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I. PROPERTIES OF χ(T ). DERIVATION OF EQUATIONS 1-4 IN THE ARTICLE

Proof of Eq. 1 in the article.� Consider a system S that interacts with a bath B.

Denote the total density matrix of the composite object as ρtotal, and the reduced density

matrices for the system and the bath as ρ and ρB, respectively. That is, ρ = TrB ρtotal, where

the trace is over the degrees of freedom of the bath, and similarly for ρB. Assume that the

initial state of ρtotal is a tensor product form,

ρtotal(0) = ρ(0)⊗ ρB(0), (S1)

where ρB(0) is always

ρB(0) =
∑
β

pβ|eβ〉〈eβ|, (S2)

for every initial state ρ(0) of the system, with pβ ≥ 0 and
∑

β pβ = 1. At time T , the total

state is a unitary evolution of the initial total state,

ρtotal(T ) = U(T )ρ(0)⊗ ρB(0)U †(T ). (S3)

Here, U(T ) = T (e−i
´ T
0 Htotal(t

′)dt′) is the propagator for the entire object, T is the time-ordering

operator, and

Htotal = HS +HB +HSB, (S4)

where HS, HB, HSB are terms in the Hamiltonian that depend only on degrees of freedom of S,

B, or both, respectively. Taking the trace of Eq. S3 with respect to the states of B yields

ρ(T ) =
∑
αβ

pβEαβ(T )ρ(0)E†αβ(T ) (S5)

where

Eαβ(T ) = 〈eα|U(T )|eβ〉, (S6)

is a Kraus operator and Eq. (S5) is known as the operator sum representation [1, 2].

By identifying:

χabcd(T ) =
∑
αβ

[Eαβ(t)]ac[E
†
αβ(t)]db

=
∑
αβ

pβ〈eα, a|U(T )|eβ, c〉〈eβ, d|U+(T )|eα, b〉 (S7)

we have proven the equivalence between Eq. S5 and 1 in the article. An important caveat which

is clear from the derivation is the following: ρB(0) must be the same for every initial state in S

for χ(T ) to be well-de�ned. Also, di�erent states ρB(0) will obviously yield di�erent processes.

�

3



Proof of Eq. 2 in the article.� Manipulating Eq. S7, it follows that

χbadc(T ) =
∑
αβ

pβ〈eα, b|U(T )|eβ, d〉〈eβ, c|U †(T )|eα, a〉

=

(∑
αβ

pβ〈eα, a|U(T )|eβ, c〉〈eβ, d|U †(T )|eα, b〉

)∗
= χ∗abcd(T ). (S8)

�

Eq. 2 in the article preserves the Hermiticity of the density matrix.

ρba(T ) =
∑
cd

χbadc(T )ρdc(0)

=
∑
cd

χ∗abcd(T )ρ∗cd(0)

=

[∑
cd

χabcd(T )ρcd(0)

]∗
= ρ∗ab(T ). (S9)

Proof of Eq. 3 in the article.� Using Eq. S7, and exploiting the fact that U(T )U †(T ) =

U †(T )U(T ) = IS ⊗ IB, the identity on the whole space, we get:

∑
a

χaacd(T ) =
∑
aαβ

pβ〈eα, a|U(T )|eβ, c〉〈eβ, d|U †(T )|eα, a〉

=
∑
aαβ

pβ〈eβ, d|U †(T )|eα, a〉〈eα, a|U(T )|eβ, c〉

=
∑
β

pβ〈eβ, d|eβ, c〉

= δcd. (S10)

�

Eq. 3 in the article preserves the trace of the density matrix:

Tr(ρ(T )) =
∑
acd

χaacd(T )ρcd(0)

=
∑
cd

δcdρcd(0)

= Tr(ρ(0)). (S11)
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Proof of Eq. 4 in the article.� Again, manipulating Eq. S7:

∑
abcd

z∗acχabcd(T )zbd =
∑
abcd

z∗ac
∑
αβ

pβ〈eα, a|U(T )|eβ, c〉〈eβ, d|U †(T )|eα, b〉zbd

=
∑
αβ

pβζαζ
∗
α

≥ 0,

where we have de�ned ζα =
∑

ac z
∗
ac〈eα, a|U(T )|eβ, c〉. �.

Suppose ρ(0) is Hermitian positive-semide�nite (HPS), so that we may write ρcd(0) =∑
k U
∗
kcqkUkd where U is a unitary transformation that diagonalizes ρ(0), and qk ≥ 0 for all

k. Is the HPS condition maintained for ρ(T )? If so, it must satisfy
∑

ab y
∗
aρab(T )yb ≥ 0 for an

arbitrary vector y. Eq. 4 in the article guarantees this:

∑
ab

y∗aρab(T )yb =
∑
abcdk

y∗aχabcd(T )U∗kcqkUkdyb

=
∑
k

∑
abcd

z(k)∗
ac χabcd(T )z

(k)
bd

≥ 0,

where we have identi�ed the vectors z(k) with elements z
(k)
bd =

√
qkUkdyb.

II. TRANSITION DIPOLES OF THE COUPLED DIMER MODEL

Since we are concerned with the interaction of the chromophores with electromagnetic radi-

ation, we make some remarks on the geometry of the transition dipoles (see Fig. S1). Let the

independent site transition dipole moments from the ground to the single exciton be dA and

dB, respectively. The transition dipole moments for the relevant eigenstate transitions are (see

for example, [3]):

 µαg
µβg

 =

 cos θ sin θ

− sin θ cos θ

 dA
dB


 µfα
µfβ

 =

 sin θ cos θ

cos θ − sin θ

 dA
dB

 . (S12)

To simplify notation, we assume that J 6= 0 and the components of dA and dB are all

real, which imply that µij = µji, for all i, j ∈ {α, β, f}. For a coupled heterodimer, the four

dipoles in Eq. (S12) are located in the same plane, but in general have di�erent magnitudes
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Figure S1: Parameters of the coupled heterodimer. (a) Dipole vectors dA and dB for each chromophoric

site. The angle between them is φ. (b) Transition dipole moments between the di�erent eigenstates

of HS ; angles are referenced with respect to µαg. (c) Energy spectrum of HS and allowed dipole

transitions.

and directions. We label the magnitude of µij with µij and the angle between µij and µαg with

φij, so that the reference is with respect to θαg = 0 (Fig. S1).

The di�erent transition dipole moments can be easily expressed in terms of the angle φ

between dA and dB, and the mixing angle θ. We present these functional dependences for

completeness. We de�ne our coordinate axes so

dA = dAẑ,

dB = (dB cosφ)ẑ + (dB sinφ)x̂. (S13)

We can expressing the components of the transition dipole moments,

µαg = (dB sin θ sinφ)x̂+ (dA cos θ + dB sin θ cosφ)ẑ,

µβg = (dB cos θ sinφ)x̂+ (−dA sin θ + dB cos θ cosφ)ẑ,

µfα = (dB cos θ sinφ)x̂+ (dA sin θ + dB cos θ cosφ)ẑ,

µfβ = (−dB sin θ sinφ)x̂+ (dA cos θ − dB sin θ cosφ)ẑ. (S14)

The angles between the di�erent transition dipole moments can be calculated as

cos(φij) =
µαg · µij
µαgµij

,

sin(φij) =
|µαg × µij|
µαgµij

. (S15)
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where µij denotes the norm of the respective dipole. For a homodimer with θ = π
4
, dA = dB

and µfα = µαg, µfβ = −µβg, yielding only two independent directions for the four transition

dipoles [4]. For a homodimer with θ = 3π
4
, the conclusion is similar.

III. STATE PREPARATION. DERIVATION OF EQUATION (9) IN THE ARTICLE

The second order density matrix in λ that results after considering the components of the

�rst two pulses at −k1 and +k2 can be calculated in Liouville space as (see [5]),

ρ̃ω1,ω2
e1,e2

(t2 + T )

=

(
1

i

)2 ˆ t2+T

−∞
dt′′
ˆ t′′

−∞
dt′G2(t2 + T, t′′)Ṽ(t′′)G1(t′′, t′)Ṽ(t′)ρ(−∞), (S16)

where ρ(−∞) = |g〉〈g|, or alternatively, in Liouville space notation, ρ(−∞) = |gg〉〉, is the

state of the system before the perturbations. We are interested in the situation T > 3σ, that

is, after the action of the two pulses has practically ceased. The perturbation superoperator is

Ṽ(t) =
∑3

i=1 Ṽi(t), where Ṽi(t) = [Ṽi, ·], and

Ṽ1(t) = −λµ̂< · e1E(t− t1)eiω1(t−t1) (S17)

Ṽ2(t) = −λµ̂> · e2E(t− t2)e−iω2(t−t2)

Ṽ3(t) = −λµ̂> · e3E(t− t3)e−iω3(t−t3).

These expressions conveniently adapt Eq. 6 in the article to account for the phase matching

direction of kPE and to consider the RWA, where µ̂< =
∑

ωp<ωq
µpq|p〉〈q| promotes emissions

from the ket or absorptions on the bra, and µ̂> = (µ̂<)+ induces the opposite processes.

A. Well separated pulses 1 and 2

We can simplify Eq. S16 by considering that: (a) if τ > 3σ, the pulses are well separated,

and we can perform the substitution Ṽ(t′) = Ṽ1(t′) and Ṽ(t′′) = Ṽ2(t′′); (b) we focus only

on the dominant contribution due to the resonant transitions. As mentioned in the text, this

calculation can be easily grasped by analyzing the double-sided Feynman diagrams in Fig. 2a�

d. Since we are looking for signals only in the direction −k1 + k2 + k3, the �rst pulse must

interact via the operator µ̂<, so it can only act on the bra to produce optical coherences |gp〉〉.

We assume that these coherences evolve unitarily together with a constant dephasing rate (this

assumption is not necessary, but it simpli�es our analysis):

G1(t′′, t′) = G(t′′ − t′)

=
∑
mn

Gmn(t′′ − t′)|mn〉〉〈〈mn|, (S18)
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where Gmn(τ) is given by Eq. 11 in the article. The second pulse can act on the ket to create

the coherence |pq〉〉 if p 6= q. However, in case the frequency component of the second pulse is

the same as that of the �rst pulse, it can excite the ket to form a population |qq〉〉 or de-excite

the bra to go back to −|gg〉〉 (with opposite sign due to the commutator). For the evolution in

the waiting time, we use the following identity:

G2(t2 + T, t′′) = χ(T )G(t2 − t′′), (S19)

where we have formally introduced the process matrix χ(T ) acting as the propagator after time

t2. Altogether, we have in Liouville space a perturbation, a free evolution, another perturbation,

and free evolution. The e�ective second order density matrix associated with the perturbations

at −k1 + k2 is given by:

ρ̃ω1,ω2
e1,e2

(t2 + T )

= −
(
−λ
i

)2∑
pq

[ ˆ t2+T

−∞
dt′′χ(T )

{
Gqp(t2 − t′′)

(
µqg · e2|q〉〈g|E(t′′ − t2)e−iω2(t′′−t2)

)
×
ˆ t′′

−∞
dt′Ggp(t′′ − t′)|g〉〈g|

(
|g〉〈p|µpg · e1E(t′ − t1)eiω1(t′−t1)

)}
−
ˆ t2+T

−∞
dt′′χ(T )

{
Ggg(t2 − t′′)

×
ˆ t′′

−∞
dt′Ggp(t′′ − t′)|g〉〈g|

(
|g〉〈p|µpg · e1E(t′ − t1)eiω1(t′−t1)

)
×
(
|q〉〈g|µqg · e2E(t′′ − t2)eiω1(t′′−t2)

)}]
(S20)

This calculation is a double integral over all the possible times t′ and t′′ in which the perturba-

tions due to the pulses at −k1 and +k2 can act due to their �nite width σ. The time-ordering

consideration is unimportant for τ, T � σ, and in fact, both integrals can be extended to the

entire real space:
´ t2+T

−∞ dt′′
´ t′′
−∞ dt

′(·) ≈
´∞
−∞ dt

′′ ´∞
−∞ dt

′(·). As discussed in the next subsection,

the approximation T � σ is needed (so that the pulse envelopes are nearly zero at time t2 +T ),

but the τ � σ assumption is unnecessary. We then rewrite

≈ −
(
−λ
i

)2∑
pq

(µpg · e1)(µqg · e2)

×
ˆ ∞
−∞

d(t′ − t1)
(
Ggp(t1 − t′)E(t′ − t1)eiω1(t′−t1)

)
×χ(T )

{ˆ ∞
−∞

d(t2 − t′′)Gqp(t2 − t′′)E(t′′ − t2)e−iω2(t′′−t2)Ggp(t′′ − t2)|q〉〈p|

−δpq(Ggg(t2 − t′′)E(t′′ − t2)e−iω2(t′′−t2)Ggp(t′′ − t2)|g〉〈g|)
}

(S21)
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The length of the pulse σ is much shorter than the dynamics induced by the bath. Therefore,

σ � 1
Γmn

, and dephasing contributions can be neglected within the integral so that Ggp(t1−t′) ≈

eiωpg(t1−t′), Gqp(t2 − t′′)Ggp(t′′ − t2) ≈ e−iωqp(t2−t′′)eiωpg(t2−t′′) = e−iωqg(t2−t′′), and Ggp(t′′ − t2) ≈

e−iωpg(t′′−t2), Ggg(t′′− t2) ≈ e−iωgg(t′′−t2). However, the dephasing terms are non-negligible in the

free evolution between the pulses if τ � σ, and the term Ggp(τ) in the �nal expression cannot

in general be simpli�ed to e−iωgpτ . Then we have

≈ −
(
−λ
i

)2∑
pq

(µpg · e1)(µqg · e2)

ˆ ∞
−∞

ds′e−iωpgs
′
E(s′)eiω1s′

ˆ ∞
−∞

ds′′eiωpgs
′′

×χ(T )
{
E(s′′)e−iω2s′′(|q〉〈p| − δpq|g〉〈g|)

}
= −χ(T )

{∑
pq

Cp
ω1
Cq
ω2

(µpg · e1)(µqg · e2)Ggp(t2 − t1)(|q〉〈p| − δpq|g〉〈g|)

}
, (S22)

The �nal result has a clear physical interpretation: Each of the transitions depicted in the

diagrams in Fig. 2a-d is controlled by the frequency components of the pulse at the given

transition (terms Cp
ω1

and Cq
ω2
), as well as the alignment between the transition dipole and

the pulse polarization. Free evolution of the optical coherence between the perturbations is

given by Ggp(τ). Once the state |q〉〈p| − δpq|g〉〈g| is formed, the superoperator χ(T ) acts on it,

encoding both coherent and dissipative processes.

B. Overlapping pulses 1 and 2

We now consider 0 ≤ τ < 3σ. Eq. (9) in the article rigorously holds for this more general case.

For the contribution due to the original diagrams in Fig. 2a�d, we carry out the same double

integral of Eq. (S20), but we keep it time ordered as
´∞
−∞ dt

′′ ´ t′′
−∞ dt

′(·). Additionally, each

diagram in Fig. 2a�d corresponds to another diagram where the pulse at +k2 acts before the one

at −k1, but yields back the same state after the two pulses (for example, the one corresponding

to Fig. 2b would be gg → βg → βα). Their contributions to [ρ
(2)
−k1,k2

]ω1,ω2
e1,e2

(t2 + T ) can be easily

shown to be
´∞
−∞ dt

′′ ´∞
t′′
dt′(·), where the integrand and the dummy variable convention are the

same as before. The sum of the two contributions yields back the double integral as in Eq.

(S21).

IV. STATE DETECTION. DERIVATION OF EQUATIONS 14-16 IN THE ARTICLE

The techniques to derive these equations are the same as the ones used for the previous

section. However, the proliferation of terms makes the full exposition of the derivation unwieldy.

Therefore, we only illustrate how some sample terms arise.
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A. Well separated pulses 3 and 4

Let us start by noting that, using Eq. (9) in the article, the element ij of ρ̃ω1,ω2
e1,e2

(t2 + T ) can

be expressed as:

〈i|ρ̃ω1,ω2
e1,e2

(t2 + T )|j〉〈
i

∣∣∣∣∣−χ(T )

{∑
pq

Cp
ω1
Cq
ω2

(µpg · e1)(µqg · e2)Ggp(τ)(|q〉〈p| − δpq|g〉〈g|)

}∣∣∣∣∣ j
〉

= −
∑
pq

Cp
ω1
Cq
ω2

(µpg · e1)(µqg · e2)Ggp(τ)(χijqp(T )− δpqδijδig). (S23)

We de�ne [ρ
(3)
−k1,k2,k3

]ω1,ω2,ω3
e1,e2,e3

(t3 + t) analogously to the way ρ̃ω1,ω2
e1,e2

(t2 + T ) was de�ned in Eq.

(S16), that is, the third-order in λ density matrix due to the perturbations corresponding to

the phase-matching direction −k1 + k2 + k3. For t � σ, we can easily calculate the matrix

elements of [ρ
(3)
−k1,k2,k3

]ω1,ω2,ω3
e1,e2,e3

(t3 + t) that yield an optical dipole, say αg, and can then �nd the

contribution of the latter to the polarization via trace with respect to µ̂ (see Fig. 2e and h):

Tr(µ̂〈α|[ρ(3)
−k1,k2,k3

]ω1,ω2,ω3
e1,e2,e3

(t3 + t)|g〉|α〉〈g|)

= −Tr[µ̂
∑
pq

Cp
ω1
Cq
ω2

(µpg · e1)(µqg · e2)Ggp(τ)

×
(
−λ
i

) ˆ t3+t

−∞
dt′Gαg(t3 + t− t′)E(t′ − t3)e−iω3(t′−t3)

×{
(
µαg · e3|α〉〈g|

) (
e−iωgg(t′−t3) (χggqp(T )− δpq) |g〉〈g|

)
−
(
e−iωαα(t′−t3)χααqp(T )|α〉〈α|

) (
|α〉〈g|µαg · e3

)
−
(
e−iωαβ(t′−t3)χαβqp(T )|α〉〈β|

) (
|β〉〈g|µβg · e3

)
}]

≈ −
∑
pq

Cp
ω1
Cq
ω2

(µpg · e1)(µqg · e2)Ggp(τ)

×{Cα
ω3

(µαg · e3)Gαg(t)(χggqp(T )− δpq − χααqp(T ))

−Cβ
ω3

(µβg · e3)Gαg(t)χαβqp(T )}µαg, (S24)

where, just as before, we have used the fact that σ � 1
Γαg

to approximate that Gαg(t3 + t− t′) ≈

Gαg(t)eiωαg(t′−t3), and the integrals have been extended to the entire real axis. The third pulse

at +k3 can excite the ket or de-excite the bra of the output state at the waiting time. The

calculation above simply enumerates the resonant transitions gg, αα, αβ → αg due to the laser

components associated with Cα
ω3
, Cα

ω3
, and Cβ

ω3
, respectively, and takes the trace of the optical

coherence with respect to the dipole operator: Tr(µ̂|α〉〈g|) = µαg. Recall that we have chosen

the dipole elements to be purely real.
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The detection of the polarization due to the αg coherence occurs through heterodyning.

The fourth ultrashort pulse interferes with the coherence oscillating as eiωαg(t′′−t4), yielding a

contribution to the time integrated signal encoded by:

ˆ ∞
−∞

dt′′eiω4(t′′−t4)E(t′′ − t4)e−iωαg(t′′−t4)

= i
√

2πσ2e−σ
2(ωαg−ω4)2/2

∝ Cα
ω4
. (S25)

In words, the Fourier components of the fourth pulse �lter the optical coherences of the

polarization associated sample. In our case, the polarization due to the coherence αg will be

detected as Cα
ω4
, that is, proportionally to the frequency component of the fourth pulse at ωαg.

Altogether, the calculation reads:

ˆ ∞
−∞

eiω4(t′′−t4)E(t′′ − t4)e−iωαg(t′′−t4)

×e4 · Tr(µ̂〈α|[ρ(3)
−k1,k2,k3

]ω1,ω2,ω3
e1,e2,e3

(t3 + t)|g〉|α〉〈g|)

∝ Cα
ω4
e4 · Tr(µ̂〈α|[ρ(3)

−k1,k2,k3
]ω1,ω2,ω3
e1,e2,e3

(t3 + t)|g〉|α〉〈g|)

= −
∑
pq

Cp
ω1
Cq
ω2

(µpg · e1)(µqg · e2)Ggp(τ)

×{Cα
ω3
Cα
ω4

(µαg · e3)(µαg · e4)Gαg(t)(χggqp(T )− δpq − χααqp(T ))

−Cβ
ω3
Cα
ω4

(µβg · e3)(µαg · e4)Gαg(t)χαβqp(T )}. (S26)

This exercise can be repeated for the rest of the optical coherences which occur in the echo

time and yield detectable dipoles: βg, fα, fβ (Fig. 2-e,f,g,h). The total signal is

[SPE]ω1,ω2,ω3,ω4
e1,e2,e3,e4

(τ, T, t)

=
∑

uv=αg,βg,fα,fβ

ˆ ∞
−∞

dt′′eiω4(t′′−t4)E(t′′ − t4)e−iωij(t
′′−t4)

×e4 · Tr(µ̂〈u|[ρ(3)
−k1,k2,k3

]ω1,ω2,ω3
e1,e2,e3

(t3 + t)|v〉|u〉〈v|), (S27)

which yields Eq. 14 in the article. That equation has been rewritten by grouping the terms in

the forms of Eqs. 15 and 16 in the article, and their analogues upon the α, β → β, α substitutions

in order to classify the processes corresponding to the frequencies of the transition due to the

third pulse and the heterodyne detection.
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B. Overlapping pulses 3 and 4

We now consider 0 ≤ t rather than 3σ < t, to consider overlapping pulses 3 and 4. Eq. 14 in

the article must be slightly modi�ed when the overlap in time between the third and the fourth

pulses is signi�cant. As opposed to Section III-B of this Appendix, where the �rst pulse can

act on the system before the second pulse and viceversa, in the detection stage, the third pulse

must act on the system to yield a polarization before the fourth pulse (which does not interact

with the system) can detect it. Hence, the LO cannot be regarded on the same footing as the

other three pulses.

First, we state the solution to the relevant integral:

ˆ ∞
−∞

dt′′
ˆ t′′

−∞
dt′eiω4(t′′−t4)E(t′′ − t4)e−iωuv(t′′−t4)Guv(t)eiωuv(t′−t3)E(t′ − t3)e−iω3(t′−t3)e−iωij(t

′−t3)

=
(√

πσ2e−(ω3−(ωuv−ωij))2σ2/2
)(√

πσ2e−(ω4−(ω4−ωuv))2
)

×
(

1 + Erf

(
t

2σ
+

(ω3 − (ωuv − ωij) + ω4 − ωuv)σ
2

))
Guv(t), (S28)

which applies to the ij → uv transition caused by the third pulse at +k3, followed by an e�ective

free evolution Guv(t) for the echo interval t = t4− t3, and the detection of the optical coherence

uv via the LO. Importantly, the upper limit of the integral over t′, associated with the action

of the third pulse, cannot be taken to ∞, since the LO may interfere with the transients of the

polarization before the envelope of the third pulse is e�ectively over. There is no contribution

from the complementary integral going from t′′ to ∞ since the LO is assumed not to interact

with the system and, hence, does not contribute to the polarization of the sample.

Repeating the derivation of Eq. S24 by not taking the upper limit of the t′′ integral to∞, it

can be seen that the only modi�cation to Eq. 14 in the article is given by Eq. 17 in the article.

That is, the amplitudes of the third transition and the action of the LO are correlated by an

error function. In the limiting case when t� σ, Eq. 17 recovers Cr
ω3
Cs
ω4
, since Erf(x)→ 1 as

<{x} → ∞.

V. OVERALL MULTIPLICATIVE CONSTANT

Overall multiplicative constant. Eq. (14) in the article is de�ned up to a propor-

tionality constant which depends on many factors such as the concentration of the molecules in

the experimental sample and the e�ciency of the mirrors in the optical setup. This factor may

be determined by performing the extraction of χ(T ) up to that constant, and then normalizing
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it by enforcing the trace preservation condition of Eq. 3 in the article to hold for population

initial states, c = d.

VI. ISOTROPIC AVERAGES

The probed sample is an ensemble of isotropically distributed molecules in solution. The

isotropic average 〈·〉 for a tetradic (µa · e1)(µb · e2)(µc · e3)(µd · e4) is given by [6]:

〈(µa · e1)(µb · e2)(µc · e3)(µd · e4)〉iso

=
∑

m1m2m3m4

I(4)
e1e2e3e4;m1m2m3m4

×[(µa ·m1)(µb ·m2)(µc ·m3)(µd ·m4)], (S29)

where the isotropically invariant tensor is given by,

I(4)
e1e2e3e4;m1m2m3m4

=
1

30
[δe1e2δe3e4 δe1e3δe2e4 δe1e4δe2e3 ]

×


4 −1 −1

−1 4 −1

−1 −1 4



δm1m2δm3m4

δm1m3δm2m4

δm1m4δm2m3

 . (S30)

Here, ei and mi are the polarizations of the pulses in the lab and the molecular frame, re-

spectively. The isotropic average consists of a sum of molecular frame products [(µa ·m1)(µb ·

m2)(µc ·m3)(µd ·m4)] weighted by I
(4)
e1e2e3e4;m1m2m3m4 . Via this procedure, Eq. 14 in the article

becomes:

〈[SPE]ω1,ω2,ω3,ω4
e1,e2,e3,e4

(τ, T, t)〉iso =
∑
p,q,r

Cp
ω1
Cq
ω2
Cr
ω3
Cs
ω4
〈P p,q,r,s

e1,e2,e3,e4
(τ, T, t)〉iso. (S31)

Due to the structure of Eq. S30, there are signals which vanish in isotropic conditions even

though they are �nite otherwise. An interesting consequence of this fact is that QPT is not

fully realizable for homodimers, since coherence to population and the reverse processes cannot

be detected under isotropic conditions [4].

VII. ERRORS IN STATE PREPARATION AND DETECTION

Nontrivial bath-induced dynamics during the coherence or echo times could decrease the

robustness of the QPT. Such dynamics manifest as deviations from Eq. (11) in the article and

13



could be diagnosed by analyzing the signal [SPE]ω1,ω2,ω3,ω4
e1,e2,e3,e4

(τ, T, t) collected as a function of τ ,

with �xed T and t values, or alternatively, by varying t with τ, t �xed. A detailed study of this

possibility will be presented elsewhere. Similarly, if the bath evolves away from its equilibrium

con�guration during the coherence time, with dynamics dependent on the excitonic state, then

the initial state for QPT will not be well-de�ned. This problem can be avoided by taking

τ = t = 0 (TD/TB experiments) as described in the article and in the next point.

VIII. DISCUSSION OF THE FACTORIZABLE CONDITION AT T = 0

The factorized initial condition assumption in Eq. S1 requires some further discussion. Does

it hold for excitonic systems? At t = −∞, we can safely assume that ρtotal(t = −∞) =

|g〉〈g| ⊗ ρB,eq, where ρB,eq is an incoherent ensemble of phonons at thermal equilibrium, and

the system state is in the ground electronic state. However, this is not the initial state we are

concerned with for a QPT in the single exciton manifold. The state we shall worry about is

the one after two pulse perturbations.

First, consider the τ = 0 case (TB and TD experiments). The discussion in Sections III and

IV on overlapping pulses is particularly relevant for this situation. Denote [ρ
(2)
total,−k1,k2

]ω1,ω2
e1,e2

(t2 +

T ) the total second order density matrix corresponding to the perturbations at the −k1 and +k2

directions, such that its trace over the bath yields the object ρ̃ω1,ω2
e1,e2

(t2 + T ) de�ned in Eq. 9 in

the article. We are interested in the quasi-impulsive limit of the light-matter interaction, where

σ � 1
λ
, where σ is the duration of the pulses and λ is the characteristic reorganization energy

scale of the bath. As mentioned in the article, in accordance with the Franck-Condon principle,

we assume the electronic excitation occurs much faster than any nuclei rearrangement, and

[ρ
(2)
total,−k1,k2

]ω1,ω2
e1,e2

(t2 + T ) ≈ ρ̃ω1,ω2
e1,e2

(t2 + T )⊗ ρB,eq, so that Eq. S1 holds.

For τ > 0, the situation needs to be more carefully analyzed. If τ � 1
λ
, a similar scenario to

the one in the previous paragraph applies (the bath is not given enough time to evolve far away

from ρB,eq). Another useful case to consider is τ � 1
λ
, after which B relaxes to a stationary or

quasi-stationary state ρB,stat, which may or may not be equal to ρB,eq. In order to preserve the

factorizable condition, this state ρB,stat must be the same for every electronic population and

coherence of interest, so that [ρ
(2)
total,−k1,k2

]ω1,ω2
e1,e2

(t2 + T ) ≈ ρ̃ω1,ω2
e1,e2

(t2 + T ) ⊗ ρB,stat. The simplest

example of this situation is a Markovian bath, for which B relaxes to ρB,eq after a timescale on

the order of 1
λ
, which is short compared to the dynamics of the system.

For cases beyond the ones described here, factorizable initial conditions might not apply,

and a reexamination of QPT protocols for initially correlated states must be advocated [7�9].

We are currently pursuing this line of research.
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In conclusion, in order to get consistent results for QPT, TD/TB seem to be the most

promising experiments. The standard PE experiments with �nite τ provide a QPT if the bath

is su�ciently �well-behaved,� as described above.

IX. TRADING FREQUENCY CONTROL FOR TIME DELAY

Several properties of the pulses can be exploited to selectively manipulate the excitons.

These include frequencies [10], polarizations [11�13], and time delays [14�16]. In the article,

we have only exploited the former to make a transparent connection between a PE and a QPT

experiment. However, the case of polarizations and time delays has also been addressed in

our recent work [4]. In this section, we address the use of time delays to substitute frequency

control.

Eq. 14 in the article can be rewritten as:

[SPE]ω1,ω2,ω3,ω4
e1,e2,e3,e4

(τ, T, t) ∝
∑
p,q,r,s

Cp
ω1
Cq
ω2
Cr
ω3
Cs
ω4
Ggp(τ)Gsg(t)P p,q,r,s

e1,e2,e3,e4
(0, T, 0), (S32)

For simplicity, we have made the approximations: Gfα(t) ≈ Gβg(t) and Gfβ(t) ≈ Gαg(t). Notice

that in Eq. S32, the frequency ωpg appears both in the coherence time propagator Ggp(τ) as

well as in the frequency amplitude of the �rst transition Cp
ω1
. A similar observation follows for

ωsg in the echo time in Gsg(t) and Cs
ω4
. The frequency redundancy in the propagators and the

transition amplitudes is the key to understand trading of frequency control for time delays.

Upon the collection of the signal along many values of τ and t for a �xed T , a double

one-sided Fourier transformation yields the 2D-ES [4]:

S(ωτ , T, ωt) =

ˆ ∞
0

dτe−iωτ τ
ˆ ∞

0

dteiωtt[SPE]ω1,ω2,ω3,ω4
e1,e2,e3,e4

(τ, T, t) (S33)

∝
∑

p,s=α,β

lτ,p(ωτ )lt,s(ωt)Sps(T ) (S34)

The spectrum consists of a sum of four resonances at (ωτ , ωt) ∈

{(ωαg, ωαg), (ωαg, ωβg), (ωβg, ωαg), (ωβg, ωβg)}, which correspond to the frequencies of the

optical coherences at the coherence and echo times. These resonances are modulated by

lineshape functions of the form,

lτ,p(ωτ ) =
1

i(ωτ − ωpg − iΓpg)
, (S35)

lt,s(ωt) =
1

i(−ωt + ωsg − iΓsg)
, (S36)

and the amplitude of each peak is given by

Sps(T ) =
∑
q,r

Cp
ω1
Cq
ω2
Cr
ω3
Cs
ω4
P p,q,r,s

e1,e2,e3,e4
(0, T, 0) (S37)
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In our original example for QPT, we considered sixteen possible four-pulse-combination

experiments, which can isolate each of the P p,q,r,s
e1,e2,e3,e4

(τ, T, t) terms for p, q, r, s ∈ {α, β} for a

�xed polarization setting (e1, e2, e3, e4), which in turn yield enough information to invert the

elements of χ(T ). The pulses were assumed to be chosen from the toolbox in Eq. 13 in the

article. The same sixteen experiments can be extended to the 2D-ES domain by collecting data

from many τ and t values, so that P p,q,r,s
e1,e2,e3,e4

(0, T, 0) ∝ P p,q,r,s
e1,e2,e3,e4

(τ, T, t) can be extracted

from Eq. S37, provided that the amplitudes Sps(T ) can be obtained through a �tting procedure

of the 2D-ES to a sum of the four lineshapes. However, we can get away with many fewer

experiments. The amplitude Sps(T ) only contains information of the Feynman diagrams where

the �rst pulse is centered about ωpg and the fourth pulse about ωsg. Frequency control over the

�rst and the fourth pulses is redundant, as it will yield 2D-spectra with only one peak at a time.

This is unnecessary as each of the four peak amplitudes can be determined independently via a

�tting procedure. Instead, a waveform that excites both |α〉 and |β〉 with the same amplitude

(e.g., a pulse with carrier frequency in between the excitons, ω̄ =
ωα+ωβ

2
, and the same σ as

before, or shorter) for these two perturbations will, in general, expose the four resonances in

a single 2D-ES, so that Cp
ω1

= Cs
ω4

for all p, s. However, selective waveforms, such as the ones

described for the original QPT, must still be used for the second and third perturbations, as

Sps(T ) still contains a sum over q, r, which needs to be distilled.

The conclusion is that one can trade frequency control for time-delays for the �rst and fourth

pulses, but not for the second and third pulses. For this trade to work, it is essential that no

bath-induced coherence transfers occur during the coherence and echo times, so that we can

write an optical propagator like Eq. 11 in the article.

X. SECULAR REDFIELD MODEL FOR MARKOVIAN DISSIPATION

The free evolution of the system S and bath B is generated by the total Hamiltonian

Htotal =HS +HB +HSB (S38)

where HS, HB, and HSB are the Hamiltonian for S, B, and the interaction between S and

B, respectively. We model the bath as being constituted by two independent and identically
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distributed Ohmic bosonic baths, each linearly coupled to a site of the dimer.

HB =
∑
i=α,β

∑
x

ωx,i

(
b+
x,ibx,i +

1

2

)
HSB = Fα|α〉〈α|+ Fβ|β〉〈β|+ (Fα + Fβ)|f〉〈f |

Fi =
∑
x

λx,i(bx,i + b+
x,i) (S39)

where bx,i, b
+
x,i are the anhilation and creation operators of the bath mode x coupled to the site

i with frequency ωx,i, λx,i is a coupling strength, and the spectral density is the same for both

sites:

Ji(ω) =
∑
x

ω2
x,iλ

2
x,iδ(ω − ωx)

=
λ

ωc
ωe−ω/ωc . (S40)

We take ωc = 120 cm−1 and λ = 30 cm−1, which are typical energy scales for biomolecular

chromophores. By applying second-order perturbation theory on HSB, tracing over the degrees

of freedom of B, and invoking the Markov and secular approximations, one can arrive at the

Red�eld equation [17],

ρ̇(T ) = −i[HS, ρ(T )]−Rρ(T ), (S41)

The Red�eld tensor R [18] for T = 273 K is shown in Table S1. Table S2 shows the explicit

expressions of χ(T ) in terms of R.

TABLE S1. Values (in ps−1) of non-zero rates of the (secular) Red�eld tensor at T = 273 K

Rββαα 2.15

Rααββ = e−ωαβ/kBTRββαα 0.467

Rαβαβ = Rβαβα 6.91

Rαgαg = Rgαgα = Rfαfα = Rαfαf 6.95

Rβgβg = Rgβgβ = Rfβfβ = Rβfβf 6.11

Rfgfg = Rgfgf 17.9

TABLE S2. Analytical expressions for the nonzero elements of χ(T ) involving single-exciton states

χαααα(T ) e−RββααT

χββαα(T ) 1− e−RββααT

χββββ(T ) e−RααββT

χααββ(T ) 1− e−RααββT

χαβαβ(T ) = (χβαβα(T ))∗ e−iωαβT e−RαβαβT
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XI. RECONSTRUCTION OF χ(T )

We divide the numerical reconstruction of χ(T ) into two steps.

A. Reconstruction of the values 〈P p,q,r,sz,z,z,z(τ, T, t)〉iso from the signals

〈[SPE ]ω1,ω2,ω3,ω4
z,z,z,z (τ, T, t)〉iso

Eq. (14) in the article can be arranged into a matrix equation,

SPE(τ, T, t) ∝ CP (τ, T, t) (S42)

where SPE is a vector of the sixteen measured signals 〈[SPE]ω1,ω2,ω3,ω4
z,,e3,e4

(τ, T, t)〉iso, P (τ, T, t) is

the vector consisting of the sixteen values 〈P p,q,r,s
e1,e2,e3,e4

(τ, T, t)〉iso which are to be extracted, and

C is a matrix of known pulse related coe�cients Cp
ω1
Cq
ω2
Cr
ω3
Cs
ω4
. An important issue to address

is the stability of the inversion of P (τ, T, t) subject to errors in SPE(τ, T, t) upon changes in

the ratio C2/C1 (see Eq. 13 in the article). Denote the spectral norm of a vector or a matrix

with ‖ · ‖. We can bound the errors in the numerically extracted P from Eq. S42 in terms of

the errors in the signal SPE [19],

||∆P ||
||P ||

≤ κC
‖ ∆SPE ‖
‖ SPE ‖

, (S43)

where ∆P and ∆SPE are errors in P and SPE, respectively. The condition number κC is given

by

κC =‖ C(T ) ‖‖ [C(T )]−1 ‖, (S44)

yields a measure of the ampli�cation of the relative errors on the inverted vector due to the

relative errors in the experimental data. The lowest possible value for a condition number is 1.

When both waveforms of the toolbox excite |α〉 and |β〉 with the same amplitude (C ′/C” = 1),

there is no selectivity in the preparation and detection of states in the energy domain, and

κC =∞, yielding the worst scenario for reconstruction. The best scenario occurs for the MDC

case (C ′/C”→∞), where C is proportional to the identity matrix, and κC = 1.

Not surprisingly, κC decreases monotonically over the C ′/C” ∈ [1,∞] range. Fig. S1 shows

κC with respect to C ′/C”. The small values of κC imply a robust numerical extraction of

P (τ, T, t) over a wide range of obtainable C ′/C”.

B. Reconstruction of χ(T ) from 〈P p,q,r,sz,z,z,z(τ, T, t)〉iso
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Figure S2: Plot of κC vs. C/C”. The function decreases monotonically over C ′/C” ∈ [1,∞], as

expected, with C ′/C” = 1 being the worst scenario of reconstruction corresponding to the case of

equal pulse amplitude at both excitonic energies ωαg and ωβg, and C
′/C” =∞ being the best scenario

corresponding to the MDC.
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Table S3. A set of experiments which yields χ(T )

From the data we can reconstruct the elements which explicitly listed are

〈Pα,α,α,α
z,z,z,z (τ, T, t)〉iso,

〈Pα,α,α,β
z,z,z,z (τ, T, t)〉iso,

〈Pα,α,β.β
z,z,z,z (τ, T, t)〉iso,

〈Pα,α,β,α
z,z,z,z (τ, T, t)〉iso


{χijαα(T )}



χαααα(T ),

χββαα(T ),

<{χαβαα(T )} = <{χβααα(T )},

={χαβαα(T )} = −={χβααα(T )}



〈P β,β,α,α
z,z,z,z (τ, T, t)〉iso,

〈P β,β,α,β
z,z,z,z (τ, T, t)〉iso,

〈P β,β,ββ
z,z,z,z (τ, T, t)〉iso,

〈P β,β,α,β
z,z,z,z (τ, T, t)〉iso


{χijββ(T )}



χααββ(T ),

χββββ(T ),

<{χαβββ(T )} = <{χβαββ(T )},

={χαβββ(T )} = −={χβαββ(T )}



〈P β,α,α,α
z,z,z,z (τ, T, t)〉iso,

〈P β,α,α,β
z,z,z,z (τ, T, t)〉iso,

〈P β,α,β,β
z,x,x,z (τ, T, t)〉iso,

〈P β,α,β,α
z,x,x,z (τ, T, t)〉iso,

〈Pα,β,α,α
z,z,z,z (τ, T, t)〉iso,

〈Pα,β,α,β
z,z,z,z (τ, T, t)〉iso,

〈Pα,β,β,β
z,z,z,z (τ, T, t)〉iso,

〈Pα,β,β,α
z,z,z,z (τ, T, t)〉iso



{χijαβ(T ) = (χjiβα(T ))∗}



<{χαααβ(T )} = <{χααβα(T )},

={χαααβ(T )} = −={χααβα(T )},

<{χββαβ(T )} = <{χβββα(T )},

={χββαβ(T )} = −={χβββα(T )},

<{χαβαβ(T )} = <{χβαβα(T )},

={χαβαβ(T )} = −={χβαβα(T )},

<{χβααβ(T )} = <{χαββα(T )},

={χαβαβ(T )} = −={χβαβα(T )}


Once the 〈P p,q,r,s

z,z,z,z(τ, T, t)〉iso values have been extracted, a second step to extract χ(T ) from

them is required. The explicit trace preservation identities,

χggαα(T )− 1 = −χαααα(T )− χββαα(T )),

χggββ(T )− 1 = −χααββ(T )− χββββ(T )),

<{χggαβ(T )} = −<{χαααβ(T )} − <{χββαβ(T )},

={χggαβ(T )} = −={χαααβ(T )} − ={χββαβ(T )}, (S45)

together with the Hermiticity identities in column 2 of Table S3, can be substituted into Eqs.

14-16 in the article, and their analogues upon the α↔ β substitution. After isotropic averaging,

we can write the matrix equations,

MqpXqp(T ) = P qp(T ), (S46)

each of them corresponding to an initial state qp. The analytical expressions of the square

matrices Mqp are listed in Tables S4, S5, and S6. The real vectors X to extract contain the
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elements of the process matrix,

Xαα(T ) =


χαααα(T )

χββαα(T )

<{χαβαα(T )}

={χαβαα(T )}

 ,

Xββ(T ) =


χααββ(T )

χββββ(T )

<{χαβββ(T )}

={χαβββ(T )}

 ,

Xαβ(T ) =



<{χαααβ(T )}

<{χββαβ(T )}

<{χαβαβ(T )}

<{χβααβ(T )}

={χαααβ(T )}

={χββαβ(T )}

={χαβαβ(T )}

={χβααβ(T )}



, (S47)

whereas the vectors consisting of data from experiments are

Pαα(T ) =


〈Pα,α,α,α

z,z,z,z (0, T, 0)〉iso
〈Pα,α,α,β

z,z,z,z (0, T, 0)〉iso
〈Pα,α,β,α

z,z,z,z (0, T, 0)〉iso
〈Pα,α,β,β

z,z,z,z (0, T, 0)〉iso

 ,

P ββ(T ) =


〈P β,β,α,α

z,z,z,z (0, T, 0)〉iso
〈P β,β,α,β

z,z,z,z (0, T, 0)〉iso
〈P β,β,β,α

z,z,z,z (0, T, 0)〉iso
〈P β,β,β,β

z,z,z,z (0, T, 0)〉iso

 ,

Pαβ(T ) =



〈P β,α,α,α
z,z,z,z (0, T, 0)〉iso

〈P β,α,α,β
z,z,z,z (0, T, 0)〉iso

〈P β,α,β,α
z,z,z,z (0, T, 0)〉iso

〈P β,α,β,β
z,z,z,z (0, T, 0)〉iso

〈Pα,β,α,α
z,z,z,z (0, T, 0)〉iso

〈Pα,β,α,β
z,z,z,z (0, T, 0)〉iso

〈Pα,β,β,α
z,z,z,z (0, T, 0)〉iso

〈Pα,β,β,β
z,z,z,z (0, T, 0)〉iso



.
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Construction of the P qp(T ) vectors can be done from the values 〈P p,q,r,s
z,z,z,z(0, T, 0)〉iso stemming

from TD/TBmeasurements, or alternatively, after factoring the coherence and echo propagators

from the values 〈P p,q,r,s
z,z,z,z(τ, T, t)〉iso given by the general rephasing PE experiment, as in Eq. S32.

Table S4. Entries of Mαα

ROW COLUMN V ALUE

1 1
2µ4

αg

5

1 2
µ4
αg

5
− 1

15

(
cos

(
2θfβ

)
+ 2

)
µ2fβµ

2
αg

1 3 0

1 4 0

2 1 0

2 2 0

2 3 1
15
µ2αg

(
3 cos

(
θβg

)
µαgµβg −

(
3 cos (θfα) cos

(
θfβ

)
+ sin (θfα) sin

(
θfβ

))
µfαµfβ

)
2 4 1

15
iµ2αg

((
3 cos (θfα) cos

(
θfβ

)
+ sin (θfα) sin

(
θfβ

))
µfαµfβ − 3 cos

(
θβg

)
µαgµβg

)
3 1 0

3 2 0

3 3 1
15
µ2αg

(
3 cos

(
θβg

)
µαgµβg −

(
3 cos (θfα) cos

(
θfβ

)
+ sin (θfα) sin

(
θfβ

))
µfαµfβ

)
3 4 − 1

15
iµ2αg

((
3 cos (θfα) cos

(
θfβ

)
+ sin (θfα) sin

(
θfβ

))
µfαµfβ − 3 cos

(
θβg

)
µαgµβg

)
4 1 1

15
µ2αg

((
cos

(
2θβg

)
+ 2

)
µ2βg − (cos (2θfα) + 2)µ2fα

)
4 2 2

15

(
cos

(
2θβg

)
+ 2

)
µ2αgµ

2
βg

4 3 0

4 4 0

Table S5. Entries of Mββ

ROW COLUMN V ALUE

1 1 2
15

(
cos

(
2θβg

)
+ 2

)
µ2αgµ

2
βg

1 2 1
15

((
cos

(
2θβg

)
+ 2

)
µ2αg −

(
cos

(
2
(
θfβ − θβg

))
+ 2

)
µ2fβ

)
µ2βg

1 3 0

1 4 0

2 1 0

2 2 0

2 3 1
15
µ2βg

(
3 cos

(
θβg

)
µαgµβg −

(
2 cos

(
θfα − θfβ

)
+ cos

(
θfα + θfβ − 2θβg

))
µfαµfβ

)
2 4 1

15
iµ2βg

((
2 cos

(
θfα − θfβ

)
+ cos

(
θfα + θfβ − 2θβg

))
µfαµfβ − 3 cos

(
θβg

)
µαgµβg

)
3 1 0

3 2 0

3 3 1
15
µ2βg

(
3 cos

(
θβg

)
µαgµβg −

(
2 cos

(
θfα − θfβ

)
+ cos

(
θfα + θfβ − 2θβg

))
µfαµfβ

)
3 4 1

15
iµ2βg

(
3 cos

(
θβg

)
µαgµβg −

(
2 cos

(
θfα − θfβ

)
+ cos

(
θfα + θfβ − 2θβg

))
µfαµfβ

)
4 1 1

15
µ2βg

(
3µ2βg −

(
cos

(
2
(
θfα − θβg

))
+ 2

)
µ2fα

)
4 2

2µ4
βg

5

4 3 0

4 4 0
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Table S6. Entries of Mαβ

ROW COLUMN V ALUE

1 1 2
5

cos
(
θβg

)
µ3αgµβg

1 2 1
15
µαg

(
3 cos

(
θβg

)
µ2αg −

(
cos

(
2θfβ − θβg

)
+ 2 cos

(
θβg

))
µ2fβ

)
µβg

1 3 0

1 4 0

1 5 2
5
i cos

(
θβg

)
µ3αgµβg

1 6 − 1
15
iµαg

((
cos

(
2θfβ − θβg

)
+ 2 cos

(
θβg

))
µ2fβ − 3 cos

(
θβg

)
µ2αg

)
µβg

1 7 0

1 8 0

2 1 0

2 2 0

2 3 0

2 4 1
15
µαgµβg

((
cos

(
2θβg

)
+ 2

)
µαgµβg −

(
cos

(
θfα − θfβ − θβg

)
+ 2 cos (θfα) cos

(
θfβ − θβg

))
µfαµfβ

)
2 5 0

2 6 0

2 7 0

2 8 1
15
iµαgµβg

((
cos

(
2θβg

)
+ 2

)
µαgµβg −

(
cos

(
θfα − θfβ − θβg

)
+ 2 cos (θfα) cos

(
θfβ − θβg

))
µfαµfβ

)
3 1 0

3 2 0

3 3 1
15
µαgµβg

((
cos

(
2θβg

)
+ 2

)
µαgµβg −

(
cos

(
θfα − θfβ − θβg

)
+ 2 cos (θfα) cos

(
θfβ − θβg

))
µfαµfβ

)
3 4 0

3 5 0

3 6 0

3 7 1
15
iµαgµβg

((
cos

(
2θβg

)
+ 2

)
µαgµβg −

(
cos

(
θfα − θfβ − θβg

)
+ 2 cos (θfα) cos

(
θfβ − θβg

))
µfαµfβ

)
3 8 0

4 1 1
15
µαgµβg

(
3 cos

(
θβg

)
µ2βg −

(
cos

(
2θfα − θβg

)
+ 2 cos

(
θβg

))
µ2fα

)
4 2 2

5
cos

(
θβg

)
µαgµ3βg

4 3 0

4 4 0

4 5 − 1
15
iµαgµβg

((
cos

(
2θfα − θβg

)
+ 2 cos

(
θβg

))
µ2fα − 3 cos

(
θβg

)
µ2βg

)
4 6 2

5
i cos

(
θβg

)
µαgµ3βg

4 7 0

4 8 0
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Table S6 (continued). Entries of Mαβ

ROW COLUMN V ALUE

5 1 2
5

cos
(
θβg

)
µ3αgµβg

5 2 1
15
µαg

(
3 cos

(
θβg

)
µ2αg −

(
cos

(
2θfβ − θβg

)
+ 2 cos

(
θβg

))
µ2fβ

)
µβg

5 3 0

5 4 0

5 5 − 2
5
i cos

(
θβg

)
µ3αgµβg

5 6 1
15
iµαg

((
cos

(
2θfβ − θβg

)
+ 2 cos

(
θβg

))
µ2fβ − 3 cos

(
θβg

)
µ2αg

)
µβg

5 7 0

5 8 0

6 1 0

6 2 0

6 3 1
15
µαgµβg

((
cos

(
2θβg

)
+ 2

)
µαgµβg −

(
cos

(
θfα − θfβ − θβg

)
+ 2 cos (θfα) cos

(
θfβ − θβg

))
µfαµfβ

)
6 4 0

6 5 0

6 6 0

6 7 1
15
iµαgµβg

((
cos

(
θfα − θfβ − θβg

)
+ 2 cos (θfα) cos

(
θfβ − θβg

))
µfαµfβ −

(
cos

(
2θβg

)
+ 2

)
µαgµβg

)
6 8 0

7 1 0

7 2 0

7 3 0

7 4 1
15
µαgµβg

((
cos

(
2θβg

)
+ 2

)
µαgµβg −

(
cos

(
θfα − θfβ − θβg

)
+ 2 cos (θfα) cos

(
θfβ − θβg

))
µfαµfβ

)
7 5 0

7 6 0

7 7 0

7 8 1
15
iµαgµβg

((
cos

(
θfα − θfβ − θβg

)
+ 2 cos (θfα) cos

(
θfβ − θβg

))
µfαµfβ −

(
cos

(
2θβg

)
+ 2

)
µαgµβg

)
8 1 1

15
µαgµβg

(
3 cos

(
θβg

)
µ2βg −

(
cos

(
2θfα − θβg

)
+ 2 cos

(
θβg

))
µ2fα

)
8 2 2

5
cos

(
θβg

)
µαgµ3βg

8 3 0

8 4 0

8 5 1
15
iµαgµβg

((
cos

(
2θfα − θβg

)
+ 2 cos

(
θβg

))
µ2fα − 3 cos

(
θβg

)
µ2βg

)
8 6 − 2

5
i cos

(
θβg

)
µαgµ3βg

8 7 0

8 8 0

The matrices Mqp can be easily reexpressed in terms of dA, dB, φ, and θ using the equations

in section I. As in subsection A, we obtain a bound on the relative error of Xqp(T ) [19, 20]:

||∆Xqp(T )||
||Xqp(T )||

≤ κqp
‖ ∆P qp(T ) ‖
‖ P qp(T ) ‖

. (S48)

The condition number κqp is given by,

κqp =‖Mqp ‖‖ [Mqp]−1 ‖ . (S49)

Fig. S2 shows contour plots of κ ≡ maxqp κ for a set of �xed dipole norm ratios dB/dA across

the entire range of angles 0 ≤ θ, φ < π. For dB/dA = 1 (panel (a)), there are four stripes

for which the QPT protocol fails. The stripes along θ = 0, π
2
correspond to the absence of

excitonic coupling (J = 0), whereas the ones along θ = π
4
, 3π

4
correspond to the homodimer
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Figure S3: Contour plots of κ vs. θ and φ. The stripes about θ = 0, π2 correspond to the case of

uncoupled chromophores, and fail to provide a QPT via our suggested protocol. Additional unstable

regions emerge about θ = π
4 ,

3π
4 for dB/dA = 1 (panel (a)), which correspond to the homodimer case.

The θ = π case is equivalent to the θ = 0 case. Note that beyond the unstable regions, QPT is very

robust, with condition number κ values on the order of 1 to 10.

case. As explained in Ref. [4], isotropic averages of signal denoting coherence to population or

opposite processes vanish for a homodimer. Therefore, QPT is incomplete in those cases and

large condition numbers arise near those critical angles. QPT is, however, quite robust in the

wide range of structural parameters which do not lie in the critical stripes, with κ values on

the order of 1 to 10. For dB/dA = 1.5, 10, 100 (panels (b), (c) and (d)), there is no possibility

of homodimer, and in fact, the inversion only fails for the uncoupled chromophores situation.

In general, the κ dependence on θ, φ is seen to be largely insensitive to the ratio dB/dA 6= 1.

This phenomenon can be easily understood as follows: as long as there is coupling between

the site excitons, the oscillator strength is fairly distributed between the two eigenstates of the

single-exciton manifold even if their site oscillator strengths di�er by many orders of magnitude.

Remarkably, the protocol does not fail for the φ = 0, π cases, when the site dipoles are

aligned or antialigned, except when dB/dA = 1. For the latter, it happens that µαg = µfα and

µβg = µfβ, yielding singular matrices Mqp. For these particular φ values and general dB/dA

ratios, the four parallel transition dipoles have di�erent magnitude but the same direction.

Since the currently proposed spectroscopic addressing of the states is through frequency space

rather than through polarization, these degeneracies are unimportant.

25



C. Choosing sixteen measurements out of the thirty-two heterodyne de-

tections

Table S3 explicitly lists all 16 elements of χ(T ) which are extracted from the QPT protocol.

As mentioned above, there are 24 − 22 = 12 independent real-valued parameters associated

to the dynamics in the single exciton manifold, but we also keep track of four leakage errors

χggαα(T ), χggββ(T ), and <{χggαβ(T )} and ={χggαβ(T )}, yielding a total of sixteen parameters

to extract. The terms associated with these transfers to the ground state are not listed, as they

can be expressed in terms of the rest of the elements using Eq. (3) in the article. The sixteen

experiments described in the article involve thirty-two heterodyne real valued measurements,

twice as many as parameters to extract. Clearly, there must be a way to select only sixteen

measurements out of the thirty-two. We now show that this reduction is feasible and has similar

stability properties as the original set. It is important to emphasize that the thirty-two or

sixteen required heterodyne detections are one-dimensional (1D) measurements, as the signals

〈[SPE]ω1,ω2,ω3,ω4
e1,e2,e3,e4

(τ, T, t)〉iso stemming from a single pair of τ, t values su�ce for the purposes of

performing a QPT.

We �rst make some observations which are easily generalizable. Altogether, the four

terms <{〈Pα,α,α,α
e1,e2,e3,e4

(τ, T, t)〉iso}, ={〈Pα,α,α,α
e1,e2,e3,e4

(τ, T, t)〉iso}, <{〈Pα,α,β,β
e1,e2,e3,e4

(τ, T, t)〉iso}, and

={〈Pα,α,β,β
e1,e2,e3,e4

(τ, T, t)〉iso} contain information about the real valued population transfer

terms χαααα(T ) and χββαα(T ). Consider the case where Ggp(τ)Gps(t) ∈ < (for exam-

ple, taking τ and t to satisfy ωgpτ = ωpst = 2π). Then, only <{〈Pα,α,α,α
e1,e2,e3,e4

(τ, T, t)〉iso}

and <{〈Pα,α,β,β
e1,e2,e3,e4

(τ, T, t)〉iso} need to be monitored, as ={〈Pα,α,α,α
e1,e2,e3,e4

(τ, T, t)〉iso} and

={〈Pα,α,β,β
e1,e2,e3,e4

(τ, T, t)〉iso} will, in principle, vanish. Conversely, if Ggp(τ)Gps(t) ∈ = (say, by

taking ωgpτ = π
2
and ωpst = 2π), only the imaginary parts need to be monitored. Finally,

if Ggp(τ)Gps(t) has both real and complex parts of similar proportions, either the real or the

imaginary parts su�ce. Naturally, depending on the ratio between the magnitudes of the real

and imaginary parts of Ggp(τ)Gps(t), it will be numerically more favorable to measure the real

or the imaginary parts of the signal.

Consider now the signals <{〈P β,α,β,α
z,z,z,z (τ, T, t)〉iso}, ={〈P β,α,β,α

z,z,z,z (τ, T, t)〉iso},

<{〈Pα,β,α,β
z,z,z,z (τ, T, t)〉iso}, and ={〈Pα,β,α,β

z,z,z,z (τ, T, t)〉iso}, which contain information about

<{χαβαβ(T )} and ={χαβαβ(T )}. By proceeding as in the previous paragraph, it can be seen

that either the �rst two or the last two are good enough to extract information about the

latter two quantities.

The steps above can repeated for the rest of the elements of χ(T ) in order to select sixteen out

of the thirty-two measurements which yield the desired QPT. Table S7 presents an adaptation
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of Table S3, where, in the �rst column, we show a possible set of experiments which yields QPT

for the case of Ggp(τ)Gps(t) being purely real.

Table S7. A set of only sixteen measurements which yields χ(T ) for the case Ggp(τ)Gps(t) ∈ <

From the data we can invert the elements which explicitly listed are

<{〈Pα,α,α,α
z,z,z,z (τ, T, t)〉iso},

<{〈Pα,α,α,β
z,z,z,z (τ, T, t)〉iso},

={〈Pα,α,α,β
z,z,z,z (τ, T, t)〉iso},

<{〈Pα,α,β,β
z,z,z,z (τ, T, t)〉iso}


{χijαα(T )}



χαααα(T ),

χββαα(T ),

<{χαβαα(T )} = <{χβααα(T )},

={χαβαα(T )} = −={χβααα(T )}



<{〈P β,β,α,α
z,z,z,z (τ, T, t)〉iso},

<{〈P β,β,α,β
z,z,z,z (τ, T, t)〉iso},

={〈P β,β,α,β
z,z,z,z (τ, T, t)〉iso},

<{〈P β,β,β,β
z,z,z,z (τ, T, t)〉iso}


{χijββ(T )}



χααββ(T ),

χββββ(T ),

<{χαβββ(T )} = <{χβαββ(T )},

={χαβββ(T )} = −={χβαββ(T )}



<{〈P β,α,α,α
z,z,z,z (τ, T, t)〉iso},

={〈P β,α,α,α
z,z,z,z (τ, T, t)〉iso},

<{〈P β,α,α,β
z,z,z,z (τ, T, t)〉iso},

={〈P β,α,α,β
z,z,z,z (τ, T, t)〉iso},

<{〈P β,α,β,β
z,z,z,z (τ, T, t)〉iso},

={〈P β,α,β,β
z,z,z,z (τ, T, t)〉iso},

<{〈P β,α,β,α
z,z,z,z (τ, T, t)〉iso},

={〈P β,α,β,α
z,z,z,z (τ, T, t)〉iso}



{χijαβ(T ) = (χjiβα(T ))∗}



<{χαααβ(T )} = <{χααβα(T )},

={χαααβ(T )} = −={χααβα(T )},

<{χββαβ(T )} = <{χβββα(T )},

={χββαβ(T )} = −={χβββα(T )},

<{χαβαβ(T )} = <{χβαβα(T )},

={χαβαβ(T )} = −={χβαβα(T )},

<{χβααβ(T )} = <{χαββα(T )},

={χαβαβ(T )} = −={χβαβα(T )}


The same calculation of Fig. S2 can be repeated for this setting, where Mqp and P qp(T ) only

contain the elements in the �rst column of Table S7. We do not show them because they have

the same coarse appearance as the ones in Fig. S2. We make a numerical comparison between

the matrices of κ values calculated in the previous subsection and the ones computed with the

selective measurements of Table S7, where we round large values of κ down to be 100. We �nd

relative di�erences in their 2-norms of 0.094, 0.12, 0.0023, and 0.0028 for the dB/dA =1, 1.5,

10, 150 cases, respectively, supporting the qualitative claim that the two protocols are similar

in terms of stability.

XII. SCALABILITY

The QPT protocol can be extended to general aggregates of d chromophores using a pulse

toolbox of d di�erent waveforms (the single exciton Hilbert space is size d). Details will be

provided in a future publication. For now, let us make a comparison between the number of
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1D measurements required for a multichromophoric QPT and the e�ort involved in collecting

a standard 2D-ES [26]On the one hand, without keeping track of leakage errors, the number of

required QPT 1D experiments is equal to the number of parameters to extract, d4−d2. On the

other hand, the number of grid points in a single 2D-ES, which we take as the e�ective number

of experiments, is on the order of 7000 [21]. Therefore, within this crude measure, it is only

for d > 10 that a QPT becomes more costly than a single 2D-ES [27] . Clearly, the scalability

of QPT as O(d4) is not favorable asymptotically, although ideas associated with single shot

setups [22] or compressed sensing [23, 24] could provide signi�cant reductions in the required

physical resources. However, this limit might not even be relevant at present. So far, the largest

multichromophoric system for which spectral lineshapes can be resolved in a 2D-ES consists of

the lowest lying states of the Light Harvesting Complex-II [25], corresponding to d = 14, giving

144 − 142 = 38220 1D experiments, which amounts to an e�ort of collecting about six 2D-ES.
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