
Supplementary Material

Gene expression profile dataset

Gene expression data were downloaded from Array Express [1]. This is a public repository of gene
expression profiles (GEPs) described in literature. GEPs are logically organized into experiments. An
experiment is a collection of GEPs (usually performed in a single laboratory) together with their META-
DATA to trace information such as the applied experimental protocol, type of sample (cell type or tissue),
and all the other information required by the MIAME standard [2].

We collected 591 experiments in human for a total of 20,255 GEPs performed in human samples by
hybridisation of total RNA to HG-U133A Affymetrix microarrays, as well as, 614 experiments for a total
of 8,895 GEPs derived from mouse samples by hybridisation of total RNA to Mouse430A 2 Affymetrix
microarrays. In Supplementary Table 1 we report the complete list of the experiments used. Since
ArrayExpress stores for each experiment the normalized GEPs within the experiment, but not necessarily
the unprocessed data (i.e. CEL files). Since our method can merge experiments processed with different
algorithms (MAS5, RMA, GCRMA), we decided to use for our subsequent analysis normalized expression
data only, thus maximising the number of ’usable’ experiments.

Computation of pair-wise Mutual Information

GEPs derived from ArrayExpress are normalized within experiments, but not across experiments. Stan-
dard normalization techniques are difficult to apply to such large datasets and may not always be
performed due to the lack of unprocessed data (CEL files). To overcome these limitations, we proceeded
as follows: the expression values for each probe-set across the microarrays within one experiment are
ranked and then discretized into a predetermined number of bins (three). Specifically, the three bins,
each containing an equal number of values, are determined using the three non-parametric quantiles of
the ranked normalized expression values as cut points. Each expression value is then replaced by an
integer corresponding to the bin it falls into. Changing the number of bins does not considerably affects
the results as shown in Supplementary Figure 4, where we compared the algorithm performance using 3,
5 or 7 bins and 100 or 1000, computer simulated GEPs obtained as described in [3]. Since the results are
not changing significantly, and the computational complexity of the algorithm depends on the number
of bins, we decided to use three bins as a good balance between these factors.

We then computed pair-wise Mutual Information (MI) for all the pairs of probe-sets present in the
microarray model HG-U133A. MI is a pseudo distance between probability distributions; it measures
the amount of information two random variables share. MI has been widely applied to reverse-engineer
gene regulatory networks [4, 5]. Genes can be seen as random variables and their profiles as a random
process. Once gene expression profiles were properly discretized into bins, we computed MI for each pair
of probe-sets.

We considered two discrete random variables I and J assuming values in the set {1, ..., 3} describing
the discretized expression values of two probe-sets I and J . In this context, MI can be defined as:

MIIJ =
3∑

i=1

3∑
j=1

πij log
πij

πi+π+j
, (1)

where πij represents the joint probability P (I = i, J = j) with (i, j) ∈ {1, 2, 3} × {1, 2, 3} and
πi+ =

∑
j πij and π+j =

∑
i πij are respectively their marginal probabilities P (I = i) and P (J = j).

In order to estimate the joint probability πij , we used a simple frequentist approach: let nk
ij be the

counts of the outcomes (I = i, J = j) across the nk GEPs of experiment k, then the frequency π̂ij can
be estimated jointly from the all the K experiments:
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π̂ij =

∑K
k=1 n

k
ij∑K

k=1 n
k

=
nij

n
(2)

This leads to a point estimate of MI equal to

M̂IIJ =
3∑

i=1

3∑
j=1

nij

n
log

nijn

ni+n+j
. (3)

The computational complexity of our algorithm is o(N2 · n) where N is the number of probe-sets and
n is the total number of GEPs. In the human network N is 22,283 and n is 20,255, whereas in the mouse
network N is 45,101 and n is 8,895. Due to the high computational cost, we decided to implement a
parallel version of the algorithm to reduce computational time. The parallel algorithm distributes the
gene expression profiles among several computing processes. Each process gets N/p probes where p is
the number of processes available and N is the total number of probes. The processors are named P0 to
Pp−1 and logically organized in a topological ring where i follows j if i > j and P0 follows Pp−1.

At the beginning of the computation each process calculates the discretization of its own gene ex-
pression profiles and computes the mutual information for each pair of its N/p probes. At the first
communication step each process sends its probe to the following process and computes the MI for all
the pairs of probes where the first is the local probe while the second is the received probe. At the ith

communication step process Pj receives probes from process P(j−i)mod(p). The algorithm completes in
bp

2c communication steps. The parallel algorithm has been implemented in C using the MPI standard.
The code is available on request. The program has been executed on 105 processors of an HP XC6000
Cluster with Itanium 2 biprocessors nodes and a Quadrics ELAN 4 network. The total time for the
execution of the algorithm on the human network was about 8 hours, while for the mouse network it
took about 4 hours.

In order to select a significant threshold for the human and mouse networks, we fitted a Gamma
distribution to the values of the MI across all the probes’ pairs in human (mouse) using Maximum
Likelihood estimation. The Gamma distribution has been shown to well describe the distribution of
MI values under the null hypothesis of statistical independence among the two variables[6, 7]. We thus
could assign a p-value to the MI of each gene pair and retained only those MI with a p-value < 0.01.
This correspond to a MI of 0.04 for human and 0.025 for mouse.

We could have further pruned the networks by using one of the recently proposed schemes, such as
the CLEAR method [8] and the Data Processing Inequality (DPI) method introduced by [5], but we
decided against it, since we wanted to keep as many interactions as possible to have a broader overview
of a gene function and regulation. In this work, we were not interested in identifying ‘direct’ interactions
as done by [9], but we focused on the identification of “co-regulated” genes, i.e. both direct and indirect
interactions.

Comparison with off-the-shelf method

We applied a state-of-the-art reverse engineering algorithm, ARACNe [5], on simulated in-silico gene
expression data generated in [3]. Specifically, this in-silico dataset consists of 20 networks. For each
network, 1000 gene expression profiles are simulated in-silico, and expression values are considered com-
parable across the 1000 expression profiles. In order to make this in silico dataset comparable to real
gene expression profiles coming from different experiments, and therefore with values not comparable
across experiments, we proceeded as follows: for each gene network, we subdivided the set of the 1000
in-silico expression profiles into 10 different subsets of 100 expression profiles each. We then applied
ARACNe on each subset and the union of the gene network inferred was considered in further analysis.
On the same dataset, we also applied our new reverse-engineering approach described previously. We
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observed that the average precision of across the 20 networks (True Positives/ (True Positive plus False
Positive)) is 47%, whereas ARACNe reaches a precision of 21%. For comparison, when ARACNE is run
on all the 1000 in-silico expression profiles together, its precision is 66% [3]. This means that ARACNE
is very good at inferring gene networks but only if gene expression profiles are coming from homogeneous
samples, where standard normalization procedures can be applied.

Construction of the Golden Standard Interactome

In order to validate the biological relevance of the predicted interactions from our MI approach, we built
a golden standard (GoS) interaction network from the following interaction databases:
Reactome [10] is a curated knowledge-base of biological pathways; It represents a resource of core
pathways and reactions in human biology. It collects a total of 32,821 interactions.
Cipher [11] is a tool to predict disease-genes on the bases of a computational framework that integrates
human protein-protein interactions, disease phenotype similarities, and known gene-phonotype associ-
ations. Authors provide a protein interaction network assembled from the HPDR, BIND, MINT and
OPHID PP interaction databases. It accounts for 40,649 interactions.
Tissue Specific Protein Interactions [12] is a global human interaction network obtained by inte-
grating data from 21 different sources to define a network of a total of 67,200 physical interactions.

Results of the comparison between the inferred network and the GoS interactome are presented in
Supplementary Figure 1a.

Relationship between gene degree, gene expression level and protein disorder

In order to relate gene degree to the average expression level of a gene, we proceeded as follows: since
GEPs are normalized within experiments, and not comparable across experiments, we could not use the
whole dataset to estimate the average expression of each gene. Therefore, we used 120 human GEPs
(GSE5720) and 182 mouse GEPs (GSE10246) from GEO [13] measuring the expression of genes across
normal tissues.

In each species, GEPs were normalized together by applying MAS5 algorithm [14]. Probe-set average
expression levels were then compared with probe-set degrees, i.e. the number of connections of a probe-
set in the network. We then divided probe-sets into groups with the same (or similar) degree, taking
care that each group contained the same number of probe-sets (500 probe-sets each in human, and 1000
each in mouse). We then computed the average expression level and the average degree within each
group, as shown in Supplementary Figure 2a,b.

In order to relate gene degree to the average protein disorder of a gene, we proceeded as before, but
this time we used GlobPlot [15] to compute the protein disorder for each gene corresponding to each
probe-set. Results are shown in Supplementary Figure 3c,d.

Identification of Network Communities & Rich-clubs

We applied a classic hierarchical clustering algorithm with the average linkage algorithm on the matrix
describing the network using as a distance the “Jaccard” metrics. This is defined as the ratio between
the number of common interactions between two genes (i.e. two rows or two columns being the matrix
symmetric) divided by the total number of interactions. The dendrogram, produced by the average
linkage algorithm, was cut in order to maximize the number of clusters with more than 4 nodes. At the
end of this procedure, we identified 393 (865) communities in the human (mouse) network with more
than 4 nodes.

We then identified if these communities were enriched for genes sharing a common biological function.
To this end we applied Gene Ontology Enrichment Analysis (GOEA) on the list of genes in each commu-
nity. GOEA is a commonly used technique that allows the identification of statistically over-represented
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Gene Ontology terms in a set of genes. Suppose to have a set of N of genes, m of which are annotated as
associated to a Gene Ontology term of interest. Suppose to draw a subset of n genes from the complete
list of N genes, then the probability of obtaining k genes all sharing the same Gene Ontology term of
interest follows an hypergeometric probability distribution:

Pr(X = k) =

(
m
k

)(
N−m
n−k

)(
N
n

) (4)

from this, we can compute the cumulative distribution and hence the significance, or p-value, of the
draw; i.e. the probability of having at least k genes sharing the same GO term of interest.

In order to identify rich-clubs we first defined a distance between two communities A and B: the
Interaction Strength (ISAB). Defining nAB as the number of edges in the human (mouse) network
across the KA genes in community A and KB genes in community B, then:

ISAB = log(
nAB

KA ×KB × f
) (5)

where f is the average frequency of edges across all the genes in the human (mouse) network.
We then constructed a community-wise network by creating an adjacency matrix whose element in

row i and column j is the ISij between community i and community j, if the ISij > 0.
We the used this community-wise adjacency matrix to identify rich-clubs, i.e. communities of com-

munities. To this end, we applied a novel message-passing clustering algorithm [16] which is able to
return the number of clusters without any user-speficied parameter, using as inter-community distances
the ISs. We thus obtained 58 human (227 mouse) clusters of communities, i.e. rich-clubs (as defined in
network theory). For a complete list of genes within each community refer to Supplementary Table 6.

Guilty-by-association analysis

In order to predict gene function and/or localization from the human (mouse) network, we used a classic
Gene Ontology Enrichment Analysis (GOEA) as follows: for each probe (i.e. gene) of the human (mouse)
network, we selected the probes predicted to interact with it in the network (i.e. the gene’s neighbors).
For probes with more than 500 neighbors, only the 500 ones with the highest MI were retained; for
nodes with less than 50 neighbors, we included also the gene’s second neighbors (i.e. the neighbors of
the neighbors) up to a maximum of 500.

Multiple probes may refer to the same gene and thus be highly co-regulated. To avoid bias in the
GOEA computation, we removed from the neighbors, the probes associated to the same gene. GOEA
was then performed on this subset of neighbors for each of the probe in the human network. In the testing
phase, a prediction was claimed to be correct if the GO term that was enriched within a neighborhood
was also the one associated to the probe itself according to the GO database [17].

Chromatin structure and gene expression

To investigate the relationship between physical contact of chromosomal loci and connections among
genes in the network, we used a recent genome wide physical interaction map measured in 2 human
cell lines (GM06690 and K562) via an innovative “HiC” chromosome capture technique [18]. Authors
provide an intra-chromosomic [18] contact probability matrix at 100 Kilobases resolution, and a genome
wide contact probability matrix at 1 Megabases resolution.

In [18], authors defined a correlation matrix Cp in which element (i, j) is the Pearson correlation
between the ith row and jth column of Mp. This Cp matrix exhibits a strong ‘plaid-pattern’ as shown
in Figure 4b.

In order to compare the physical contact probabilities of the chromosomal regions (Cp) to the human
network, we first derived a “connection tendency matrix” (Mc) at 1 Mb resolution from the human
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network adjacency matrix. In the Mc matrix the element in position (i, j) reports the connection
tendency between genes in the ith Mb and genes in the jth Mb. To generate the Mc matrix, we first
subdivided the adjacency matrix by grouping together probes referring to genes which where within 1
Mb distance between each other, we then computed the IS as in Equation 5 genome-wide between the
1 Mb regions, with KA equal to the number of genes in the A region (of 1 Mb), KB the number of
genes in the B region (of 1 Mb), nAB the number of interactions between genes in region A and genes
in region B, and f the average frequency of interactions across all the genes in the human network. We
then derived a correlation matrix Cc as shown in Figure 4a, where the element in position (i, j) is the
Pearson correlation between the ith row and jth column of the Mc matrix.

Chromosome-wise analysis and genome wide analysis was accomplished by computing the 2-
dimensional Pearson correlation coefficient (PCC) between the Cp matrix, describing the physical contact
probability, and the Cc matrix, describing the interaction probabilities among the genes in the human
network. We computed the p-value following classic statistical theory for PCC. The p-value was then
corrected following A Bonferroni False Discovery Rate (FDR) procedure. We deemed as significant those
PCC with an FDR < 0.05.

Yeast-two-hybrid assays

The Yeast two Hybrid (Y2H) kit “ProQuest Two-Hybrid System” was obtained by Invitrogen. The
kit includes the bait vector pDEST32 (containing the GAL4 transcription factor DNA binding domain,
DBD), and the prey vector pDEST22 (containing the GAL4 transcription activation domain, AD) along
with the strong positive interaction control of pEXP 32-Krev1/pEXP 22 RalGDS-wt pair, the weak
positive interaction control pEXP 32-Krev1/pEXP 22 RalGDS-m1 pair, and the negative interaction
control pEXP 32-Krev1/pEXP 22 RalGDS-m2. The “Ultimate ORF” of the genes of interest were
purchased from INVITROGEN in order to generate prey and bait plasmids using the gateway technology.
For each gene we created both the prey and the bait plasmid according to manufacturer instructions.

The Y2H recipient strain of the ProQuest Two-Hybrid System, S. cerevisiae MAV 203 has the geno-
types of (MATα, leu2-3,112, trp1-901, his3∆200, ade2-101, gal4∆, gal80∆, SPAL10::URA3, GAL1::lacZ,
HIS3UAS GAL1::HIS3@LYS2, can1R, cyh2R). The culturing of MAV203 was performed in YPAD me-
dia using the standard protocol suggested by the manufacturer. Nutrient marker selective plates were
made with a nitrogen base, a carbon source, and a “dropout” solution containing the appropriate amino
acids (SIGMA). Synthetic medium lacking tryptophan, leucine, histidine, and uracil was used to select
positive interaction. The protein-protein interaction assays were performed according to the instructions
provided by Invitrogen.

Cell culture and transfection

For GRN functional assays, HeLa cells were cultured in DMEM supplemented with 10% FBS and treated
for 96 hours in the presence of sucrose to a final concentration of 100mM with daily changes of medium.
For immunofluorescence cells grown on glass coverlips were fixed with methanol for 10 minutes, washed
with PBS, treated with 50 mM NH4Cl for 15 minutes, and permeabilized with PBS 0.1% Triton, blocked
in blocking buffer (0.5% BSA, 50mM NH4Cl, 0.001% Triton in PBS pH 7.4), and incubated overnight
at 4oC with anti-LAMP2 antibody Santa Cruz and for one hour with Alexa-594 (Invitrogen). The levels
of Granulin and Catepsin D (CTSD) were evaluated by Real-Time PCR (Roche). The amplification
was performed using the following primers for GAPDH, “Fw: GAAGGTGAAGGTCGGAGTC and
“Rev: GAAGATGGTGATGGGATTTC, for GRN, “Fw: TCCAGAGTAAGTGCCTCTCCA and “Rev:
TCACCTCCATGTCACATTTCA, and for CTSD, “Fw: AACTGCTGGACATCGCTTGCT and “Rev:
CATTCTTCACGTAGGTGCTGGA.

For TFEB over-expression, HeLa cells were maintained at 37oC in a 5% CO2-humidified incubator,
and cultured in DMEM (GIBCO BRL) supplemented with 10% heat-inactivated fetal bovine serum
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(FBS) (Invitrogen), 1% L-glutammine and 1% antibiotic/antimycotic solution (GIBCO BRL). 500,000
HEK293 cells were transfected with 4µg of DNA expressing the transcriptional factor EB (TFEB) using
lipofectamine transfection reagent (Invitrogen) following the manufacturer protocol. After 48 hours from
transfection cells were collected, the mRNA extracted and the levels of Granulin, Catepsin D (CTSD) and
TFEB were evaluated by Real-Time PCR (Roche). The amplification of TFEB was performed using the
following primers, “Fw: CCAGAAGCGAGAGCTCACAGAT and “Rev :TGTGATTGTCTTTCTTCT-
GCCG.

For GRN over-expression 500,000 HeLa cells were transfected with 4µg of DNA expressing the human
GRN (Invitrogen, MGC Full-length (IRAT) clone ID3457813) using lipofectamine transfection reagent
(Invitrogen). As control we transfected 4µg of pCMV FLAG plasmid (Sigma-Aldrich) and 4µg of DNA
expressing a green fluorescent protein (GFP).

After 48 hours from transfection cells were collected and analysed by immunofluorescence. Medium was
concentrated on filters (Vivaspin Sartorius Stedim) and loaded on 10% SDS-PAGE. Transfer membranes
were incubated with anti human granulin antibody (Invitrogen) at 1:50 dilution.

Identification of Binding sites in Granulin promoter region

We used the Position Weight Matrix of the Transcription Factor TFEB and run MATCH [19] to find
its binding sites across -1000 +1000 base pairs flanking the UTR region of GRN. We found two binding
sites on chromosome 17, plus strain, with location 42,422,444 to 42,422,457 and chromosome 17, plus
strain, location 42,422,460 42,422,473 (Genome Browser, Human assembly Feb. 2009).
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Supplementary Figures
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Figure 1: Validation of predicted connections and their conservation across species. (a) In-silico vali-
dation of the network compared with an experimental Golden Standard (GoS) interactome. The Venn
diagram reports details about the composition of the GoS interactome. The inferred network (blue-line)
significantly outperforms random performance or a correlation-based approach (CoexpresDB dashed
line). (b) Percentage of connections conserved in the mouse. Connections are sorted according to their
MI value. The curve peaks at 28%; the genes involved in these most conserved interactions are highly
enriched for cell cycle phase P = 1.0x10−15.
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Figure 2: Subnetworks obtained by collecting the top 1000 connections with the highest MI within the
human network. Since we considered the MI among probes and not genes, the same gene symbol may
appear more than ones.
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Figure 3: “Hub” genes tend to be more expressed and to have a lower protein disorder compared to other
genes. (a-b) Gene degree (x -axis) versus intrinsic protein disorder in both human (a) and mouse (b)
networks. Genes were grouped in equally sampled quantiles (500 genes each in human, 1000 genes each
in mouse) and the average gene degree (x -axis) and protein disorder (y-axis) were computed. (c-d) Gene
degree (x -axis) versus expression level. The average gene degree was computed as before, the average
gene expression level was computed by computing the average expression of each gene across 79 tissues
(GEO Accession number: GSE2003).
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Figure 4: Comparison of the algorithm performance when changing the number of bins. Simulated
networks of size 100 were used for the comparison. Data used in panel (a) are related to the inference
from locally perturbed GEPs (100 experiments). Whereas, in panel (b) were used simulated GEPs
related to the global perturbation (1000 experiments). The plots report the precision-recall curve of the
performances.
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