4

)

           →

V
ar

ia
bl

e 
C

oe
ffi

ci
en

ts
 

Variable Index

Coefficients at γ(1)
*

Figure 1: The path of coefficient norms and the coefficients evaluated at γ
(m)
∗ . We use cross

validation to determine the value of γ
(m)
∗ .

4.2 Comparison with BEAM

4.2.1 The influence of main effects

In the paper, we show that BEAM performs poorly when main effects are absent. Here we

conduct simulation study showing that the performance of BEAM depends on the main effects.

Our simulation is based on the XOR model given in Table 2 with α = 1 and θ = 2. The minor

allele frequency (MAF) varies from 0.1 to 0.5 such that the main effect of the XOR model

decreases until no main effect is present, as shown in Fig. 2. We simulate 100 datasets. Each

dataset contains 400 samples and 1000 SNPs. The results of BEAM and AGL are shown in

Fig. 3:

• These two methods have comparable power for detecting main effects.

• BEAM has a low power to detect interactions when MAF= 0.3, 0.4, 0.5. The reason is

that the two associated SNPs with weak main effects are difficult to be sampled. When

MAF= 0.2, the two associated SNPs with noticeable main effects are more likely to be

detected. Thus, the power of BEAM increases dramatically. When MAF= 0.1, it is easier

for BEAM to detect the two associated SNPs but BEAM prefers to recognize them as

main effects rather than interactions.

• The performance of AGL is robust for different MAFs.
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AA Aa aa

BB α α(1 + θ) α

Bb α(1 + θ) α α(1 + θ)

bb α α(1 + θ) α

Table 2: The XOR model: α = 1 and θ = 2 is used in the simulation study. The minor allele

frequency (MAF) varies from 0.1 to 0.5 such that the main effect of the XOR model decreases

until no main effect is present.

78%

22%

MAF=0.05

57%

43%

MAF=0.1

22%

78%

MAF=0.2

5%

95%

MAF=0.3
< 1%

100%

MAF=0.4

 

 

Variance (%) explained by main effects
Variance (%) explained by interactions

100%

MAF=0.5

Figure 2: The percentage variance of XOR model (Table 2) explained by main effects and

interactions with different MAFs. As the MAF increases from 0.05 to 0.5, the main effect

decreases until zero.
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Figure 3: Comparison results of BEAM and Adaptive Group Lasso (AGL) on the XOR model

for MAF= 0.1, = 0.2, = 0.3, = 0.4 and = 0.5. As the MAF increases from 0.1 to 0.5, the main

effect decreases until zero. BEAM has a low power to detect interactions when MAF = 0.3,

0.4, and 0.5. The power of BEAM increases dramatically when MAF = 0.2. When MAF =

0.1, it is easier for BEAM to detect the two associated SNPs but BEAM prefers to recognize

them as main effects rather than interactions.
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Figure 4: Comparison between our method and BEAM based on the XOR model (Table 2).

BEAM (B) loses its power when detecting multiple interaction pairs, while our AGL keeps its

power.

4.2.2 Detecting multiple interactions

In order to have a fair comparison regarding the power of detecting multiple interactions, we

simulate interacting SNPs with noticeable main effects since BEAM has a low power when the

main effect is weak. We design our experiment based on the XOR model shown in Table 2. Fig.

2 shows that the main effect of the XOR model tends to be zero as the MAF increases from

0.1 to 0.5. We choose MAF to be 0.2 such that interacting SNPs have noticeable main effects.

Under this setting, it is easier for BEAM to sample those associated SNPs. We simulate 1000

samples and 500 SNPs. Six of 500 SNPs form three groups of interacting SNPs. Each group has

the same characteristics as described by the XOR model. Fig. 4 shows the result. BEAM loses

its power when detecting more than one interacting groups. Concretely, the power of BEAM is

about 97% when identifying one interactions. But the power quickly drops to around 50% when

identifying two interactions and further drops to 10% for identifying all three interactions. Our

method keeps the high power when identifying all three interactions.
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SNPs Location Related Genes P-value

rs7539166 1p36 TMEM51 < 10−30

rs384843 1p36 NBPF3 5.2× 10−9

rs7516721 1p36 GPR3 7.7× 10−14

rs3737819 1p34 COL9A2 2.8× 10−9

rs17107203 1p32 unknown 2.2× 10−13

rs1920164 1p31 unknown 2.2× 10−9

rs12118611 1q24 NME7 < 10−30

rs4658037 1q31 KCNT2 < 10−30

rs1999987 1q42 DISP1 5.8× 10−19

rs5744138 1q41 TLR5 4.2× 10−8

rs1640803 1q41 unknown 2.8× 10−9

rs851148 1q41 unknown 6.5× 10−11

rs1772272 1q41 unknown 1.7× 10−10

Table 3: Identified SNPs on Chromosome 1.

4.3 WTCCC RA data results

We provide the result of WTCCC Rheumatoid Arthritis (RA) data set. These results are

analyzed under main effect model in the chromosome-wise manner. These results are given in

Table 3 ∼ Table 10.

5 Models Used in Simulation Studies

5.1 Models used for comparison with MDR

We provide models used for comparison with MDR in Table 11.

5.2 Models used in comparison with BEAM

The epistatic models used in Section 3.1.3 are given in Table 12, Table 13, Table 14 and Table

15. All of these models can be found in [8].
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SNPs Location Related Genes P-value

rs1572075 4p16 ZNF718 < 10−30

rs7694697 4p16 SORCS2 < 10−30

rs4330351 4p16 SORCS2 1.0× 10−10

rs1444360 4p16 AC116049 < 10−30

rs16861011 4p12 TXK 6.2× 10−9

rs7699492 4q23 TSPAN5 < 10−30

rs17027886 4q23 TSPAN5 < 10−30

rs17050351 4q32 AC092643 < 10−30

rs13104196 4q32 PDGFC < 10−30

rs17525479 4q32 PDGFC < 10−30

Table 4: Identified SNPs on Chromosome 4.

SNPs Location Related Genes P-value

rs9296921 6p23 CD83 < 10−30

rs4959053 6p21 PSORS1C1 < 10−30

rs6457617 6p21 MHC region 1.3× 10−15

rs9387380 6q21 FRK 3.4× 10−15

rs17165379 6q25 ZDHHC14 < 10−30

Table 5: Identified SNPs on Chromosome 6.

SNPs Location Related Genes P-value

rs1494192 7p15 NPY < 10−30

rs17356657 7q31 C7orf58 2.2× 10−16

rs12538802 7q31 CADPS2 4.7× 10−13

rs6973565 7q32 PLXNA4 1.2× 10−9

rs10250029 7q32 CHCHD3 < 10−30

rs7789415 7q36 PTPRN2 3.6× 10−12

Table 6: Identified SNPs on Chromosome 7.

SNPs Location Related Genes P-value

rs10751815 Chr10p15 ADARB2 < 10−30

rs4266996 Chr10p15 unknown < 10−30

rs17147777 Chr10p15 unknown < 10−30

rs4750402 Chr10p14 FRMD4A 1.2× 10−13

rs2121526 10q11 PCDH15 < 10−30

rs16925310 10q21 PBLD 4.6× 10−10

rs11185776 10q23 PANK1 4.7× 10−9

Table 7: Identified SNPs on Chromosome 10.
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SNPs Location Related Genes P-value

rs2880301 13q12 TPTE2 1.0× 10−10

rs4379926 13q12 unknown < 10−30

rs17086772 13q12 LOC341784 < 10−30

Table 8: Identified SNPs on Chromosome 13.

SNPs Location Related Genes P-value

rs4111253 21p11 BAGE < 10−30

rs8129909 21q22 IGSF5 < 10−30

rs16999716 21q22 DSCAM 9.2× 10−9

rs4542939 21q22 DSCAM 8.3× 10−9

rs13047947 21q22 PDE9A < 10−30

Table 9: Identified SNPs on Chromosome 21.

SNPs Location Related Genes P-value

rs140344 22q12 unknown < 10−30

rs5749509 22q12 SYN3 < 10−30

rs6518796 22q12 SYN3 < 10−30

Table 10: Identified SNPs on Chromosome 22.
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Table 11: Two-locus penetrance functions of six two-locus models that exhibit epistatic inter-

actions in the absence of main effects [5]. Here p and q denote allele frequencies of A and B,

respectively.

Model 2-1 p = 0.5, q = 0.5

AA Aa aa

BB 0 0.1 0

Bb 0.1 0 0.1

bb 0 0.1 0

Model 2-2 p = 0.5, q = 0.5

AA Aa aa

BB 0 0 0.1

Bb 0 0.05 0

bb 0.1 0 0

Model 2-3 p = 0.25, q = 0.75

AA Aa aa

BB 0.08 0.07 0.05

Bb 0.1 0 0.1

bb 0.03 0.1 0.04

Model 2-4 p = 0.25, q = 0.75

AA Aa aa

BB 0 0.01 0.09

Bb 0.04 0.01 0.08

bb 0.07 0.09 0.03

Model 2-5 p = 0.1, q = 0.9

AA Aa aa

BB 0.07 0.05 0.02

Bb 0.05 0.09 0.01

bb 0.02 0.01 0.03

Model 2-6 p = 0.1, q = 0.9

AA Aa aa

BB 0.09 0.001 0.02

Bb 0.08 0.07 0.005

bb 0.003 0.007 0.02
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h2 = 0.3, MAF = 0.2 h2 = 0.3, MAF = 0.4

Model epi1 AA Aa aa Model epi6 AA Aa aa

BB 0.500 0.926 0.615 BB 0.891 0.362 0.480

Bb 0.895 0.131 0.647 Bb 0.213 0.829 0.601

bb 0.858 0.160 0.999 bb 0.925 0.267 0.685

h2 = 0.3, MAF = 0.2 h2 = 0.3, MAF = 0.4

Model epi2 AA Aa aa Model epi7 AA Aa aa

BB 0.413 0.851 0.535 BB 0.077 0.689 0.417

Bb 0.831 0.008 0.580 Bb 0.763 0.150 0.491

bb 0.692 0.268 0.736 bb 0.196 0.657 0.247

h2 = 0.3, MAF = 0.2 h2 = 0.3, MAF = 0.4

Model epi3 AA Aa aa Model epi8 AA Aa aa

BB 0.455 0.848 0.897 BB 0.132 0.793 0.274

Bb 0.890 0.088 0.016 Bb 0.799 0.213 0.514

bb 0.562 0.686 0.467 bb 0.255 0.528 0.793

h2 = 0.3, MAF = 0.2 h2 = 0.3, MAF = 0.4

Model epi4 AA Aa aa Model epi9 AA Aa aa

BB 0.609 0.980 0.980 BB 0.611 0.104 0.759

Bb 0.993 0.300 0.275 Bb 0.180 0.674 0.019

bb 0.876 0.483 0.683 bb 0.532 0.189 0.681

h2 = 0.3, MAF = 0.2 h2 = 0.3, MAF = 0.4

Model epi5 AA Aa aa Model epi10 AA Aa aa

BB 0.486 0.963 0.512 BB 0.091 0.827 0.863

Bb 0.941 0.006 0.899 Bb 0.869 0.393 0.415

bb 0.691 0.541 0.614 bb 0.738 0.508 0.363

Table 12: Epistatic models with h2 = 0.3, MAF = 0.2, 0.4.
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h2 = 0.2, MAF = 0.2 h2 = 0.2, MAF = 0.4

Model epi11 AA Aa aa Model epi16 AA Aa aa

BB 0.428 0.757 0.812 BB 0.356 0.891 0.809

Bb 0.788 0.132 0.044 Bb 0.955 0.508 0.611

bb 0.559 0.548 0.373 bb 0.617 0.755 0.630

h2 = 0.2, MAF = 0.2 h2 = 0.2, MAF = 0.4

Model epi12 AA Aa aa Model epi17 AA Aa aa

BB 0.507 0.842 0.605 BB 0.086 0.536 0.641

Bb 0.845 0.162 0.629 Bb 0.677 0.275 0.096

bb 0.581 0.678 0.729 bb 0.219 0.413 0.712

h2 = 0.2, MAF = 0.2 h2 = 0.2, MAF = 0.4

Model epi13 AA Aa aa Model epi18 AA Aa aa

BB 0.577 0.247 0.428 BB 0.855 0.339 0.772

Bb 0.227 0.928 0.578 Bb 0.513 0.651 0.607

bb 0.586 0.262 0.158 bb 0.250 0.999 0.154

h2 = 0.2, MAF = 0.2 h2 = 0.2, MAF = 0.4

Model epi14 AA Aa aa Model epi19 AA Aa aa

BB 0.340 0.637 0.654 BB 0.506 0.838 0.024

Bb 0.689 0.017 0.041 Bb 0.603 0.454 0.957

bb 0.242 0.866 0.403 bb 0.729 0.427 0.753

h2 = 0.2, MAF = 0.2 h2 = 0.2, MAF = 0.4

Model epi15 AA Aa aa Model epi20 AA Aa aa

BB 0.387 0.726 0.734 BB 0.393 0.764 0.664

Bb 0.749 0.090 0.034 Bb 0.850 0.398 0.733

bb 0.551 0.401 0.724 bb 0.406 0.927 0.147

Table 13: Epistatic models with h2 = 0.2, MAF = 0.2, 0.4.
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h2 = 0.1, MAF = 0.2 h2 = 0.1, MAF = 0.4

Model epi21 AA Aa aa Model epi26 AA Aa aa

BB 0.463 0.703 0.431 BB 0.137 0.484 0.187

Bb 0.653 0.277 0.806 Bb 0.482 0.166 0.365

bb 0.830 0.008 0.129 bb 0.193 0.361 0.430

h2 = 0.1, MAF = 0.2 h2 = 0.1, MAF = 0.4

Model epi22 AA Aa aa Model epi27 AA Aa aa

BB 0.319 0.507 0.569 BB 0.469 0.198 0.754

Bb 0.553 0.105 0.045 Bb 0.337 0.502 0.141

bb 0.203 0.777 0.280 bb 0.339 0.453 0.285

h2 = 0.1, MAF = 0.2 h2 = 0.1, MAF = 0.4

Model epi23 AA Aa aa Model epi28 AA Aa aa

BB 0.627 0.393 0.335 BB 0.478 0.311 0.864

Bb 0.396 0.779 0.953 Bb 0.387 0.579 0.263

bb 0.174 0.842 0.106 bb 0.634 0.436 0.138

h2 = 0.1, MAF = 0.2 h2 = 0.1, MAF = 0.4

Model epi24 AA Aa aa Model epi29 AA Aa aa

BB 0.297 0.540 0.441 BB 0.068 0.299 0.017

Bb 0.541 0.072 0.278 Bb 0.289 0.044 0.285

bb 0.434 0.293 0.228 bb 0.048 0.262 0.174

h2 = 0.1, MAF = 0.2 h2 = 0.1, MAF = 0.4

Model epi25 AA Aa aa Model epi30 AA Aa aa

BB 0.332 0.562 0.573 BB 0.539 0.120 0.258

Bb 0.583 0.112 0.147 Bb 0.165 0.378 0.325

bb 0.399 0.496 0.033 bb 0.123 0.426 0.276

Table 14: Epistatic models with h2 = 0.1, MAF = 0.2, 0.4.
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h2 = 0.05, MAF = 0.2 h2 = 0.05, MAF = 0.4

Model epi31 AA Aa aa Model epi36 AA Aa aa

BB 0.492 0.664 0.481 BB 0.002 0.155 0.214

Bb 0.642 0.330 0.746 Bb 0.199 0.071 0.022

bb 0.656 0.396 0.000 bb 0.081 0.122 0.135

h2 = 0.05, MAF = 0.2 h2 = 0.05, MAF = 0.4

Model epi32 AA Aa aa Model epi37 AA Aa aa

BB 0.499 0.639 0.765 BB 0.188 0.020 0.171

Bb 0.666 0.389 0.083 Bb 0.032 0.174 0.059

bb 0.543 0.527 0.953 bb 0.134 0.087 0.092

h2 = 0.05, MAF = 0.2 h2 = 0.05, MAF = 0.4

Model epi33 AA Aa aa Model epi38 AA Aa aa

BB 0.212 0.350 0.116 BB 0.005 0.179 0.251

Bb 0.336 0.054 0.495 Bb 0.211 0.100 0.026

bb 0.227 0.273 0.495 bb 0.156 0.098 0.156

h2 = 0.05, MAF = 0.2 h2 = 0.05, MAF = 0.4

Model epi34 AA Aa aa Model epi39 AA Aa aa

BB 0.805 0.683 0.638 BB 0.174 0.321 0.154

Bb 0.657 0.936 0.989 Bb 0.223 0.254 0.245

bb 0.850 0.564 0.866 bb 0.448 0.025 0.424

h2 = 0.05, MAF = 0.2 h2 = 0.05, MAF = 0.4

Model epi35 AA Aa aa Model epi40 AA Aa aa

BB 0.638 0.488 0.383 BB 0.098 0.219 0.302

Bb 0.464 0.765 0.957 Bb 0.302 0.126 0.121

bb 0.580 0.562 0.719 bb 0.053 0.308 0.136

Table 15: Epistatic models with h2 = 0.05, MAF = 0.2, 0.4.
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