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Cultivation of Methylocella silvestris. M. silvestris was grown at
25 °C in either a 4-L fermentor or 125-mL serum vials using
diluted mineral salt medium as described previously (1). The
following compounds were used as sole carbon and nitrogen
sources, trimethylamine hydrochloride (10 mM), dimethylamine
hydrochloride (10 mM), monomethylamine hydrochloride (10
mM), trimethylamine N-oxide (TMAO, 10 mM), and methanol
(10 mM) plus ammonium chloride (2 mM). For enzyme assays,
cells were harvested from the fermentor at late exponential
phase, resuspended in 10 mM 1,4-piperazine diethanesulfonic
acid (Pipes) buffer (pH 7.6), and then stored at –80 °C before
assays were carried out. To test if the trimethylamine mono-
oxygenase (tmm) mutant could grow on methylated amines, all
growth experiments were set up in triplicate using 120-mL serum
vials containing 20 mL medium with an inoculum size of 10%.
The serum vials were incubated at 25 °C in a shaker (150 rpm,
Sanyo-Gallenkamp Inc).

Cultivation of Ruegeria pomeroyi DSS-3 and Roseovarius sp. 217.
Ruegeria pomeroyi DSS-3 and Roseovarius sp. 217 were culti-
vated in shake flasks in triplicate using a defined medium con-
taining artificial sea salts from Sigma-Aldrich (S9883) 40 g·L−1,
sodium phosphate 0.2 mM (pH 8.0), Hepes 10 mM (pH 8.0),
FeCl3 50 μM, and malate (10 mM). The vitamins were added as
described previously (2). The nitrogen sources used were tri-
methylamine (2.0 mM) or ammonium chloride (2.0 mM). Neg-
ative controls, without added N compounds, were also set up to
evaluate contamination of N in the chemicals used for growth.
Samples were taken at various time points to determine the
optical density at 540 nm. Subsets of samples were taken at late
exponential phase, and cell-free crude extracts were prepared.
These were then used to determine the NADPH-dependent
Tmm activities using the assay as described below.

Quantitative Comparative Proteomics. A total of 700 μg of soluble
protein extract from MMA, TMA, and methanol grown M. sil-
vestris cells were resuspended in 1 mL of 0.1% RapiGest (Waters
Corporation) and concentrated using a 5-kDa cutoff spin col-
umn. The solution was then heated at 80 °C for 15 min, reduced
with 100 mM DTT at 60 °C for 15 min, alkylated in the dark with
200 mM iodoacetamide at ambient temperature for 30 min, and
digested with 1:50 (wt/wt) sequencing-grade trypsin (Promega) at
37 °C overnight. RapiGest was hydrolyzed by the addition of
2 μL of 15 M HCl, vortexed, and centrifuged in a 0.22-μm Nylon
membrane filter (Corning Inc.) to remove particulate matter.
Each sample was diluted 1:1 with 100 fmol/μL rabbit glycogen
phosphorylase B standard tryptic digest in 0.1% (vol/vol) formic
acid, to give a final protein concentration of 500 ng/μL and an
internal standard concentration of 50 fmol/μL. Nanoscale liquid

chromatography (LC) separations of tryptic peptides were per-
formed with a nanoACQUITY ultrapressure liquid chromato-
graph system (Waters Corporation) and mass analyzed on
a Synapt HDMS (Waters Corporation) in a data-independent
manner (MSE). Details of LC and mass spectrometer config-
urations are described elsewhere (3).
Raw data files were processed using ProteinLynx Global Server

v.2.4 and searched against a M. silvestris database. The sequence
for rabbit phosphorylase B and contaminants from the common
Repository of Adventitious Proteins proteins were added to the
database, along with randomized sequences for each database
entry. A fixed modification of carbamidomethyl-C was specified,
in addition to variable modifications acetyl N terminus, deami-
dation N, deamidation Q, and oxidation M. Automatic settings
for mass accuracy were used, and one missed tryptic cleavage site
was allowed. The protein identification criteria included the
detection of at least three fragment ions per peptide, a minimum
of seven total product ion matches per protein, a minimum of
one peptide determined per protein, and identification of the
protein in at least two of the four technical replicates.
A label-free method was used to allow simultaneous identifi-

cation and quantification of proteins in a LC-MS workflow. This
method is based on the relationship between peptide peak area
and intensity observed by electrospray ionization MS and protein
concentration (4). With the use of an internal standard, this
relationship was used to calculate a universal response factor.
Absolute quantification of a protein was determined by the ap-
plication of the universal response factor to its corresponding
peptides.

Enzyme Assays and Kinetics. For cell-free crude extract, Tmm and
DMA monooxygenase activities were measured by following
the decrease in absorbance at 340 nm of substrate-dependent
oxidation of NADPH (Sigma-Aldrich). The following concen-
trations of substrates were used: TMA or DMA (1 mM) and
NADPH (0.1 mM). TMAO demethylase activity was measured by
quantifying the substrate-dependent production of formaldehyde
using 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole (Purpald
reagent; Sigma) as described previously (1).
OverexpressedTMAmonooxygenaseswerepurifiedusingaHis-

tag protein purification kit as described in the manufacturer’s
protocol (Merck), except that the columnwas washed using a wash
buffer containing 80mM imidazole before elution to remove trace
protein contaminants. Kinetic assays were performed in triplicate
at 22 °C on a UV-visible spectrophotometer. A 1-mL mixture
contained 0.8mg purified enzyme, 80mMPipes (pH 7.6), and 0.25
mMNADPH. The reaction was initiated by adding substrate, and
the decrease in absorbance at 340 nm was recorded continuously
for 3 min. All substrates were dissolved in water except N,N-
dimethylaniline, which was dissolved in ethanol.
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Fig. S1. Alignment of the sequences of Methylocella silvestris FMO (Msil), Methylopha sp. SK1 FMO (Mpha), Homo sapiens FMOs (hFMO2, hFMO3, hFMO4,
hFMO5), Oryctolagus cuniculus FMO3 (oFMO3), Arabidopsis thaliana FMOs (aFMO1, aFMO2, aFMO3), Saccharomyces cerevisiae FMO (yFMOsc), Schizo-
saccharomyces pombe FMO (yFMOsp), and FMOs from Roseovarius sp. 217 (sp217), Ruegeria pomeroyi DSS-3 (DSS-3), and Pelagibacter ubique HTCC1002 and
HTCC7211. The black bars indicate the FAD binding domain, the fingerprint sequence for FMOs, and the NADP binding domain, respectively. The alignment
was performed with ClustalX and displayed with Genedoc.
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Fig. S2. (A) One-dimensional gel electrophoresis of purified Tmm of Methylocella silvestris from recombinant E. coli. Lane 1, protein marker; lane 2, cell-free
extract of E. coli BLR(DE3) [pET28a-tmm] induced by isopropyl β-D-1-thiogalactopyranoside; lane 3, purified Tmm from recombinant E. coli. Absorbance spectra
of oxidized (B) and reduced (C) form of the recombinant Tmm (8 mg·mL−1).
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Fig. S3. One-dimensional gel electrophoresis of crude extract of TMA-grown and ammonium-grown Roseovarius sp. 217 and Ruegeria pomeroyi DSS-3,
respectively. The expression of Tmm homologs in TMA cultures was confirmed by MALDI/MS analyses.
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Fig. S4. A phylogenetic tree showing the Tmm homologs from marine Roseobacter clade bacteria (A) and marine SAR11 clade bacteria (B), respectively.
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Fig. S5. A phylogenetic tree showing the GmaS homologs from sequenced bacterial genomes and environmental sequences retrieved from the GOS data set.

Table S1. Oligonucleotides used in this study

Primer sequences (5′–3′)
Annealing

temperature, °CTarget Forward primer Reverse primer Product size, bp

Msil3604 CGCCAGCCAATGCTATAAAT ATTGTCCTGCCAGAAAATGC 286 55
Msil3604/3605 GCGCCAGAATTCAAGTCATT GTCGGACTGTTTTTCGAAGC 305 55
Msil3603/3604 GTGGGAGGAAGACAAGGTCA CCCCCTCGAGATTTGTAATG 360 55
Construction of tmm
mutant of M. silvestris

CCCTCTTGTTCTTCCCCTTC TTGACCGTCACCGTAAACAA 888 54
CGCCAGCCAATGCTATAAAT GCGATATCCCATGATGCTCT 601 54

Confirmation of tmm::kan
mutant of M. silvestris

ATCGCGCTACTTCGAGCAT GAGCCTTTTCAATGCCTGTC 2,077 (WT)
3,054 (mutant)

53
53

tmm of M. silvestris CATATGACTCGTGTTGCAATTA
TTGGC

AAGCTTTTATTCCGCGGCGGC
TTCCG

1356 54

tmm of Roseovarius sp. 217 CATATGACCAAAAAACGAAT
TGCGATC

AAGCTTTTAGTTCTGGAGGTA
AACTTCGAG

1338 54

tmm of R. pomeroyi DSS-3 CATATGACCACCAGCAAACGTG
TGGC

AAGCTTTTAGTTGCGCAGATA
CGCCTCCATGC

1353 54
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Table S2. Presence of tmm homologs and growth on TMA in
Roseobacter clade bacteria

Organism tmm† TMA‡

1 Rhodobacterales bacterium HTCC2150 + NT
2 Maritimibacter alkaliphilus HTCC2654 — NT
3* Citreicella sp. SE45 + +
4* Dinoroseobacter shibae DFL 12 — —

5 Jannaschia sp. CCS1 — NT
6 Labrenzia aggregata IAM 12614 — NT
7 Labrenzia alexandrii DFL-11 — NT
8 Loktanella vestfoldensis SKA53 — NT
9 Oceanibulbus indolifex HEL-45 — NT
10* Oceanicola batsensis HTCC2597 — —

11 Oceanicola granulosus HTCC2516 — NT
12 Octadecabacter antarcticus 238 + NT
13 Octadecabacter antarcticus 307 — NT
14 Phaeobacter gallaeciensis 2.10 — NT
15 Phaeobacter gallaeciensis BS107 — NT
16 Rhodobacteraceae bacterium KLH11 — NT
17* Roseobacter denitrificans OCh 114 + +
18* Roseobacter litoralis Och 149 + +
19 Roseobacter sp. AzwK-3b + NT
20 Roseobacter sp. CCS2 — NT
21 Roseobacter sp. GAI101 — NT
22 Roseobacter sp. MED193 — NT
23* Roseobacter sp. SK209-2-6 — —

24* Roseovarius nubinhibens ISM + +
25* Roseovarius sp. 217 + +
26 Roseovarius sp. HTCC2601 + NT
27* Roseovarius sp. TM1035 + +
28 Ruegeria lacuscaerulensis ITI-1157 — NT
29* Ruegeria pomeroyi DSS-3 + +
30 Ruegeria sp. R11 — NT
31 Ruegeria sp. TM1040 — NT
32 Silicibacter sp. TrichCH4B — NT
33* Sagittula stellata E-37 — —

34 Sulfitobacter sp. EE-36 — NT
35 Sulfitobacter sp. NAS-14.1 — NT
36 Thalassobium sp. R2A62 + NT
37 Rhodobacterales bacterium HTCC2083 + NT
38 Rhodobacterales bacterium Y4I + NT
39 Rhodobacterales sp. HTCC2255 + NT

*Strains that have been tested for their growth on TMA in this study.
†Presence (+) or absence (−) of tmm genes in the genome sequences.
‡Growth test on TMA as sole nitrogen source. NT, not tested.
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Table S3. Steady-state kinetic assays on purified Tmm from recombinant E. coli

Substrate Km, μM
Vmax,

nmol·min−1·mg−1

Methylocella silvestris BL2 TMA 9.4 ± 2.1 29.4 ± 3.2
DMA 89.7 ± 13.2 6.9 ± 0.1
DMS 10.3 ± 0.7 34.6 ± 0.2
DMSO 3,575 ± 151 4.8 ± 1.5

Ruegeria pomeroyi DSS-3 TMA 20.8 ± 2.9 267.7 ± 52.2
DMA 1,119.7 ± 55.3 83.7 ± 4.0
DMS 97.3 ± 8.8 374.5 ± 83.2
DMSO 16,424.5 ± 1,033.2 70.4 ± 10.5

Roseovarius sp. 217 TMA 21.6 ± 1.9 1,133.6 ± 58.6
DMA 864.2 ± 35.3 358.0 ± 12.3
DMS 25.7 ± 4.1 577.4 ± 75.7
DMSO 16,340.8 ± 1155.2 179.4 ± 41.2

Pelagibacter ubique HTCC7211 TMA 28.5 ± 4.4 67.3 ± 3.2
DMA 306.1 ± 51.3 41.4 ± 2.7
DMS 26.4 ± 7.2 97.2 ± 6.9
DMSO 7,456.0 ± 907.8 41.3 ± 4.7

Pelagibacter ubique HTCC1002 TMA 27.5 ± 4.2 70.8 ± 7.7
DMA 1,237.7 ± 98.5 41.2 ± 5.6
DMS 33.2 ± 5.6 50.8 ± 5.0
DMSO 19,334.3 ± 1,870.4 29.9 ± 8.9

DMA, dimethylamine; DMS, dimethylsulfide; DMSO, dimethyl sulfoxide; TMA, trimethylamine.

Dataset S1. Polypeptides detected in each grown culture of Methylocella silvestris BL2

Dataset S1 (XLSX)

The numbers show the relative abundance (in percentages) of each polypeptide in the soluble proteome for each growth condition.
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