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ABSTRACT
We have determined the entire nucleotide sequence of an intra-cisternal A

particle (IAP) genome, associated with the Ren-2 gene of DBA/2 mice. This
genome (MIARN) displays features common to other IAP retroviral-like genomes.
Long terminal repeats (LTRs) are approximately 430 base pairs (bp) in length
and show typical retroviral U3-R-U5 organisation, though the R-region, at 120
bp, is much larger than the average IAP. This difference probably arose by the
amplification of a pyrimidine-rich sequence, by a slippage-mispairing
mechanism. Flanking the 5' LTR is a sequence complementary to a phenylalanine
tRNA, strongly conserved in all rodent IAP genomes and probably required to
prime the initiation of (-) strand synthesis. Flanking the 3' LTR, is a
purine-rich sequence probably required for (+) strand synthesis. The tRNA
binding site (TBS) is flanked by six tandem copies of a sequence homologous to
the TBS. The relationship of the MIARN element to other IAP genomes and the
significance of its association with the highly expressed Ren-2 is discussed.

INTRODUCTION

The genomes of most strains of mice contain copies of retroviral sequences

(1.2) that code for potentially infectious virus particles, capable of

replicating in murine cells. In addition, the mouse genome contairs a family

of approximately 1000 copies of sequences, homologous to the RNA of

intra-cisternal A particles (IAPs, 3). The latter are non-infectious

retrovirus-like structures (4,5) found generally in early mouse-embryos

(6,7,8) and mouse tumours (9,10,11), and, very rarely, in normal tissues (12).

The mode of retrovirus replication, by way of a DNA intermediate (13), enables

them to insert proviral DNA sequences at random sites throughout the host

genome. It has been demonstrated that the integration/transposition of these

genomes can alter the expression of cellular genes, and in recent years both

infectious and non-infectious forms have been associated with such changes.

Murine leukemia viruses (MuLVs) have been associated with coat colour (14) and

developmental mutants of the mouse (15,16). A cellular oncogene, c-myc has

been shown to be activated in bursal lymphomas by insertion of complete or

partial proviral copies after infection by avian leukosis virus (17,18,19,20).
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Recently, lAP genomes have also been associated with both inactivated and

activated cellular genes. For example, immunoglobulin CK genes were

inactivated by IAP integration in a hybridoma line (21,22), a transposed

a-globin pseudogene (a*3) was associated with flanking IAP genomes (23) and

the c-mos oncogene was activated in a plasmacytona line by insertion of an IAP

element (24,25,26).

Inbred mouse strains can be divided into two groups on the basis of

submaxillary gland (SMG) renin activities (27). This strain difference has

been sapped to a single genetic locus, Rnr, the renin regulator, on chromosome

1 (28) and biochemical studies (29,30,31) show that low-renin producing

strains (eg C57BL/10) contain a single renin gene, Ren-l, whilst high

renin-producers (eg DBA/2) have two, Ren-l and Ren-2. Comparison of renin

genes from high and low SMG renin-producing strains suggest that the low

producers evolved from the high renin-producer after deletion of Ren-2 (32).

This comparison, together with the analysis of renin cDNA clones (33),

suggests that Ren-2 is expressed at higher levels than Ren-l in the

submaxillary gland.

Physical comparison of the Ren-l and Ren-2 genes from DBA/2 (31) revealed

at least 14kb of sequence homology, with an interruption of 3kb in the 3'

flanking region of Ren-2. In this paper we characterise this 3kb element

further and identify it as an IAP genome. This apparent association between an

IAP insertion and high level expression of a cellular gene is of considerable

interest because it may be an example of gene activation by a discrete genetic

element.

MATERIALS AND METHODS

General Technigues. The methods for restriction and ligation of DNAs and gel

electrophoresis of DNA fragments are described in ref. (34).

DNA Sequencing. Cloning into M13mplO and mpll was used in conjunction with the

chain-termination sequencing reactions of Sanger (35). General techniques used

are described in ref. (36).

Construction of RDBRn3 and pDBRn3A. To facilitate the quantitative analysis of

the 3kb element in mouse genomic DNA, an internal 1700bp HindIII fragment from

the 3kb element was cloned into pUC8 to generate pDBRn3. To remove LTR

sequences from pDBRn3, plasmid DNA was treated with EcoRI and the resulting

plassid, pDNRn3a, was used as a probe, specific for internal MIARN DNA

sequences.

DNA Dot Blots. Dot Blots were made as follows. Spleen and pDBRn3A DNA were

digested with AluI and then purified by phenol extraction and ethanol
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Figure 1. Physical Map of the Ren-l and Ren-2 regions, showing the position
of the 3kb element. Restriction enzyme cutting sites are represented as
follows: P= PstI, H= HindIlI, R= EcoRI. The exons and introns of the renin
genes, determined by comparitive sequencing of genomic and cDNA clones
(32), are represented as open boxes and lines, respectively. The MIARN LTRs
are shaded.

precipitation. DNAs were dissolved in 5,d 1M NaCl, 0.1M NaOH, 1mM EDTA and

varying amounts of sheared salmon sperm DNA were added. The amount of total

DNA was kept constant (5ag) for each sample applied. Samples were boiled for 5

min and applied to nitrocellulose filters, pre-hybridised as described for

genomic blots in ref. (31). Membranes were air-dried for 30 min, rinsed in

3xSSC for 2 min at room temperature, blotted dry and baked at 80 C for 4

hours. Membranes were then treated in the same way as genomic blots in ref.

(31).
Computer Analysis of Nucleotide Sequence Homologies. Dot-plots were obtained

using a diagonal-traverse homology search algorithm based on that described in

ref. (37). The program is written in compiled Microsoft BASIC and runs on a

SIRIUS 1 16 bit microcomputer. Screen displays can be dumped to any Epson FX

printer.

RESULTS

Association of a 3kb DNA element with Ren-2

The composite physical maps of Ren-l and Ren-2, deduced from restriction

enzyme mapping and DNA sequencing of genomic clones from a high

renin-producing strain (DBA/2), are shown in figure 1. The extensive region of

homology between Ren-l and Ren-2 is interrupted by an extra 3kb of DNA in the

3' region flanking Ren-2. This was shown clearly in heteroduplexes between

Ren-l/Ren-2 genomic clones as a 3kb deletion/substitution loop (31).

Estimation of the copy number of the 3kb element

A reconstruction DNA dot blot technique was used to estimate the number of

sequences homologous to the 3kb element in the genome of the mouse. This
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Table 1. Copy Number Measurements of the Ren-2 3kb element.

ng Mouse DNA cpm probe bound ng pDBRn3A DNA cpm probe bound

4000 3007 300 105432
2000 1475 50 56907
1000 1107 25 29663
500 1033 12.5 27207
250 728 6.25 17665

Dot-blots were made (see MATERIALS AND METHODS), with mouse or pDBRn3A DNA
in amounts shown above. Each blot was hybridised to an internal 3kb
element probe (pDBRn3A). The individual dots were counted in scintillant;
the cpm are shown. The two sets of data were analysed by linear regression.
The results of regression are as follows: 0.580 cpm probe bound/ng of
mouse DNA ; 929 cps probe bound/ng of pDBRn3A DNA. Thus, within lng of
mouse DNA, 0.06% (0.580/929x100%) is homologous to the pDBRn3& probe. The
mouse haploid genome is 3x109 bases, so (3x109)x(0.0006)=1.8x106 bases are
homologous to the pDBRn3A DNA. The plasmid pDBRn3a contains a 1300bp
EcoRI/HindIII DNA fragment from within the 3kb element, thus, within the
mouse genome there are approximately 1400 (1.8x106/1300) sequences related
to the pDBRn3& probe per mouse haploid genome.

involved quantitating the amounts of mouse DNA and 3kb element DNA required to

hybridise to the same amount of internal probe (pDBRn3A). The data are

presented in table 1, and the computational details are in the legend. The

data show that the mouse genome contains approximately 1400 copies of

sequences related to the 3kb element per haploid mouse genome.

The 3kb element is an IAP genome

To examine the 3kb element further, we sub-cloned this element from X

genomic clones into the plasmid pUC8. DNA from these sub-clones was then

cloned into M13 vectors for sequence analysis. To determine the boundaries of

the DNA insertion, the homologous region from Ren-l was also sequenced. The

entire DNA sequence of the 3kb element and the target site in Ren-l are shown

(Figures 2 and 3, respectively).

Comparison of the 3kb DNA sequence with itself in the form of a dot-plot,

(Figure 4) clearly shows directly repeating sequences of approximately 430

base pairs (bp) at each end of the unit. These LTR sequences show extensive

homology (83-88%) with the LTRs of other IAP genomes from Mus musculus and

internal sequences flanking the LTRs also show homology with regions sequenced

in other IAP genomes (22, 24 and 38).

Structural features of LTR and flanking sequences

The renin IAP genome (MIARN), in common with other IAP genomes, shares

many structural features with other groups of retroviral LTRs (40). These IAP

LTRs include many highly conserved regions, each containing possible

regulatory sequences. The sequence TTAAAA, which matches a consensus
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Figure 2. DNA Sequence of the Ren-2 IAP Genome, MIARN. Possible regulatory
sequences are boxed: IR at 98 and 2704; GRE at 148 and 2754; Core Enhancer
at 156 and 2762; CAT-box at 269 and 2853; TATA-box at 311 and 2895; Poly(A)
recognition signal at 455 and 3029; Poly(A)-addition site at 471 and 3045;
TBS at 529; 5' intron splice-sites at 876, 951 and 1026. Repeats are
underlined. Direct-repeats between positions 696 and 855 are inperfect,
showing 92% homology with each other. Between positions 866 and 1046, two
types of direct-repeats are distinguished by open and closed arrow heads.
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(a) 70 80 90 3110 3120
AGGTTCTGTAAGAAAGCAGGCTGAACAA: IAP :GAACAAGCCACAAGGAGCAAGCCAGTA Ren-2

AGGTTCTGTAAGAAAGCAGGCTGAACAAGCCACAAGGAGCAAGCCAGTA Ren- 1

(b) 3130 3140 3150
AGCCAGTAAGCAGCACCCCTCCTGCCTACAGGTTCCTGTC Ren-2

AGCCAGTAAGCAGCACCCCTCC: ACGGCCTCTACATCAG: CTCCTGCCTACAGGTTTCTGTC Ren-l

Figure 3. (a) Ren-l DNA sequence homologous to the Ren-2 region containing
the site of integration of the Ren-2 associated IAP genome, MIARN. (b) Site
of integration of the Ren-1 mobile-like element.

"TATA-box" (TATAATAAT, 41) is present in both LTRs (Figure 2, positions 313

and 2895). The sequence CCAAT (the so called "CAAT" box, 41), is present in

both LTRs 42bp upstream from each "TATA" box: together these define an RNA

polymerase II promoter in both LTRs (41). The sequence AATAAA, a

polyadenylation signal present at positions 455 and 3029 (Figure 2), probably

directs the post-transcriptional cleavage event prior to polyadenylation (42)

and precedes the dinucleotide CA, a preferred polyadenylation site (Figure 2,

positions 471 and 3045). In addition, there is a conserved sequence (Figure 2,

positions 156 and 2762), that matches closely a core-enhancer sequence

(GTGGTArTAIAT, 43). Such enhancers commonly occur in the U3 region of

retroviral LTRs, often (not in the case of MIARN) as part of a larger direct

repeat (13). Adjacent to this conserved sequence is the sequence TGTTCT

(Figure 2, positions 148 and 2754), which matches a consensus

5' ~~~~~~~~~~~~3'Seunc I)..... ........ .. S's

Sequence (2)

UinJo i6.
natcI 30

Stringencyg: 60

.................................. ........;3'

Figure 4. Dot-plot of the DNA sequence of the 3kb element to itself,
showing the long terminal repeats (LTRs). Dots around the border mark off
increments of 50bp. The limits of the LTRs are indicated by four sets of
parallel lines on each axis.
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glucocorticoid-responsive element (GRE, 44, 45). In the LTRs of MMTV, there is

a similar close association between enhancer and GRE sequences (46) and such

an arrangement is hormone-responsive (47). It will be of interest to determine

whether the MIARN sequences also define a hormone-responsive element and

whether this may influence the expression of neighbouring genes.

The retroviral LTR structure can be sub-divided into 3 regions, U3-R-U5

(40). The lengths of U3 regions are 247bp for the 5'LTR and 224bp for the

3'LTR. The difference in size is not due to a simple tandem duplication of DNA

in the 5'LTR, but an imperfect, palindromic duplication of 26bp centred at

position 265bp. The R region always starts with a G and is usually followed by

C, approximately 30bp downstream of the "TATA" box and ends with the poly(A)

addition site, CA. The length of the R region varies between IAP genomes (39),

that in MIARN being the largest. This size variability is the result of

amplification of an 8 bp unit (TTCTCTTG), probably involving a

slippage-mispairing mechanism (48), which would be facilitated by the base

asymmetry and high A/T composition of this region. The lengths of the U5

regions are short, 54bp for both 5' and 31LTRs, a feature common to all IAP

genomes.

Four kinds of tRNA: Trp, Pro, Lys (40) and Phe (39), have been identified

as primer tRNAs for reverse transcription of retroviral genomes. The

nucleotide sequences of the tRNA-binding site (TBS) of MIARN were

complementary to the last 17 nucleotides of a mammalian phenylalanine tRNA (50
and 51) again a conserved feature for IAP genomes (22, 24 and 38). Adjacent to

the TBS are six tandem repeats of a 15bp basic unit, closely related to the

TBS itself. As with other tandem repeats, this probably evolved by a base

slippage-mispairing mechanism (48).

Adjacent and upstream from the 3'LTR is a conserved purine-rich sequence,

17bp in length. It has been speculated that this region might be involved in

the initiation of plus strand synthesis (40).

Most retroviral genomes contain a 5' intron splice-site near the TBS

region. A search for probable 5' intron splice sequences (52) reveals three

possibilities at positions 873, 947 and 1027 with 8/9 matches with the

published consensus, AAGGTAAGT (52). Sequences extending from the 5' terminus

of viral RNA up to the first 5' intron splice-site are thought to serve as an

untranslated leader sequence which is spliced onto sub-genomic mRNAs (53).
The target site for MIARN integration

Because the Ren-2 gene and its flanking regions are highly homologous with

the closely linked Ren-l gene, presumably via tandem duplication, it is

possible to deduce the sequence of the target site into which the MIARN
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proviral sequence integrated. Comparison shows a duplication of 6bp, GAACAA,

flanking both LTRs, in the Ren-2 region, and that is present in only one copy

in the homologous Ren-l region (Figure 3a). Although the sequences flanking

the integrated IAP genomes are non-homologous, the duplication of target DNA

is always 6bp (22, 24 and 38). Such an arrangement is typical of prokayotic

and eukaryotic mobile elements (40).

In addition, this comparison also shows a 16bp sequence in Ren-l that is

not present in the Ren-2 sequence (Figure 3b). A duplication of 4bp, CTCC,

flanks this sequence, however, only one copy of which was present in the

homologous Ren-2 region (at position 3138). These features are characteristic

of insertion elements and suggest an insertion event may have occurred in the

3' flanking region of the Ren-l gene.

DISCUSSION

Comparison of the structure of IAP genomes

IAP genomes have been classified into two groups on the basis of

restriction mapping and DNA heteroduplex analysis (54, 55 and 56). Type I, the

major group (91% of total) of IAP genomes, are mostly 7.2kb in length. Genomes

in the minor group, type II, are chiefly 4.8kb in length and contain a 500bp

sequence not present in type I genomes. The restriction map of MIARN has been

compared to the HindIII/EcoRI/PstI maps of other IAP genomes (Figure 6) and

internal homologies are evident indicating their retroviral origin. This

conclusion was supported by copy number measurements using an internal MIARN

probe, a value was obtained close to that found for other IAP geneomes. As

with other rearrangents involving IAP genomes, MIARN has probably undergone a

deletion of internal sequences. A deletion of 4kb, beginning approximately

1-2kb from the 5' LTR, has removed internal IAP sequences from the original

MIARN IAP genome. However, a 1.5kb region flanking the 3' LTR has been

conserved in all re-arranged IAP genomes (57, 58 and 59). This feature is also

true of other retrovirus genomes and the retained element is known as the

constant region, C. The internal rearrangements of IAPs are genierally in the

same position and inspection of the MIARN DNA sequence reveals three pertinent

features. A pair of 77bp imperfect direct-repeats between positions 696 and

855, display 92% homology with each other and are each flanked by 3bp

direct-repeats (Figure 2). Direct-repeats are also found between positions 866

and 1046 and sequences between 1050 and 1450 are A/T-rich, with A and T

residues showing DNA strand asymmetry (Figure 2). It is interesting to note

the unusual pattern of these direct-repeats, consisting of three repeats of

31bp interrupted by repeats of 75bp (Figures 2 and 4). The 31bp repeats
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Table 2. A pairwise comparison of IAP LTR sequences.

MIARN 3' MIA14 5' MIA14 3' MIAX24 5' MIAX24 3' L20 5 ' H10 5'

MIARN 5' .02*.01 .17*.03 .16*.02 .15*.02 .19*.03 .22*.03 .61*.06
(2.78) (1.53)

MIARN 3' .16*.02 .15*.02 .14*.02 .18*.03 .22*.03 .61*.06
(2.75) (1.53)

MIA14 5' .08*.02 .07*.02 .10*.02 .25*.03 .65*.07
(3.13) (1.63)

MIA14 3' .02*.01 .08*.02 .23*.03 .62*.07
(2.85) (1.56)

MIAX24 5' .07*.01 .22*.03 .61*.06
(2.74) (1.53)

MIAX24 3' .25*.03 .60*.06
(3.11) (1.51)

L20 5' .58*.06
(1.45)

The number of base substitutions per site (together with standard errors)
as estimated by using the three-substitution-type model of Kimura (64).
These were calculated using aligned LTR sequences (Figure 5). In brackets
estimates of base substitution rate are given as number of base
substitutions per site per year (x106), where divergence times are known
(Mus musculus vs mus caroli, 4 million years and Mus species vs
Mesocricelus auratus, 20 million years. 49). References for LTRs follow :-
MIARN this work; MIA14 (22), MIAX24 (24), Mus caroli, L20 (63) and
Mesocricelus auratus, H10 (39).

contain consensus 5' splice sites (Figure 2). These sequence features may be

related to the apparent instability of this region.

If the general organisation of IAP genomes is similar to that of other

retroviral genomes, 5'LTR:PBS,gag,pol,env,c,PU:3'LTR, (40) then our findings

would suggest that only the terminal sequences remain within the MIARN

element. This suggestion is supported by the lack of open reading frames

between the two LTRs (data not shown).

Evolution of the Rnr locus in the mouse
A model of renin gene evolution in the mouse involving gene duplication of

an ancestral gene approximately 13 million years ago has been proposed (60).
Recently, we have isolated and characterised a renin gene from a low

renin-producing mouse strain (32). This gene was calculated to be more closely
related to the Ren-l (1.5% sequence divergence) gene of a high renin-producer
than a Ren-2 (10% sequence divergence) gene. These findings supported a model

of gene duplication approximately 9 million years ago, followed by a recent
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Figure 5. Comparison of LTR sequences from IAP genomes. Dashes indicate
gaps inserted to maximise the alignment of homologous regions of the
sequences. Conserved sequences at the terminii and possible regulatory
sequences are boxed. References for LTR sequences are as follows
MIAl4 (22); MIANSI (38); MIA3.2 (38); L20 (63) and HlO (39).
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Figure 6. Physical comparison of IAP genomes. Restriction enzyme cutting
sites are represented as follows: * = PstI, A= HindIII, O= EcoRI. (=
deletion. References: clones 81 and 19 (53); clones MIA14-63 (65).

(1.2 million years) deletion event removing the Ren-2 gene.

The MIARN genome can be treated as a member of a large multigene family,

the IAP genomes and sequence divergence between the various units may be used

to estimate when integration and divergence of various IAP genes took place.

An important consequence of the mechanism of retrovirus replication and

integration is the generation of identical LTR sequences (13). Thus, the

difference in sequence between 5' and 3' LTRs must be a result of random

mutation in each LTR, following integration. We have calculated 0.02*0.01 base

substitutions per site from a comparison of the MIARN LTRs (Table 2).

Comparison of MIARN and L20 LTRs, from species thought to have diverged from a

common ancestor 4 million years ago (49), yielded an estimated mutation rate

of 2.8x10-8 base substitutions per site per year. Assuming that the mutation

rate of the MIARN LTRs is equal to this, then the integration event occurred

approximately 0.7 million years ago. This date must be a minimum estimate,

since homogenisation events (61), between and within IAP genomes, would reduce

the degree of divergence seen in pairs of LTRs. This date would suggest that

both the Ren-2 deletion and MIARN integration are both relatively recent

events. These conclusions then support the following model of evolution for

the Rnr locus in the mouse. Approximately 9-13 million years ago a Ren-l like

gene was duplicated to generate the Ren-lIRen-2 gene arrangement, followed

recently by the integration of the MIARN genome into the 3' flanking region of

Ren-2. If this event took place before the Ren-2 deletion, then the latter

must also remove the MIARN genome. Alternatively, the two events took place in

separate groups of mice.
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The number of base substitutions per site observed between pairs of IAP

LTRs (Table 2), together with an estimated mutation rate of

2.8xlO8/site/year, provide minimum estimates of the times of divergence.

Apparently, the Musculus musculus IAP genomes have diverged from a common

ancestor, approximately 3-7 million years ago. Also, these LTR sequences are

all equally related to the L20 LTR sequence from Musculus caroli (Table 2),

suggesting a common ancestor for these LTRs, 4 million years ago (49). These

mouse LTRs all seem to share a common ancestor with the H10 LTRs of

Mesocricelus auratus, some 20 million years ago (39).

Comparisons of LTRs within individual IAP genomes suggest that the times

of integration are relatively recent (0.7 to 2.9 million years ago), however

these times are probably gross underestimates due to processes of

homogenisation (61) between pairs of LTRs. The comparison of LTRs within and

between the IAP genomes of MIA14 and MIAX24 seems to show that the 3' LTR of

MIA14 is more similar to the 5' LTR of MIAX24 than it is to that of MIA14.

This could be evidence of homogenisation between IAP genomes within a given

species, possibly by a mechanism of gene conversion.

The rates of base substitutions observed between pairs of IAP LTRs is at

least 10-fold greater than that characteristic of functional genes (64). This

would suggest that the terminal repetitions of the proviral elements examined

are no longer subject to strong functional constraints.

Association of an IAP genome with the Ren-2 gene.

Renin cDNA clones have been used to investigate the organization of renin

gene sequences in mice of high and low renin strains (29 and 30). The physical

maps given for Ren-l and Ren--2 (Figure 1), show that the 8.8kb, 3.9kb pair are

derived from the Ren-I region and the 9.2kb, 4.4kb pair from the Ren-2 region.

Sequence analysis of renin cDNAs and Ren-l/Ren-2 genomic sequences (32 and

33), indicate that Ren-l codes for a kidney renin and Ren-2 codes for the

major renin mRNA species in the SMG. The physical map of the Ren-2 region also

indicates that the 4.4kb EcoRI fragments detected in high renin strains is due

to the 3kb insertion and is therefore diagnostic for the association of this

element with the highly expressed Ren-2 gene. The three low renin-producing

strains Balb/c, C3H and C57BL/6 all have 3.9kb and 8.8kb EcoRI fragments in

Southern blots (30), while the three high renin-producers DBA/2, AKR and SWR

have four EcoRI fragments of 3.9kb, 4.4kb, 8.8kb and 9.2kb (29 and 30). These

findings then demonstrate an association between high SMG renin expression and

the presence of an IAP genome flanking the highly expressed gene, Ren-2. Given

the well established correlation between proviral LTRs and altered expression

of closely linked genes (17-20), it seems possible that the elevated
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expression of Ren-2 in the SMG of high-producer strains is due to the close

proximity between that structural gene and the provirus. Since Ren-2

expression has only been described in the SMG, it is not yet possible to argue

whether any possible enhancing effect is tissue-specific.

Sequences homologous to IAP genomes have been detected in a wide range of

mammals, including many rodent species, the bat, cat and monkey (62). These

mobile genomes and their transcription-control signals may therefore play a

significant role in altering the expression of cellular genes in samalian

genomes.
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