The complete nucleotide sequence of the adenylate cyclase gene of Escherichia coli

Hiroji Aiba^{1*}, Kazuyasu Mori¹, Minoru Tanaka¹, Tatsuo Ooi², Anne Roy³ and Antoine Danchin³

¹Radioisotope Lab., Faculty of Medicine, Kyoto Univ., Kyoto 606, ²Dept. Enzyme Chemistry, Inst. Chemical Research, Kyoto Univ., Uji, Kyoto 611, Japan, and ³Dépt. Biochimie et Génétique Moléculaire, Inst. Pasteur, 28 rue du Docteur Roux, 75724, Paris Cédex 15, France

Received 19 November 1984; Accepted 23 November 1984

ABSTRACT

The complete nucleotide sequence of the \underline{cya} gene from \underline{E} . <u>coli</u> was determined. The gene encodes a polypeptide consisting of 848 amino acid residues with a calculated molecular weight of 97,542. The deduced protein structure reveals that cyclase is comprised of two domains, an amino-terminal region exhibiting catalytic activity and a carboxy-terminal region possibly carrying regulatory function. The frequent appearance of rare codons in the beginning of the gene as well as the sequence duplication in the promoter-initiator region suggest possible regulation(s) at the translational level. An unknown gene (<u>cya</u>X) which seems to code for a very hydrophobic protein was found following the <u>cya</u> gene. Sequence analysis suggests that the <u>cya</u>X is a part of the <u>cya</u> operon.

INTRODUCTION

While it is well recognized that cAMP is a central regulatory entity in prokaryotes as well as in eukaryotes, the mechanism by which the cellular level of cAMP is controlled is still poorly understood. However, knowledge concerning activity and expression of bacterial adenylate cyclase has been accumulated. Cyclase is sensitive to the nature of the carbon source on which the cell is feeding. The regulation involves, in a still not completely understood manner, a phosphorylation cascade known as the phosphoenolpyruvate dependent carbohydrate phosphorylation system (1,2). In this cascade a phosphorylated protein (enzyme III Glc) controls in a positive way adenylate cyclase activity (3). With respect to enzyme structure, it has been observed that adenylate cyclase is a large protein (ca 95 kb) and may comprise two domains. namely the amino-terminal domain displays cAMP synthesizing activity whereas the carboxy-terminus seems to be involved in regulation of cyclase activity by the

carbon source (4,5).

On the other hand, little is known about the regulation involved at the level of cyclase expression, although recent studies of the cloned <u>cya</u> gene unraveled some of the complexities of the <u>cya</u> regulatory region (6-8). There exist contradictory data concerning the regulation of <u>cya</u> expression by cAMP and its receptor protein (CRP or CAP). Some experiments suggest the involvment of cAMP-CRP as a negative effector for <u>cya</u> transcription (8-10) while other data refute this possibility (6,11,12).

To gain a better understanding of the structure and function of the adenylate cyclase as well as its expression, we have determined the nucleotide sequence of the entire <u>cya</u> gene of <u>E</u>. <u>coli</u>. The data suggest that the enzyme is made of two domains, and the gene is organized in a <u>cya</u> operon. Some regulatory aspects deduced from the DNA sequence are also discussed.

MATERIALS AND METHODS

Materials

Plasmid pCA2 and pCA3 carrying the <u>cya</u> gene (7) were used for DNA sequencing. Restriction endonucleases and T4 polynucleotide kinase were obtained from Takara Shuzo. $[\gamma^{-32}P]$ ATP (\sim 7000 Ci/m mol) was purchased from New England Nuclear. <u>Preparation of DNA and DNA sequence determination</u>

Plasmid DNA was purified essentially as described by Birnboim and Doly (13). Restriction fragments were isolated from polyacrylamide gels and labeled at their 5' ends with $[^{3^2P-\gamma}-ATP]$ by T4 polynucleotide kinase. Singly end-labeled DNA fragments were prepared either by a secondary restriction cleavage or by electrophoretic strand separation. Nucleotide sequences were determined by the method of Maxam and Gilbert (14).

RESULTS

Nucleotide sequence of the cya gene

The restriction map of the DNA region for the <u>cya</u> gene is given in Figure 1. The sequence was obtained on both strands for each nucleotide by several independent experiments. Each

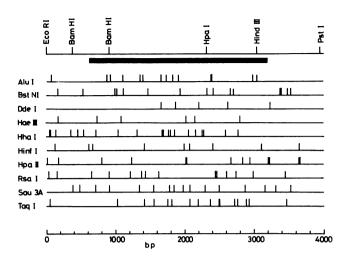


Figure 1. Restriction map of the <u>cya</u> gene and neighboring regions. The black bar represents the coding region for adenylate cyclase. Direction of transcription is from left to right.

site used for sequencing was also sequenced from a distinct site, at least on one strand.

Figure 2 shows the complete nucleotide sequence of the <u>cya</u> gene along with its 5' and 3' flanking regions. Comments on the <u>cya</u> promoter region are described elsewhere (6-8). It has been previously shown that the <u>cya</u> translation starts with TTG codon at position 652 (5). Starting with the TTG, a long open reading frame followed by two TGA termination codons at position 3196 is identified. This reading frame consists of 2544 nucleotides which is sufficient to specify adenylate cyclase protein. A second open reading frame preceded by a conserved Shine and Dalgarno sequence and fitting the Stormo rule (15) is also visible in the region after the cya gene.

Following the two TGA stop codons, a palindromic unit, TGCCGGAAA---TATCCGGCA, is identified between two open reading frames. This type of sequence, which was originally found in the intercistronic region of some operons (16,17), appears to be widely present outside structural genes on the <u>E</u>. <u>coli</u> chromosome and is believed to play roles in regulating expression of the operon as well as in genome evolution (18).

Adenylate cyclase

The primary structure of adenylate cyclase protein deduced from the nucleotide sequence is also shown in Figure 2. The protein consists of 848 amino acids and its molecular weight is calculated to be 97,542, which is in good agreement with those of the purified cyclase (19) or the protein specified by the cloned cya gene (20). The amino acid composition of adenylate cyclase given in Table 1 indicates that the protein is slightly acidic (net charge of -18). This is consistent with the result of the isoelectric focusing gel (pI=6.1) of the purified adenylate cyclase (19). The secondary structure of the protein predicted by the method of Robson and Suzuki (21) is shown in Figure 3. The contents of α -helix and β -sheet structures were predicted to be 30.0 % and 19.3 %, respectively. The polypeptide can be roughly divided into two distinct regions based on the primary and secondary structures. The first domain (residues 1-395) is more acidic (net charge of -17) and shows a high content of α -helix (42.5 %). Especially the region from 240 to 395 reveals an extremely high content of α -helix (65 %). This region is preceded by the alternative stretches of α -helix and β -sheet that are believed to participate in the binding of adenine nucleotide (22). The second region (residues 396-848) is electrically neutral (net charge of -1) and is less organized, showing low content (19.0 %) of α -helix. We believe that the first domain carries adenylate cyclase catalytic activity, since carboxy-terminal half can be deleted without a significant loss of cyclase activity (4). The active domain of the protein has been precisely defined by several in vitro deletions of the gene as well as Bal 31 nuclease digestion (Danchin, unpublished results) and it has been found that deletions extending upstream from the Bcl I site located at position 1781 (amino acid 377) rapidly destroy adenylate cyclase activity. With respect to the predicted secondary structure, this corresponds to destruction of the last α -helix present in the first domain (see Figure 3).

Since adenylate cyclase has been reported to be membrane associated (10,23,24), we have determined the hydropathy profile of cyclase protein by the method of Kyte and Doolittle (25) to

51	171	291	111	531	651	741 30	831 60	921 90	1011 120	1101 150	1191 180	1281 210	1371 240	1461 270	1551 300	1641 330
ATTCAACCGGCGCACATCTTTCATTCATTCATTCATTCAT	CGAGGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	GATGGCTCGCCATCAACTTGTCTTTGACATAGTGTGCCTGCC	GTCCATCCTAACATCCTTGCCAGAGTGATGTCGTGTGTGT	AGGAATTTACAGAGGAATAAAGGGTGCTACATGTAGGGGCATCTTTCTT	AACCAGGGGGGGAAAAGTGGTAACGGTTACGTTTGACATACGAAATATCCCGGAATGCCGGGGTGGTGGTGGTGGGGGAATCACAGGCGGGTAGGGGTAGCA <u>AA</u> TC <u>AGG</u> CG <u>AT</u> ACGTC	TTG TAC CTC TAT ATT GAC ACT CTG AAA CAC AGA CTG GAT GCC ATA AAT CAA TTG CGT GTG GAT GGG GCG CTT GCT ATG GGG CCT GCA Met Tyr Leu Tyr Ile Glu Thr Leu Lys Gln Arg Leu Asp Ala Ile Asn Gln Leu Arg Val Asp Arg Ala Leu Ala Ala Met Gly Pro Ala	TTC CAA CAG GTC TAC AGT CTA CTG CTG ACA TTG TTG CAC TAT CAC CAT CCG CTA ATG CCG GGT TAC CTT GAT GGT AAC GTT CCC AAA GGC Phe Gln Gln Val Tyr Ser Leu Peo Thr Leu Leu His Tyr His His Pro Leu Met Pro Gly Tyr Leu Asp Gly Asn Val Pro Lys Gly	ATT TGC CTT TAC ACG CCT GAT GAA ACT CAA GGC CAC TAC CTG AAC GAG CTT GAA CTG TAT CGT GGA ATG TCA GTA CGG GAT CCG CG AAA Ile Cys Leu Tyr Thr Pro Asp Glu Thr Gln Arg His Tyr Leu Asn Glu Leu Glu Leu Tyr Arg Gly Met Ser Val Gln Asp Pro Pro Lys	GGT GAG CTT CCA ATT ACT GGT GTA TAC ACC ATG GGC AGC AGC TCG TCG GTA GGG CAA AGT TGT TGC TCT GAC CTG GAT ATC TGG GTC TGT Gly Glu Leu Pro Ile Thr Gly Val Tyr Thr Met Gly Ser Thr Ser Ser Val Gly Gln Ser Cys Ser Ser Asp Leu Asp Ile Trp Val Cys	CAT CAA TCC TGG CTC GAT AGC GAA GAG CGC CAA TTG CTA CAA CGT AAA TGT AGC CTG CTG GAA AAC TGG GCC GCC TGG GTT GTG GAA His Gln Ser Trp Leu Asp Ser Glu Glu Arg Gln Leu Leu Gln Arg Lys Cys Ser Leu Leu Glu Asn Trp Ala Ala Ser Leu Gly Val Glu	GTC AGC TTC TTC CTG ATT GAT GAA AAC CGC TTC CGT CAT AAT GAA AGC GGC GGC GGC GGG GGC GAA GAT TGT GGC TCC AGC CAT ATA Val Ser Phe Phe Leu Ile Asp Glu Asn Arg Phe Arg His Asn Glu Ser Gly Ser Leu Gly Glu Asp Cys Gly Ser Thr Gln His Ile	CTG CTG CTT GAC GAA TTT TAT CGT ACC GCC GTG CGT CTC GCC GGT AAG CGT ATT CTG TGG AAT ATG GTG CGG TGC GAC GAA GAG CAT Leu Leu Leu Asp Glu Phe Tyr Arg Thr Ala Val Arg Leu Ala Gly Lys Arg Ile Leu Trp Asn Met Val Pro Cys Asp Glu Glu His	TAC GAC GAC TAT GTG ATG AGG CTT TAG GGG GGG GGG GGT CTG AGG CCA AAT GAA TGG CTG GAT CTC GGT GGC TTA AGG TGG TGT Tyr Asp Asp Tyr Val Met Thr Leu Tyr Ala Gln Gly Gly Leu Thr Pro Asn Glu Trp Leu Asp Leu Gly Gly Leu Ser Ser Leu Ser Ala	GAA GAG TAC TTT GGT GGC GGC CTT TGG CAG CTC TAC AAG AGT ATC GAT TCC CCA TAC AAA GCG GTA CTG AAA ACA CTG CTG CTG GAA GCC Glu Glu Tyr Phe Gly Ala Ser Leu Trp Gln Leu Tyr Lys Ser Ile Asp Ser Pro Tyr Lys Ala Val Leu Lys Thr Leu Leu Leu Glu Ala	TAT TCC TGG GAA TAC CCG AAC CCA CCT CTG CTG GCG AAA GAT ATC AAA CAG CGT TTG CAC GAC GGC GGC ATT GTA TCG TTT GGT CTC GAT Tyr ^S er Trp Glu Tyr Pro Asn Pro Arg Leu Leu Ala Lys Asp Ile Lys Gln Arg Leu His Asp Gly Glu Ile Val Ser Phe Gly Leu Asp	CCA TAC TGC ATG ATG CTG GAG CGT GTT ACT GAA TAC CTG AGG GCG GTT GAA GAT TTT ACC CGT CTG GAT TTA GTA GGT CGT GGC TGC TAC TAT Pro Tyr Cys Met Met Leu Glu Arg Val Thr Glu Tyr Leu Thr Ala Ile Glu Asp Phe Thr Arg Leu Asp Leu Val Arg Arg Cys Phe Tyr

1731	1821	1911	2001	2091	2181	2271	2361	2451	2541	2631	2721	2811	2901	2991
360	390	420	450	480	510	540	570	600	630	660	690	720	750	780
TGC	ATC	CGT	ACC	cAG	AAA	CCC	GTC	AAC	GAC	с А С	TTC	CTC	CAA	CTA
Trp	Met	Arg	Thr	Gln	Lys	Pro	Val	Asn	Asp	Glu	Phe	Val	Gln	Val
GGT GLy	GCG Ala	ACC	CTG	CAT His	ATT Ile	ACA Thr	CAG Gln	ccc Arg	CAG G1n	TCT Ser	TTC Phe	TCA Ser	ACG	CTG Leu
TGC	GAC Asp	CTG Leu	AAT Asn	AGC Ser	TAT Tyr	CCC Pro	AAT Asn	TAC Tyr	CAT His	CTT Val	TTC Leu	CTC Leu	GAA	CAG Glu
GAG	CTC Leu	GTC Val	CCC Pro	ATC Ile	TTG Ley	GCA Ala	CCC Arg	CTG Leu	ATG Me t	CTC Leu	666 G1y	66C 61y	GAA	CAG Glu
AGC	TTG	66C	CAA	ATC	CCT	CCT	TTC	CTG	AAA	c AA	TCC	CAC	TTC	AAA
Ser	Leu	G I y	Glu	Ile	Arg	Pro	Phe	Leu	Lys	G l n	Trp	His	Phe	Lys
GTG Val	GAG Glu	ATC Ile	TCC Ser	TCC Ser	ACC	TTA Leu	GCC Ala	GAC Asp	66C G1y	CAG	ACC Thr	CTG Leu	TTT Phe	AGC Ser
TTA Leu	AAC Asn	CAT Asp	CTC I.eu	GAG G1u	CCC Arg	CCC Arg	GCC	GTT Val	CTC Leu	CTG Val	CAA	AAA Lys	TTC Phe	GGC G1 y
CAG	CAC	CAG	GAT	ATT	TCG	CTG	ACA	AGC	ATT	CCC	GCT	AAC	CAG	GAA
Gln	His		Asp	Ile	Se r	Leu	Thr	Ser	Ile	Arg	Cly	Asn	Ğln	Glu
AGC	GCC	CCC	CCC	AAT	ACC	CCC	CCC	GGT	ACT	ACT	TCT	CAT	ATC	TCC
Ser	Ala	Pro	Pro	Asn	Thr	Pro	Pro	Cly	Thr	Thr	Ser	His	Ile	Cys
TTG	CAG	AGT	TCA	CCA	CTG	TTC	GAC	GTA	AAA	CCT	GTT	TCG	ATC	CAC
Leu	Glu	Se r	Ser	Pro	Leu	Phe	Asp	Val	Lys	Arg	Val	Ser	11e	His
GTG	CGT	GCC	ATT	GCC	CTG	CAT	TAT	CTG	CTG	ATT	CGC	ATT	GGG	CAC
Val	Arg	Ala	Ile	Ala	Leu	His	Tyr	Leu	Leu	Ile	Arg	Ile	G l y	His
GCA	GTG	TCC	CAG	CGC	GGC	CAC	CAA	TGC	GCC	TTA	CTG	GCC	cAA	TAT
Ala	Val	Ser	G1n	Arg	G1y	His	Glu	Cys	Ala	Leu	Leu	Ala	Glu	Tvr
CGC	CAG	GTC	CCC	AAC	AAC	TCC	CTG	AAT	CAA	66C	GCG	GGC	AGC	GTA
Arg	Gln	Val	Pro	Asn	Asn	Ser	Leu	Asn	Glu	G1 y	Ala	G1y	Ser	Val
CGT	GAT	AGC	AAC	TAT	TTT	CTC	AAC	CAA	ATC	ccc	AAG	TAT	GCC	CAG
Arg	Asp	Ser	Asn	Tyr	Phe	Val	Asn	Gln	Ile	Arg	Lys	Tyr	Ala	Glu
TGC	ATT	CTT	GTA	CTG	TGG	GAC	GTT	AAT	ATG	CTG	TTC	TTT	TTT	GTT
Trp	Ile	Leu	Val	Leu	Trp	Asp	Val	Asn	Met	Leu	Phe	Phe	Phe	Val
66C	AAC	AAC	CTC	TAT	GCA	GCC	ATC	GAG	TCG	CAT	CCT	CAG	GGC	CGG
61y	Lys	Asn	Leu	Tyr	Ala	Ala	Ile		Ser	His	Arg	Glu	G1y	Arg
GTA	TGG	AAT	ACG	TCC	TCC	GTC	ATT	GGC	CAA	CAG	666	ATC	GAC	AAC
Val	Trp	Asn	Thr	Trp	Trp	Val	Ile	G1y	Gln		G1y	Ile	Asp	Asn
TGC	AAC	CGC	GTG	GGT	GCG	ATG	GCG	TTT	GAG	AGC	ACC	GCC	CTC	AGC
Cys	Asn	Arg	Val	Gly	Ala	Met		Phe	G1u	Ser	Thr	Ala	Val	Ser
GCC	GCT	CCT	AAA	TCA	GTG	GAG	CTC	AGC	66C	TAT	GAA	AAC	CTC	GAA
Ala	Ala	Arg	Lys	Ser	Val		Leu	Ser	61y	Tyr	Glu	Asn	Val	Glu
CGC	CGC	GCG	GCT	CGT	CTG	CAG	CAT	TTC	AAC	TCT	CAG	GAA	CCC	GAC
Arg	Arg	Ala	C1y	Arg	Leu	Gln	'iis	Phe	Asn	Cys		Glu	Ala	Asp
GAA	AAC	TTT	CCA	AAC	AAA	TTC	CGC	GTC	TTC	TTC	CGC	CTG	CCC	CTC
Glu	Asn	Phe	Pro	Asn	Lys	Leu	Arg	Val	Phe	Phe	Arg	Leu	Pro	Leu
CGT	GAT	CCC	TTA	GCT	AAT	AAG	ATC	GAT	CAC	GTC	ACC	AAA	TTA	ATT
Arg	Asp	Arg	Leu	Ala	Asn	Lys	Ile	Asp	His	Val	Thr	Lys	Leu	Ile
AGC	CTC	ATC	GCA	CCC	CTG	CCT	сАС	CTG	CTG	CAA	AGC	CAG	AAA	TAC
Ser	Leu	11e	Ala	Arg	Leu	Pro	Glu	Leu	Leu	Glu	Ser		Lys	Tyr
CTC	ATG	CTC	GAA	GGC	TAC	TTG	TGT	AAG	ACG	GTG	TCC	GTA	GTC	ATC
Leu	Met	Leu	G1u	G1y	Tyr	Leu	Cys	Lys	Thr	Val	Ser	Val	Val	Ile
AAG	GCA	AAT	TTT	Pro	CGT	GAT	CCG	CCT	CCT	AGC	CTT	TCG	CAC	AAT
Lys	Ala	Asn	Phe		Arg	Asp	Pro	Arg	Arg	Ser	Leu	Ser	His	Asn
CAA Glu	CTC Leu	TAC CGT Tyr Arg	Ala	Pro	AAC	GTC Val	TAC AGC Tyr Ser	TTC Phe	GTG Val	GAT Asp	CGT Arg	GTA Val	AAT Asn	TTT Phe
TGC Cys	GAA GCT CGT (Glu Ala Arg I	TAC	AAG CTG TAT <u>GCC GC</u> G Lys Leu Tyr Ala Ala	TAT GT <u>C CCC</u> Tyr Val Pro 1	GAA TAT AAC Glu Tyr Asn	ATT GTC Ile Val	TAC	CAT Asp	GAA GTG Glu Val	CCG CCA GAT Pro Pro Asp	GAA TTG Glu Leu	AAT Asn	ACC	GGC G1y
AAA GTG Lys Val	CCT Ala	AGC Ser	TAT Tyr	TAT Tyr	GAA Glu	660	GCG CTC Ala Leu		AAC	Pro	GAA	CTG Leu	cAA Glu	AAT Asn
	C GAA	CAG Gln	CTG	r ATT • Ile	CCC CTC Pro Leu	AAC Asn	CCC Ala	CAT His	Trp	GCA A1a	ATT ATT	CGC Arg	GTT Val	CAC Glu
TTA	GAC	ATG	AAG	TTT	200	GGT	AAG	GTG	TCG	GCC	TGT	CAA	CAG	GAC
Leu	Asp	Met	Lys	Phe	L	G1y	Lys	Val	Ser	Ala	Cys	Glu	Gln	Asp

3081 810	3171 840	3281 848	3387 13	3477 43	3567 73	3657 103	3697 116	nces. 3co RI NA. e tive the
CGT GAC GTC AGT CGC TTC TAC TCG TCA TCG CAT GAC CGC TTT ACC TAC GGC TCA AGC TTC ATC AAC TTC AAC CT <u>G CCG C</u> AG TTC TAT CAG Arg Asp Val Ser Arg Phe Tyr Ser Ser His Asp Arg Phe Thr Tyr Gly Ser Ser Phe Ile Asn Phe Asn Leu Pro Gln Phe Tyr Cln	ATT GTG AAG GTT GAT GGT CGA CAG GTG ATT CGG TTC CGC ACA AAA TCT ATC GGT AAG ATG <u>CGG C</u> GT GCC AAT CAG GAT CAG GAT AG <u>G</u> Ile val Lys val Asp Gly Arg Glu Gln Val Ile Pro Phe Arg Thr Lys Ser Ile Gly Asn Met Pro Pro Ala Asn Gln Asp His Asp Thr	CCC CTA TTA CAG CAA TAT TTT TCG TGA ACGTGCCGGGAAAGCGGGGGTTATCCGGGAATCTTAGCGGAAACTGACTG	GTTCCAGCAAATCCCAGAAGGTTTC <u>GCCGC</u> TGCCATCACAAATCCACTCATCAGGGTCAAA ATG GTA <u>GCC GC</u> C CTG TTT GGT TGC CAG CCA TAC CTG GTG Met Val Ala Ala Leu Phe Gly Cys Gln Pro Tyr Leu Val	CAG CGG CTC CTG GCG GTT GAT AAT GAT TTT GCT GCC ATT CTC AAA GGT AAT GGT CAG TAC <u>GCC GC</u> G GTT GAT TTC GCA GTC GAT ATC GCT Gin Arg Leu Leu Ala Val Asp Asn Asp Phe Ala Ala Ile Leu Lys Gly Asn Gly Gin Tyr Ala Ala Val Asp Phe Ala Val Asp Ile Ala	GTC GCC ATC CCA GTC GTC CAG GCG TTC AAT GGT CAG CCA GAG TTG ATC AGC CGG GGG ATG AAA TTC ACT GTC GTT CAT TGT TGT Val Ala Ile Pro Val Val Gln Ala Phe Phe Asn Gly Gln Pro Glu Leu Ile Ser Gln Ala Met Lys Phe Thr Val Val His Cys Cys Ile	CTG TTT TTA AGT GAT GGC GGC AGT ATA GGG GCA TGG GGT CAG GGC TTC AAA GTT TGC ACC TCT GGG GCT GGC TTC GGG CAC GAT TCA TCC Leu Phe Leu Ser Asp Gly Gly Ser Ile Ala Ala Trp Gly Gln Gly Phe Lys Val Cys Thr Ser Ala Ala Ala Phe Arg His Asp Ser Ser	GTC ACC GGA ATA ATG ATG TCT CTG TGC GAA AGA TTT G Val Thr Gly Ile Met Met Ser Leu Cys Ser Glu Arg Phe	Figure 2. DNA sequence of the region for the \underline{cya} gene and the predicted polypeptide sequences. The DNA sequence of the noncoding strand is shown. Nucleotide numbering starts with the Eco RI site. The vertical arrow at position 498 indicates the initiation site of the major \underline{cya} RNA. The first open reading frame from positions 652 to 3195 represents adenylate cyclase. The second one, which corresponds to an unknown gene (\underline{cyaX}), start at position 3349. The putative Shine-Dalgarno sequences for both genes are double-underlined. A palindromic sequence in the region between two genes is shown by horizontal arrows. Clusters of the penta nucleotide,

Amino acio	3	Adenylate Cyclase						
Amino acio		dues	resi 1-39	dues	resi 396-	dues	res 1-1	idues
	1-84	0	1-39	5	390-	-040	1-1	.10
Nonpolar	379	(44.7%)	172	(32.4%)	207	(45.7%)	65	(56.4%)
Ala	47		23		24		17	
Val	56		21		35		12	
Leu	104		58		46		9	
Ile	39		13		26		7	
Pro	39		15		24		3	
Met	16		12		4		4	
Phe	37		9		28		10	
Trp	16		11		5		1	
His	25		10		15		2	
Polar	281	(33.1%)		(32.4%)		(33.8%)		(31.9%)
Gly	48		24		24		9	
Ser	63		28		35		8	
Thr	33		15		18		3	
Cys	15		10		5		5	
Tyr	40		22		18		5 2 3	
Asn	42		12		30		3	
Gln	40		17		23		7	
Negatively	charged 103	(12.1%)		(14.2%)		(10.4%)	8	(6.9%)
Asp	43		25		18		6	
Glu	60		31		29		2	
	charged 85	(10.0%)		(9.9%)		(10.2%)	6	(5.2%)
Lys	29		13		16		3	
Arg	56		26		30		3	
Total	848		395		453		116	

Table I Amino acid compositions of cya and cyaX proteins

see whether the membrane-spanning segments are present or not. Although the profile also suggests the existence of the two separable domain, it does not reveal significant features of the membrane-bound protein (data not shown).

Codon usage

Table II summarizes the overall codon usage of the entire cya gene. It should be noted that rare codons are used frequently throughout the coding region; the frequency of the use of optimal codons (Fop), which was defined by Ikemura (26), is calculated to be 0.66 in the cya gene. This value is

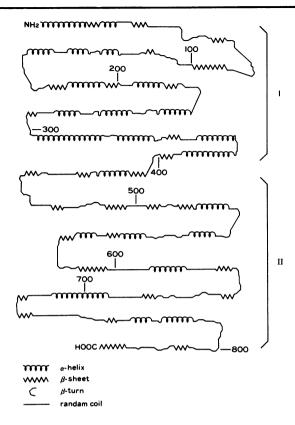


Figure 3. Predicted secondary structure of adenylate cyclase. Two domains are shown by brackets.

comparable to those of <u>trp</u> genes, suggesting that the <u>cya</u> gene is expressed at a relatively low level. It is also noteworthy that rare codons are clustered in the very beginning of the protein, namely 11 out of the first 20 codons are nonoptimal codons.

Sequence comparison

The <u>cya</u> sequence reveals several more or less extended duplications. The most interesting one corresponds to the sequence immediately upstream from the initiation TTG and a region upstream of the major promoter (Figure 4). This duplication, along with an unusual initiation codon TTG, might carry a specific information for regulating the level of translation.

	.e 11	couon	Usage	In che	<u>cya</u>	Gene
Leu	UUA	9		Ser	UCU	5
	UUG	12			UCC	8
	CUU	11			UCA	6
	CUC	13			UCG	15
	CUA	4			AGU	5
	CUG*	55			AGC	24
Arg	CGU*	29		Thr	ACU*	
	CGC*	24			ACC*	13
	CGA	0			ACA	5
	CGG	2			ACG	9
	AGA	1				
	AGG	0		Ile	AUU	21
		_			AUC*	16
Pro		5			AUA	2
	CCC	2				
	CCA	8		Asn	AAU	17
	CCG*	24			AAC*	25
Gln	CAA	13		Phe	UUU	15
	CAG*	27			UUC*	22
Lys	AAA*	19		Tyr	UAU	19
	AAG	10			UAC*	21
Ala	GCU*	6		Glu	GAA*	
	GCC	16			GAG	22
	GCA*	7		_		_
	GCG*	18		Cys	UGU UGC	7 8
Val	GUU*	9				
	GUC	10		His	CAU	13
	GUA*	13			CAC	12
	GUG*	24				
				Asp	GAU	26
Gly	GGU*	18			GAC	17
-	GGC*	23				
	GGA GGG	1 6		Trp	UGG	16
	999	0		Met	AUG	15
1					UUG	1

Table II Codon Usage in the cya Gene

Optimal codons (26) are shown by asterisks(*).

Another feature in the <u>cya</u> sequence is the existence of clusters of the penta nucleotide GCCGC, namely 7 such sequence can be found at the end of the gene as well as a cluster of three sequences in the middle of the gene. This prompted us to look for similar clusters in other genes. The most surprising data came from comparison with pBR322 (27). We found extensive homology between the interdomain sequence of cya and

Figure 4. DNA sequence comparison. A, a sequence duplication in the region upstream of the cya structural gene. B, a sequence homology between the interdomain region of cya and the replication origion of pBR322. The nucleotides in the cya gene are numbered as in Figure 2. The DNA sequence of pBR322 is taken from the reference (27).

the replication origin of pBR322 (Figure 4). Whether this is of functional significance remains to be seen. The second open reading frame: a <u>cya</u> operon?

Downstream from the <u>cya</u> reading frame and after the Clément and Hofnung's palindromic unit one can see an open reading frame of more than 116 amino acids. This amino acid sequence appears to be extremely hydrophobic, in a way which is characteristic of membrane-bound proteins. No visible promoter sequence can be identified in the intercistronic region, suggesting that the second reading frame is part of an operon. We therefore tentatively term this gene <u>cya</u>X.

DISCUSSION

The DNA sequence presented here suggests some noteworthing features about the organization and expression of <u>cya</u> gene as well as the structure of adenylate cyclase. First, the cyclase protein appears to be composed of two distinct domains. This substantiates the physiological and biochemical data which have shown that cyclase catalytic activity is located in the aminoterminal region whereas the glucose sensitive regulatory site may be located in the carboxy-terminal region of the protein (4,5). The existence of a domain structure in cyclase suggests that the <u>cya</u> gene results from the fusion of two ancestral genes as, for instance, does the aspartokinase homoserine dehydrogenase gene (28). With respect to the expression of the \underline{cya} , the DNA duplication found around the \underline{cya} regulatory region including the translational start site suggests a regulation at the level of \underline{cya} translation. This is corroborated by the frequent appearance of rare codons in the very beggining of the gene, which may disturb the translation especially under exponential growth conditions. The previous finding that cyclase translation start with an unusual UUG codon also suggests a regulation at the level of translation. In addition, the finding that the interdomain sequence has a strong homology with pBR322 replication origin may indicate a coupling between transcription of the \underline{cya} gene (at least its distal part) and a component of the replication machinery.

Finally, the sequence determination revealed that the cya gene is followed by an unknown gene (cyaX) which may specify a very hydrophobic protein, thus suggesting the existence of a cya operon. This is particularly interesting in view of the fact that the cyclase protein, as determined from the DNA sequence, is not very hydrophobic, whereas most studies suggest that the adenylate cyclase is membrane bound. On the other hand, an isolation of the protein as a cytoplasmic one, albeit with a low yield, indicates that adenylate cyclase is a soluble enzyme (19). These data may be reconciled under the hypothesis that the adenylate cyclase catalytic subunit is in fact bound loosely to an integral membrane protein. The cyaX gene located downstream from cya seems to specify a hydrophobic protein, and this might correspond to the cyclase membrane "adapter". The phenotype of a cyax strain is difficult to predict (mainly because cytoplasmic adenylate cyclase still synthesizes cAMP), which might explain why no corresponding mutations have yet been identified.

The nucleotide sequence of the <u>cya</u> region thus reveals a complex organization of the gene(s) and their products. Physiological and biochemical experiments, as well as comparison with <u>cya</u> genes from other organisms, are required to unravel the complexity of this system.

ACKNOWLEDGEMENTS

We are grateful to Drs. K. Izui and N. Fujita for useful discussions, and M. Tabata for her typing assistance. This work was supported by a Grant-in-Aid for Special Project Research from the Ministry of Education, Science and Culture of Japan.

*To whom reprint requests should be sent

REFERENCES

- Botsford, J. L. (1981) Microbiol. Rev. 45, 620-642. 1.
- 2. Ullmann, A. and Danchin, A. (1983) Advan. Cyclic Nucl. Res. 15, 1-53.
- 3. Postma, P. W. (1982) Ann. Microbiol. (Inst. Pasteur), 133A, 261-267.
- 4. Roy, A., Danchin, A., Joseph, E. and Ullmann, A. (1983) J. Mol. Biol. 165, 197-202.
- 5. Danchin, A., Guiso, N., Roy, A. and Ullmann, A. (1984) J. Mol. Biol. 175, 403-408.
- 6. Roy, A., Haziza, C. and Danchin, A. (1983) EMBO J. 2, 791-797.
- Aiba, H., Kawamukai, M. and Ishihama, A. (1983) Nucl. Acids 7. Res. 11, 3451-3465.
- 8.
- Aiba, H. J. Biol. Chem. in press. Botsford, J. L. and Drexler, M. (1978) Mol. Gen. Genet. 9. 165, 47-56.
- 10. Majerfeld, I. H., Miller, D., Spitz, E. and Rickenberg, H. V. (1981) Mol. Gen. Genet. 181, 470-475.
- 11. Bankaitis, V. A. and Bassford, P. J. Jr. (1982) J. Bacteriol. 151, 1346-1357.
- Joseph, E., Bernsley, C., Guiso, N. and Ullmann, A. (1982) 12. Mol. Gen. Genet. 185, 262-268.
- Birnboim, H. C. and Doly, J. (1979) Nucl. Acids Res. 7, 13. 1513-1523.
- 14. Maxam, A. and Gilbert, W. (1980) Methods Enzymol. 65, 499-560.
- 15. Stormo, G. D., Schneider, T. D., Gold, L. and Ehrenfeucht, A. (1982) Nucl. Acids Res. 10, 2997-3011.
- Clément, J. M. and Hofnung, M. (1981) Cell 27, 507-514. 16.
- Higgins, C. F., Ames, G. F., Barnes, W. M., Clément, J. M. 17. and Hofnung, M. (1982) Nature 298, 760-762.
- 18. Gilson, E., Clément, J. M., Brutlag, D., and Hofnung, M. (1984) EMBO J. 3, 1417-1421.
- Yang, J. K. and Epstein, W. (1983) J. Biol. Chem. 258, 3750-3758. 19.
- Roy, A. and Danchin, A. (1982) Mol. Gen. Genet. 188, 20. 465-471.
- Robson, B. and Suzuki, E. (1977) J. Mol. Biol. 107, 899-904. 21. Rossmann, M. G., Moras, D. and Olsen, K. W. (1974) Nature 22.
- 250, 194-199.
- Ide, M. (1971) Arch. Biochem. Biophys. 144, 262-268. 23.

- Janeček, J., Naprstek, J., Dobrova, Z., Jirešova, M. and Spižek, J. (1980) Folia Microbiol. 25, 361-368 Kyte, J. and Doolittle, R. F. (1982) J. Mol. Biol. 157, 24.
- 25. 105-132. Ikemura, T. (1981) J. Mol. Biol. 151, 389-409.
- 26.
- 27.
- Sutcliffe, J. G. (1979) Cold Spring Harbor Symp. Quant. Biol. 43, 77-90. Zakin, M. M., Duchange, N., Ferrara, P. and Cohen, G. N. (1983) J. Biol. Chem. 258, 3028-3031. 28.