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SI Text
Here, we describe the details of the solvation model used in the
main text.

Interface Description. We describe the liquid–vapor-like interface
next to the model surface by a periodic height function hðaÞ, with
a ¼ ðx;yÞ and −D∕2 ≤ x;y < D∕2. This function is sampled discre-
tely at a resolution Δ, at points satisfying

a¼ ðnxΔ;nyΔÞ; −
D
2Δ

≤ nx;ny <
D
2Δ

:

This choice results in N2 discrete sampling points fag, with
N ¼ D∕Δ. In the following, sums over a denote sums over these
N2 sampling points. We have used D ¼ 60 Å and Δ ¼ 1 Å.

The discrete variables fhag represent the interface height at
each sample point a, so that

ha ¼ hðaÞ; for a¼ ðnxΔ;nyΔÞ:
This notation clearly distinguishes between the N2 height
variables ha and the continuous height function hðaÞ that they
represent.

The discrete Fourier transform of fhag is denoted by f ~hkg
and is defined at wavevectors k ¼ ð2π∕LÞðmx;myÞ, with
−N∕2 ≤ mx;my < N∕2. We use the symmetric normalization
convention throughout for Fourier transforms.

Energetics. The essential property of the liquid–vapor-like inter-
face is its surface tension, which results in the following capillary-
wave Hamiltonian (1) for a free interface,

H0½fhag�≈
γΔ2

2 ∑
a

j∇haj2 ≈
γΔ2

2 ∑
k

k2j ~hkj2;

where ∇ha is a finite-difference approximation to ∇hðaÞ.
Using an appropriate definition of an instantaneous water–

vapor interface (2), the power spectrum of capillary waves in
the Simple Point Charge Extended (SPC/E) model of water
has been found to agree with the spectrum predicted by the above
Hamiltonian for wavevectors smaller than about 2π∕ℓ, but is sub-
stantially lower for higher wavevectors (Fig. 5 of main text). This
result is consistent with the liquid–vapor-like interface being sen-
sitive to molecular detail at high wavevectors (3). At T ¼ 300 K,
we have found that ℓ ≈ 9 Å. We thus constrain all Fourier com-
ponents ~hk to be zero for high k—i.e.,

~hk ¼ 0; jkj > 2π∕ℓ: [S1]

In our model, the liquid–vapor-like interface interacts with a
model surface via a potential that depends on fhag. As discussed
below, it is also convenient to introduce additional umbrella
potentials to aid in sampling. The Hamiltonian of the interface
subject to this additional potential energy H 0½fhag� is

H½fhag� ¼
γΔ2

2 ∑
k

k2j ~hkj2 þH 0½fhag�: [S2]

When expressed as a function of the Fourier components f ~hkg,
we denote the Hamiltonian by ~H½f ~hkg� and the external potential
by ~H 0½f ~hkg�, so that

~H½f ~hkg� ¼
γΔ2

2 ∑
k

k2j ~hkj2 þ ~H 0½f ~hkg�:

Dynamics. We calculate thermal averages of interface configura-
tions by introducing a fictitious Langevin dynamics and replacing
thermal averages by trajectory averages. We first assign a mass per
unit area μ to the interface. The Lagrangian in real space is

L½fha; _hag� ¼
μΔ2

2 ∑
a

_h2a −H½fhag�:

The corresponding Lagrangian in Fourier space is

~L½f ~hk; _~hkg� ¼
μΔ2

2 ∑
k

j _~hkj2 − ~H½f ~hkg�:

Because all ha are real, the amplitudes of modes k and −k are
related, ~hk ¼ ~h�−k . Taking this constraint and Eq. S1 into account,
the Euler–Lagrange equations yield equations of motion in Four-
ier space. To thermostat eachmode, we add Langevin damping and
noise terms. The final equation of motion has the form

μΔ2 ~̈hk ¼ −γΔ2jkj2 ~hk −
∂ ~H 0½f ~hkg�

∂ ~hk
− η

_~hk þ ~ξkðtÞ; ðjkj< 2π∕ℓÞ:

[S3]

The Langevin damping constant η is chosen to decorrelate mo-
menta over a timescale τ, so η ¼ μΔ2∕τ. The zero-mean Gaussian
noise terms f~ξkðtÞg have variance such that

h~ξ�kðtÞ~ξkðt0Þi ¼ 2ηkBTδðt− t0Þ:

As with ~hk , ~ξk satisfy the related constraint ~ξk ¼ ~ξ�−k . Hence, for
k ¼ 0, the noise is purely real and its variance is twice that of the
real and imaginary components of all other modes.*

We propagate these equations of motion using the Velocity
Verlet algorithm. At each force evaluation, we use a fast Fourier
transform (FFT) to calculate fhag from f ~hkg. We then calculate
∂H 0½fhag�∕∂ha in real space and perform an inverse FFT to obtain
the force ∂ ~H 0½f ~hkg�∕∂ ~hk onmode ~hk due toH 0½fhag�. We then add
the forces due to surface tension, Langevin damping, and thermal
noise, as in Eq. S3.

For the Velocity Verlet algorithm to be stable, we choose a
timestep equal to 1∕20th of the typical timescale of the high-
est-frequency mode of the free interface, Δt ¼ 1

20

ffiffiffiffiffiffiffiffiffiffiffiffi
μℓ2∕γ

p
. To

equilibrate the system quickly but still permit natural oscillations,
we choose the Langevin damping timescale so that τ ¼ 100Δt.
Finally, we choose a value of μ close to the mass of a single water
layer, μ ¼ 100 amu∕nm2.

This interface dynamics is entirely fictitious. However, it cor-
rectly samples configurations of the interface Boltzmann
weighted by the Hamiltonian H½fhag�, regardless of the exact va-
lues of μ, Δt, and τ, so our choices have no effect on the results in
the main text. We have simply chosen reasonable values that do

*The constraint on the magnitude of k ensures that no Nyquist modes (i.e., modes with kx
or ky equal to �π∕D) are ever excited. If they were included, these modes would also be
purely real, and the variance of the real component of their noise terms would likewise
be twice that of the real component of the interior modes.
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not lead to large discretization errors when solving the system’s
equations of motion.

Surface-Interface Interactions. The liquid–vapor-like interface in-
teracts with the model surface via a potential H 0

surf ½fhag�. In
the atomistic simulations, the self-assembled monolayer (SAM)
sets up an interaction potential, UðrÞ, felt by the atoms in the
water molecules. Below, we use the notation r and ðx;y;zÞ inter-
changeably. To model this interaction potential, we smear out the
atomistic detail of the SAM and replace it with three elements:

• A uniform area density μhead of Lennard–Jones sites (with
length and energy scales σhead and ϵhead) in the z ¼ 0 plane
to represent the SAM head groups.

• A uniform volume density ρtail of Lennard–Jones sites (with
length and energy scales σtail and ϵtail) in the half-space
z < −ζ to represent the SAM tail groups.

• Coarse-graining the head-group atoms into a uniform area
density results in a softer repulsive potential allowing the inter-
face to penetrate far deeper into the model surface than would
be possible in the actual SAM. To rectify this artifact, we apply
a strongly repulsive linear potential in the half-space z < R0,
where R0 is the radius of the head-group’s hard core. The re-
pulsive potential is chosen to be 1 kBT when 1 nm2 of interface
penetrates the region z < R0 by a “skin depth” δ.

The head groups are thus modeled by the following potential act-
ing on a water molecule at position r:

Uheadðx;y;z ≥ R0Þ

¼ μhead

Z
∞

−∞
dx0

Z
∞

−∞
dy0uLJðjr− r0j;ϵhead;σheadÞjz0¼0;

where uLJðr; ϵ;σÞ ¼ 4ϵ½ðσ∕rÞ12 − ðσ∕rÞ6� is the Lennard–Jones
pair potential. Similarly, the effect of the tail groups is captured
by

U tailðx;y;z ≥ R0Þ

¼ ρtail

Z
∞

−∞
dx0

Z
∞

−∞
dy0

Z
−ζ

−∞
dz0uLJðjr− r0j;ϵtail;σtailÞ:

Finally, the repulsive wall is modeled by the potential

Uwallðx;y;z< R0Þ ¼ 2ρ−1ℓ · ð1 kBT∕1 nm2ÞðR0 − zÞ∕δ;

where ρℓ ¼ 0.03333 Å−3 is the number density of liquid water.
These smeared interaction potentials depend only on z, not on

x or y. As described in the main text, we also scale the head-group
interaction by a parameter η. Putting everything together, we ob-
tain an explicit expression for the surface-interface interaction
potential,

H 0
surf ½fhag� ¼ ρℓΔ2

∑
a

h0surfðhaÞ;

where

h0surfðhaÞ ¼
Z

∞

ha

dzηUheadðzÞþU tailðzÞþUwallðzÞ;

¼

8>>><
>>>:

ηπϵheadμheadσ
3
head

�
4
45
ðσhead∕zÞ9 − 2

3
ðσhead∕zÞ3

�

þπϵtailρtailσ
4
tail

�
1
90
ðσhead∕½zþ ζ�Þ8 − 1

3
ðσhead∕½zþ ζ�Þ2

�
; z ≥ R0;

h0surfðR0Þþ ρ−1ℓ · ð1kBT∕1 nm2Þð½R0 − z�∕δÞ2; z< R0:

To model the −CH3 SAM in this paper, we chose the following
values for the parameters:

• The head groups are modeled as Optimized Potential for
Liquid Simulations (OPLS) united-atom CH3 groups interact-
ing with SPC/E water, so σhead ¼ 3.5355 Å and ϵtail ¼
0.68976 kJ∕mol.

• The tail groups are modeled as OPLS united-atom CH2

groups (sp3 hybridized) interacting with SPC/E water, so σtail ¼
3.5355 Å and ϵtail ¼ 0.5664 kJ∕mol.

• The tail region is inset from the plane of the head groups by a
distance equal to a CH2-CH3 bond length (1.50 Å), minus
the van der Waals radius of a CH2 group (1.9525 Å),
so ζ ¼ −0.4525 Å.

• The head-group density is known from the atomistic SAM
geometry to be μhead ¼ 0.0462 Å−2. The mass density of the
SAM tails was estimated to be 935 kg∕m3 (4), resulting in a
CH2 group number density of ρtail ¼ 0.0402 Å−3.

• The equivalent hard sphere radius R0 of a −CH3 group at room
temperature was estimated to be 3.37 Å (5). It has a small
temperature dependence, which we neglect.

• The wall skin depth δ was set to 0.1 Å, which is small enough so
that the repulsive potential is essentially a hard wall at z ¼ R0,
but large enough that we can propagate the interfacial
dynamics with a reasonable timestep.

Umbrella Sampling. Calculating μexðV Þ from Eq. 5 of the main
text as a thermal average hPvð0Þi over Boltzmann-weighted con-
figurations of hðaÞ is impractical for large V . The configurations
that dominate this average simply have a vanishingly small
Boltzmann weight. To solve this problem, and in analogy to what
we do in atomistic simulations, we perform umbrella sampling on
the size of the subvolume v of the probe cavity V that is above the
interface.

We begin by defining the volume V corresponding to a probe
cavity of dimensions L × L ×W as the set of points satisfying
jxj;jyj ≤ L∕2 and R0 ≤ z ≤ R0 þW . We then define v½fhag� as
the size of the subvolume of V that is above the interface. Using
umbrella sampling and the multistate Bennet acceptance ratio
method (6), we calculate the probability distribution for v, PðvÞ,
down to v ¼ 0. We use quadratic umbrellas defined by a center v̄
and width ðδvÞ2, which result in the addition to the Hamiltonian
of

H 0
umb½fhag� ¼ kBT

ðv½fhag�− v̄Þ2
2ðδvÞ2 :

During each umbrella run, we also record the configurations
fhag, which yield each observed value of v. We then approximate
the right-hand side of Eq. 5 in the main text by summing over
these configurations with appropriate weights, and we obtain

μexðV Þ≈−kBT ln
∑
fhag

Pvð0ÞPðv½fhag�Þ

∑
fhag

Pðv½fhag�Þ
;

where, as in the main text, the term Pvð0Þ depends on the inter-
face configuration fhag, and the sum fhag is over all interface
configurations in all the different umbrellas. To evaluate Pvð0Þ,
we implement discrete versions of the integrals defining hNiv
and σv as was done in ref. 7.
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