Table S1: List of 121 defence-related genes analysed for diurnal and circadian transcriptional regulation using publically available microarray data. *CCA1* and *LHY* are included as known genes subject to circadian regulation.

LOCUS ID	GENE NAME	FUNCTION	REFS
AT2G46830	CIRCADIAN CLOCK ASSOCIATED 1 (CCA1)	MYB transcription factor, CCA1 and LHY function synergistically in regulating circadian rhythms of Arabidopsis	1 2
AT1G01060	LATE ELONGATED HYPOCOTYL (LHY)	As above	1 2
AT2G14610	PATHOGENESIS-RELATED GENE 1 (PR1)	expression is induced in response to a variety of pathogens and SA. It is a useful molecular marker for the systemic acquired resistance (SAR) response.	345
AT3G57260	PR2	beta 1,3-glucanase, systemic acquired resistance	5
AT1G75040	PR5	Thaumatin-like protein involved in response to pathogens.	5
AT1G08450	CALRETICULIN 3 (CRT3)	non-receptor component required for EFR-mediated immunity. defense response to bacterium	6
AT5G64930	CONSTITUTIVE EXPRESSION OF PR GENES 5 (CPR5)	regulator of expression of PR genes. Participates in signal transduction pathways involved in plant defense (SAR).	789
AT4G39030	ENHANCED DISEASE SUSCEPTIBILITY 5 (EDS5);SA INDUCTION DEFICIENT 1 (SID1)	orphan multidrug and toxin extrusion transporter. Essential component of salicylic acid-dependent signaling for disease resistance. Member of the MATE-transporter family. Expression induced by salicylic acid	10
AT1G74710	EDS16 / ISOCHORISMATE SYNTHASE 1 (ICS1)	SA biosynthesis	11
AT3G48090	EDS1	encodes lipase-like protein that function in resistance (R) gene- mediated and basal plant disease resistance, required for accumulation of salicylic acid	12 13
AT1G64280	NON-EXPRESSER OF PR GENES 1 (NPR1)	Key regulator of SA-mediated signaling	14
AT3G52430	PHYTOALEXIN DEFICIENT 4 (PAD4)	encodes lipase-like protein that function in resistance (R) gene- mediated and basal plant disease resistance, required for accumulation of salicylic acid	12 15 16
AT4G23100	PAD2 / GLUTAMATE- CYSTEINE LIGASE (GSH1)	catalyzes the first, and rate-limiting, step of glutathione biosynthesis.	17 18
AT3G53260	PAL2	phenylpropanoid biosynthesis, SA biosynthesis	19 20
AT5G04230	PAL3	as above	19 20
AT3G10340	PAL4	as above	20 21
AT5G15410	DEFENSE NO DEATH 1 (DND1)	conducts Ca2+ into cells which is linked to the generation of NO and the NO signaling pathway involved in the innate immune	22

		response to pathogens defense response	
AT1G08720	ENHANCED DISEASE RESISTANCE 1 (EDR1)	confers resistance to powdery mildew disease caused by the fungus Erysiphe cichoracearum, response to bacterium	23 24
AT2G31880	SUPPRESSOR OF BIR1 1 (SOBIR1)	leucine rich repeat transmembrane protein that is expressed in response to Pseudomonas syringae. positive regulation of defense response	25
AT5G10380	RING1	RING finger domain protein with E3 ligase activity. Expression is increased in response to fungal pathogen.	26
AT5G46330	FLAGELLIN-SENSITIVE 2 (FLS2)	essential in the perception of flagellin, involved in MAPK signalling relay involved in innate immunity.	27
AT5G20480	EF-TU RECEPTOR (EFR)	LRR receptor kinase (LRR-RLK). Functions as the receptor for bacterial PAMP (pathogen associated molecular patterns) EF-Tu	28
AT3G21630	Chitin Elicitor Receptor Kinase 1 (CERK1)	LysM receptor-like kinase. Essential in the perception and transduction of the chitin oligosaccharide elicitor. Involved in chitin-mediated plant innate immunity. Located in the plasma membrane.	29
AT3G11820	PENETRATION (PEN)-1 / SYNTAXIN OF PLANTS 121 (SYP121)	plasma membrane localized syntaxin, member of the SNARE superfamily proteins, Required for MLO resistance, SA mediated signaling pathway	30 31 32 33
AT2G44490	PEN2	peroxisomal glucosyl hydrolase, component of an inducible preinvasion resistance mechanism. Required for MLO resistance.	34
AT1G59870	PEN3	plasma membrane ABC transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration in a salicylic acid–dependent manner. Required for MLO resistance.	35
AT1G01720	ATAF1	putative transcriptional activator with NAC domain. Transcript level increases in response to wounding and abscisic acid.	36
AT1G61560	MILDEW RESISTANCE LOCUS O 6 (MLO6)	homolog of the barley mildew resistance locus o (MLO) protein, induced in response to a broad range of pathogens, confirmed co-expression with disease resistant protein encoding genes	37 38
AT2G39200	MLO12	homolog of the barley mildew resistance locus o (MLO) protein, defense response to fungus, incompatible interaction	39
AT1G11310	MLO2	homolog of the barley mildew resistance locus o (MLO) protein, defense response to fungus, incompatible interaction	39
AT3G54920	POWDERY MILDEW RESISTANT 6 (PMR6)	Powdery mildew resistant mutant encodes a pectate lyase-like protein, defense response, incompatible interaction	40
AT5G58600	PMR5	Involved in resistance to the powdery mildew species Erysiphe cichoracearum and Erysiphe orontii, but not to the unrelated pathogens Pseudomonas syringae or Peronospora parasitica.	41
AT5G24530	DOWNY MILDEW	putative 2OG-Fe(II) oxygenase that is defense-associated but	42

	RESISTANT 6 (DMR6)	required for susceptibility to downy mildew,response to bacterium	
AT1G04750	VESICLE-ASSOCIATED MEMBRANE PROTEIN 721 (VAMP721)	forms part of plasma membrane SNARE PEN1-SNAP33- VAMP721/722 secretory complex that functions in plant defence	43 44 45
AT5G61210	SOLUBLE N- ETHYLMALEIMIDE- SENSITIVE FACTOR ADAPTOR PROTEIN 33 (SNAP33)	Forms part of plasma membrane SNARE PEN1-SNAP33- VAMP721/722 secretory complex that functions in plant defence	43 46
AT5G07880	SYNAPTOSOMAL- ASSOCIATED PROTEIN SNAP25-LIKE 29 (SNAP29)	SNAP receptor activity	30
AT1G13890	SNAP30	SNAP receptor activity	30
AT4G03550	GLUCAN SYNTHASE-LIKE 5 (ATGSL05), POWDERY MILDEW RESISTANT 4 (PMR4)	Encodes a callose synthase that is required for wound and papillary callose formation in response to fungal pathogens Contributes to PAMP-induced basal defense, callose deposition in cell wall during defense response	17
AT1G33960	AVRRPT2-INDUCED GENE 1 (AIG1)	induced by avirulence gene avrRpt2 and RPS2 after infection with Pseudomonas syringae carrying avrRpt2	47
AT3G28930	AVRRPT2-INDUCED GENE 2 (AIG2)	AVRRPT2-INDUCED GENE 2 (AIG2)	47
AT4G26090	RESISTANT TO P. SYRINGAE 2 (RPS2)	disease resistance protein (CC-NBS-LRR class). Encodes a plasma membrane protein that confers resistance to P syringae infection by interacting with the avirulence gene avrRpt2. RPS2 protein interacts directly with plasma membrane associated protein RIN4 and this interaction is disrupted by avrRpt2.	48
AT3G07040	RESISTANCE TO P. SYRINGAE PV MACULICOLA 1 (RPM1)	disease resistance protein(CC-NBS-LRR class), Confers resistance to P syringae strains that carry the avirulence genes avrB and avrRpm1.	49
AT3G25070	RPM1 INTERACTING PROTEIN 4 (RIN4)	Encodes a member of the R protein complex and may represent a virulence target of type III pili effector proteins (virulence factors) from bacterial pathogens, which is 'guarded' by R protein complex (RPM1 and RPS2 proteins).	50
AT5G45250	RESISTANT TO P. SYRINGAE 4 (RPS4)	Toll/interleukin-1 receptor (TIR)-nucleotide binding site (NBS)- LRR class of disease resistance (R) genes. Confers specific resistance to Pseudomonas syringae pv. tomato carrying the avirulence gene AvrRPS4.	51
AT1G12220	RESISTANT TO P. SYRINGAE 5 (RPS5)	Resistance gene, Confers resistance to Pseudomonas syringae strains that express avrPphB.	52
AT5G13160	avrPphB susceptible 1 (PBS1)	Mutant is defective in perception of Pseudomonas syringae avirulence gene avrPphB. Encodes a putative serine-threonine kinase.	52

AT5G14930	SENESCENCE-ASSOCIATED	EDS1-interacting acyl-hydrolase	53 54
	GENE 101 (SAG101),		
AT1G33560	ACTIVATED DISEASE	Encodes a NBS-LRR disease resistance protein that possesses N-	55
	RESISTANCE 1 (ADR1)	terminal kinase subdomains. Activation tagged mutant of ADR1	
		showed elevated levels of SA and reactive oxygen species in	
		addition to number of defense gene transcripts. Exhibits	
		resistance to number of microbial pathogens.	
AT4G33300	ADR1-like 1 (ADR1-L1),	disease resistance protein (CC-NBS-LRR class)	56
	putative disease resistance protein		
AT3G50480	HOMOLOG OF RPW8 4	RPW8 (RESISTANCE TO POWDERY MILDEW 8) is a disease	57 58
	(HR4)	resistance (R) gene involved in the recognition of a broad range	
		of powdery mildew pathogens and induces localized SA-	
		dependent defenses.	
AT2G26560	PHOSPHOLIPASE A 2A	Encodes a lipid acyl hydrolase with wide substrate specificity	59
A12020000	(PLA2A)	that accumulates upon infection by fungal and bacterial	
		pathogens.	
AT3G04720	PATHOGENESIS-RELATED 4	Encodes a protein similar to the antifungal chitin-binding protein	60
	(PR4)	hevein from rubber tree latex. mRNA levels increase in response	
		to ETH and turnip crinkle virus infection.	
AT3G12500	BASIC CHITINASE (CHIB)	encodes a basic chitinase involved in ETH/JAmediated signalling	61
		pathway during systemic acquired resistance defense response to fungus	
AT4G11650	osmotin 34 (ATOSM34)	defense response to bacterium and fungas, incompatible	62
		interaction	
AT1G73680	ALPHA DIOXYGENASE	initiate the synthesis of oxylipin, pathogen-responsive alpha-	63
	(ALPHA DOX2)	dioxygenase, putative, response to other organism	
AT1G21250	WAK1	may function as a signaling receptor of extracellular matrix	64
		component such as oligogalacturonides. expression induced by	
		pathogens, or SA in an NPR1 dependent manner, required for	
		resistance to lethal SA levels.	
AT1G79680	WAKL10	Induced in response to a broad range of pathogens, confirmed	38
		co-expression with disease resistant protein encoding genes	
AT1G79670	RESISTANCE TO FUSARIUM	A novel type of dominant disease-resistance protein that	65
	OXYSPORUM 1 (RFO1), WAKL22	confers resistance to a broad spectrum of Fusarium races	
AT5G47910	RESPIRATORY BURST	Interacts with AtrbohF gene to fine tune the spatial control of	66
	OXIDASE HOMOLOGUE D	ROI production and hypersensitive response to cell in and	
	(RBOHD)	around infection site	
AT1G64060	RESPIRATORY BURST	Interacts with AtrbohD gene to fine tune the spatial control of	67
	OXIDASE PROTEIN F	ROI production and hypersensitive response to cell in and	

		around infection site	
	(ATRBOH F)		
AT2G39940	CORONATINE INSENSITIVE 1 (COI1)	Required for wound- and jasmonates-induced transcriptional regulation, defense response to fungus	68
AT2G44050	COI1 SUPPRESSOR1 (COS1)	JA mediated signaling pathway	69
AT5G11270	OVEREXPRESSOR OF CATIONIC PEROXIDASE 3 (OCP3)	mediates resistance to infection by necrotrophic pathogens, JA mediated signaling pathway	70
AT2G46370	JASMONATE RESISTANT 1 (JAR1)	jasmonate-amino synthetase activity, catalyzes the formation of a biologically active jasmonyl-isoleucine (JA-IIe) conjugate, response to JA stimulus	71
AT5G42650	ALLENE OXIDE SYNTHASE (AOS)	JA biosynthetic pathway, defense response	72 73
AT2G06050	OPDA-REDUCTASE 3 (OPR3)	JA biosynthetic process	74
AT4G16760	ACYL-COA OXIDASE 1 (ACX1)	JA biosynthetic process	75
AT1G19640	JA CARBOXYL METHYLTRANSFERASE (JMT)	JA biosynthetic process	76
AT1G19670	CORONATINE-INDUCED PROTEIN 1 (ATCLH1),	Chlorophyllase 1, chlorophyll catabolic process, response to stress and JA stimulus	77
AT4G23600	CORONATINE INDUCED 1 (CORI3)	generation of precursors of ETH biosynthesis, response to JA stimulus	78 79
AT1G75830	PLANT DEFENSIN 1.2 (PDF1.1) / LOW- MOLECULAR-WEIGHT CYSTEINE-RICH 67 (LCR67)	Predicted to encode a PR (pathogenesis-related) protein, belongs to the plant defensin (PDF) family protein, defense response	80
AT2G26020	PDF1.2b	As above	80
AT1G19610	PDF1.4 / LCR78	As above	80
AT2G02120	PDF2.1 / LCR70	As above	80
AT2G02100	PDF2.2 / LCR69	As above	80
AT2G02130	PDF2.3 / LCR68	As above	80
AT1G61070	PDF2.4 / LCR66	As above	80
AT5G63660	PDF2.5 / LCR74	As above	80
AT2G02140	PDF2.6 / LCR72	As above	80
AT5G38330	LCR80	As above	80

			81 82
AT5G44420	PDF1.2 / LCR77	Encodes an ETH- and jasmonate-responsive plant defensin. mRNA levels are not responsive to SA treatment; although jasmonate and SAcan act synergistically to enhance the expression of this gene. Belongs to the plant defensin (PDF) family.	01 02
AT1G72260	THIONIN 2.1 (THI2.1)	Encodes a thionin which is a cysteine rich protein having antimicrobial properties. Thi2.1 is expressed in response to a variety of pathogens and induced by ETH and JA Belongs to the plant thionin (PR-13) family	83
AT5G36910	THIONIN 2.2 (THI2.2)	Predicted to encode a PR, belongs to the plant defensin (PDF) family protein, defense response defense response	80
AT2G33150	PEROXISOMAL 3- KETOACYL-COA THIOLASE 3 (PKT3), KAT 2	JA biosynthetic process	84 85
AT1G04710	РКТ4	acetyl-CoA C-acyltransferase	84 85
AT4G23570	SGT1A,	Closely related to SGT1B, may function in SCF(TIR1) mediated protein degradation. AtSGT1a and AtSGT1b are functionally redundant in the resistance to pathogens.	86
AT4G11260	SGT1B	as above, required for defense signaling conferred by several downy mildew resistance genes, JA mediated signaling pathway	87
AT5G48485	DEFECTIVE IN INDUCED RESISTANCE 1 (DIR1)	encodes a putative apoplastic lipid transfer protein that is involved in SAR	88
AT3G45640	MITOGEN-ACTIVATED PROTEIN KINASE 3 (MPK3)	Functions in MAP kinase cascade involving MEKK1, MKK4/MKK5 and MPK3/MPK6 that functions downstream of the FLS2 fagellin receptor, activation of this MAPK cascade confers resistance to both bacterial and fungal pathogens	89.90
AT4G01370	MPK4	nuclear and cytoplasmically localized MAP kinase, regulates SA and jasmonic acid/ETH-dependent responses via EDS1 and PAD4	91
AT2G43790	МРК6	as MPK3	89 92
AT4G26070	MITOGEN-ACTIVATED PROTEIN KINASE KINASE 1 (MKK1) / MEK1 (MAP KINASE/ ERK KINASE 1)	Shares functional redundancy with MKK1/2, involved in jasmonate- and salicylate-dependent defense responses	93
AT4G29810	МКК2	Shares functional redundancy with MKK1/2, involved in jasmonate- and salicylate-dependent defense responses	93
AT1G51660	МКК4	as MPK3	89
AT3G21220	МКК5	as MPK3	89
AT1G08720	ENHANCED DISEASE RESISTANCE 1 (EDR1); MAP kinase kinase kinase/ kinase/ protein serine/threonine/tyrosine	confers resistance to powdery mildew disease caused by the fungus Erysiphe cichoracearum, response to bacterium and fungus	23 24

	kinase		
AT1G73500	MAP KINASE KINASE 9 (MKK9)	Autophosphorylates and also phosphorylates MPK3 and MPK6. Independently involved in ETH and calmalexin biosynthesis. Induces transcription of ACS2, ACS6, ERF1, ERF2, ERF5, ERF6, CYP79B2, CYP79B3, CYP71A13 and PAD3.	94
AT3G06110	MAPK PHOSPHATASE 2 (MKP2)	nuclear-localized MAPK phosphatase. Plants with reduced levels of MKP2 transcripts are hypersensitive to ozone and ozone- mediated activation of MPK3 and MPK6 is prolonged in these plants.	95
AT5G53210	SPEECHLESS (SPCH)	SPCH is a substrate of a kinase MPK3 and MPK6	96
AT1G10210	MITOGEN-ACTIVATED PROTEIN KINASE 1 (ATMPK1)	Activated by wounding JA	97
AT1G18350	MAP KINASE KINASE7 (ATMKK7)	defense response to bacterium, positively regulates plant basal and systemic acquired resistance (SAR)	98
AT4G08500	MAP KINASE KINASE KINASE 1 (MEKK1)	as MPK3	89 99
AT1G19180	JASMONATE-ZIM-DOMAIN PROTEIN 1 (JAZ1); (TIFY10A)	nuclear-localized protein involved in jasmonate signaling, induced by jasmonate	100 101 102
AT1G74950	JAZ2/TIFY10B	response to JA stimulus and wounding	102 103
AT3G17860	JAZ3	negatively regulates the key transcriptional activator of JA responses, AtMYC2, induced by jasmonate	100 102
AT5G13220	JAZ10	induced by jasmonate, regulation of systemic acquired resistance	104 105
AT1G32640	MYC2	MYC-related transcriptional activator, regulates diverse JA- dependent functions.	81
AT4G17500	ETH RESPONSIVE ELEMENT BINDING FACTOR 1 (ATERF- 1)	member of the ERF (ETH response factor) subfamily B-3 of ERF/AP2 transcription factor family, response to chitin	26
AT3G23240	ETH RESPONSE FACTOR 1 (ERF1)	member of the ERF subfamily B-3 of ERF/AP2 transcription factor Involved in ETH signaling cascade, downstream of EIN2 and EIN3.	106
AT3G16770	ETH-RESPONSIVE ELEMENT BINDING PROTEIN (ATEBP)	member of the ERF subfamily B-3, part of the ETH signaling pathway and is predicted to act downstream of EIN2 and CTR1, but not under EIN3. response to other organism, ETH mediated signaling pathway	107
AT3G15210	ETH RESPONSIVE ELEMENT BINDING FACTOR 4 (ERF4)	member of the ERF subfamily of transcription factors, negative regulator of JA-responsive defense gene expression and resistance to the necrotrophic fungal pathogen Fusarium oxysporum and antagonizes JA inhibition of root elongation	108

AT5G03280	ETH INSENSITIVE 2 (EIN2)	Involved in ETH signal transduction. Acts downstream of CTR1, defense response to fungus	109
AT1G66340	ETH RESPONSE 1 (ETR1)	ETH receptor, defense response to bacterium	110
AT2G19560	ENHANCED ETH RESPONSE 5 (EER5)	encodes a protein with a PAM domain involved in ETH signaling.	111
AT2G26070	REVERSION-TO-ETH SENSITIVITY1 (RTE1)	appears to be involved in the negative regulation of the response to ETH, is localized to the Golgi and is a positive regulator of ETR1.	112
AT4G31550	WRKY11	negative regulator of basal resistance	113
AT2G23320	WRKY15	response to chitin	26
AT4G31800	WRKY18	Pathogen-induced transcription factor, forms protein complexes with itself and with WRKY40 and WRKY60. WRKY18, -40, and -60 have partially redundant roles in response to the hemibiotrophic bacterial pathogen P. syringae and the necrotrophic fungal pathogen B cinerea, with WRKY18 playing a more important role than the other two.	114 115 116
AT4G01250	WRKY22	Functions redundantly with WRKY29 in activating early-defence genes, involved in bacterial and fungal defence responses	87
AT4G18170	WRKY28	Induced in response to a broad range of pathogens, confirmed co-expression with disease resistant protein encoding genes	38
AT2G38470	WRKY33	Regulates the antagonistic relationship between defense pathways mediating responses to P. syringae and necrotrophic fungal pathogens	117
AT1G80840	WRKY40	As WRKY18	114
AT2G25000	WRKY60	As WRKY18	114 115
AT3G56400	WRKY70	Function as activator of SA-dependent defense genes and a repressor of JA-regulated genes. WRKY70-controlled suppression of JA-signaling is partly executed by NPR1	118

References

- 1. Yanhui C, et al. (2006) The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. *Plant Mol Biol* 60: 107-124.
- 2. Lu, SX, Knowles, S M, Andronis, C, Ong, M S, Tobin, EM (2009) CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYPOCOTYL function synergistically in the circadian clock of Arabidopsis. *Plant Physiol* 150: 834-843.

- 3. Delaney, T (1997) Genetic dissection of acquired resistance to disease. *Plant Physiol* 113: 5-12.
- 4. Delaney, TP Friedrich, L, Ryals, JA (1995) Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. *Proc Natl Acad Sci USA* 92: 6602-6606.
- 5. Durrant W, Dong, X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42: 185-209.
- 6. Li, J, et al. (2009) Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR. *Proc Natl Acad Sci USA* 106: 15973-15978.
- 7. Kirik, V, et al. (2001) Ectopic expression of the Arabidopsis *AtMYB23* gene induces differentiation of trichome cells. *Dev Biol* 235: 366-377.
- 8. Bowling, SA, Clarke, JD, Liu, Y, Klessig, DF, Dong, X (1997) The *cpr5* mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. *Plant Cell* 9: 1573-1584.
- 9. Clarke, JD, Aarts, N, Feys, BJ, Dong, X, Parker, JE (2001) Constitutive disease resistance requires EDS1 in the Arabidopsis mutants *cpr1* and *cpr6* and is partially EDS1-dependent in *cpr5*. *Plant J* 26: 409-420.
- 10. Nawrath, C, Heck, S, Parinthawong, N, Metraux, JP (2002) EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. *Plant Cell* 14: 275-286.
- 11. Wildermuth, MC, Dewdney, J, Wu, G, Ausubel, FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. *Nature* 414: 562-565.
- 12. Feys, BJ, Moisan, LJ, Newman, MA, Parker, JE (2001) Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. *EMBO J* 20: 5400-5411.
- 13. Falk, A, et al. (1999) EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. *Proc Natl Acad Sci USA* 96: 3292-3297.
- 14. Fan, W, Dong, X (2002) *In vivo* interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. *Plant Cell* 14: 1377-1389.
- 15. Glazebrook, J,et al. (1997) Phytoalexin-Deficient mutants of Arabidopsis reveal that *Pad4* encodes a regulatory factor and that four *Pad* genes contribute to Downy Mildew resistance. *Genetics* 146: 381-392.
- 16. Jirage, D, et al. (1999) Arabidopsis thaliana *PAD4* encodes a lipase-like gene that is important for salicylic acid signaling. *Proc Natl Acad Sci USA* 96: 13583-13588.
- 17. Clay, NK, Adio, AM, Denoux, C, Jander, G, Ausubel, FM (2009) Glucosinolate metabolites required for an Arabidopsis innate immune response. *Science* 323: 95-101.
- 18. Glazebrook, J, Ausubel, FM (1994) Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens. *Proc Natl Acad Sci USA* 91: 8955-8959.

- 19. Wanner, LA, Li, G, Ware, D, Somssich, IE, Davis, KR (1995) The phenylalanine ammonia-lyase gene family in *Arabidopsis thaliana*. *Plant Mol Biol* 27: 327-338.
- 20. Huang, J, et al. (2010) Functional analysis of the Arabidopsis *PAL* gene family in plant growth, development, and response to environmental stress. *Plant Physiol* 153: 1526-1538.
- 21. Olsen, KM, Lea, US, Slimestad, R, Verheul, M, Lillo, C (2008) Differential expression of four Arabidopsis *PAL* genes; *PAL1* and *PAL2* have functional specialization in abiotic environmental-triggered flavonoid synthesis. *J Plant Physiol* 165: 1491-1499.
- 22. Clough, S J, et al. (2000) The Arabidopsis *dnd1* "defense, no death" gene encodes a mutated cyclic nucleotide-gated ion channel. *Proc Natl Acad Sci USA* 97: 9323-9328.
- 23. Frye, CA, Tang, D, Innes, RW (2001) Negative regulation of defense responses in plants by a conserved MAPKK kinase. *Proc Natl Acad Sci USA* 98: 373-378.
- 24. van Hulten, M, Pelser, M, Van Loon, LC, Pieterse, CM, Ton, J (2006) Costs and benefits of priming for defense in Arabidopsis. *Proc Natl Acad Sci USA* 103: 5602-5607.
- 25. Gao M, et al. (2009) Regulation of cell death and innate immunity by two receptor-like kinases in Arabidopsis. *Cell Host Microbe* 6: 34-44.
- 26. Libault, M, Wan, J, Czechowski, T, Udvardi, M, Stacey, G (2007) Ligase genes responding to chitin, a plant-defense elicitor. *Mol Plant Microbe Interact* 20: 900-911.
- 27. Xiang, T, et al. (2008) *Pseudomonas syringae* effector AvrPto blocks innate immunity by targeting receptor kinases. *Curr Biol* 18: 74-80.
- 28. Zipfel, C, et al. (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. *Cell* 125: 749-760.
- 29. Miya, A, et al. (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. *Proc Natl Acad Sci USA* 104: 19613-19618.
- Sanderfoot, AA, Assaad, FF, Raikhel, NV (2000) The Arabidopsis Genome. An abundance of soluble N-ethylmaleimide-sensitive factor adaptor protein receptors. *Plant Physiol* 124: 1558-1569.
- 31. Sanderfoot, AA, Pilgrim, M, Adam, L, Raikhel, NV (2001) Disruption of individual members of Arabidopsis syntaxin gene families indicates each has essential functions. *Plant Cell* 13: 659-666.
- 32. Collins, NC, et al. (2003) SNARE-protein-mediated disease resistance at the plant cell wall. *Nature* 425: 973-977.
- 33. Zhang, Z, et al. (2007) A SNARE-protein has opposing functions in penetration resistance and defence signalling pathways. *Plant J* 49: 302-312.
- 34. Lipka, V,et al. (2005) Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. *Science* 310: 1180-1183.

- 35. Stein, M, et al. (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. *Plant Cell* 18: 731-746.
- 36. Collinge M, Boller, T (2001) Differential induction of two potato genes, *Stprx2* and *StNAC*, in response to infection by *Phytophthora infestans* and to wounding. *Plant Mol.Biol* 46: 521-529.
- 37. Chen, Z, et al. (2006) Expression analysis of the *AtMLO* gene family encoding plant-specific seven-transmembrane domain proteins. *Plant Mol Biol* 60: 583-597.
- Meier S, et al. (2010) The Arabidopsis thaliana wall associated kinase-like protein 10 (AtWAKL10) is a dual domain enzyme with guanylyl cyclase and cGMP-dependent kinase activity in vitro and a role in plant defense. PLoS ONE 5: e8904.
- 39. Consonni, C, et al. (2006) Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. *Nat Genet* 38: 716-720.
- 40. Vogel, JP, Raab, TK, Schiff, C, Somerville, SC (2002) *PMR6*, a pectate lyase-like gene required for powdery mildew susceptibility in Arabidopsis. *Plant Cell* 14: 2095-2106.
- 41. Vogel, JP, Raab, TK, Somerville, CR, Somerville, SC (2004) Mutations in *PMR5* result in powdery mildew resistance and altered cell wall composition. *Plant J* 40: 968-978.
- 42. Van Damme, M, et al. (2005) Identification of Arabidopsis loci required for susceptibility to the downy mildew pathogen *Hyaloperonospora parasitica*. *Mol Plant Microbe Interact* 18: 583-592.
- 43. Kwon, C et al. (2008) Co-option of a default secretory pathway for plant immune responses. *Nature* 451: 835-840.
- 44. Pratelli, R, Sutter, JU, Blatt, MR (2004) A new catch in the SNARE. *Trends Plant Sci* 9: 187-195.
- Pajonk, S, Kwon, C, Clemens, N, Panstruga, R, Schulze-Lefert, P (2008) Activity determinants and functional specialization of Arabidopsis PEN1 syntaxin in innate immunity. *J Biol Chem.* 283: 26974-26984.
- 46. Huckelhoven, R (2007) Cell wall-associated mechanisms of disease resistance and susceptibility. *Annu Rev Phytopathol* 45: 101-127.
- Reuber, TL, Ausubel, FM (1996) Isolation of Arabidopsis genes that differentiate between resistance responses mediated by the *RPS2* and *RPM1* disease resistance genes. *Plant Cell* 8: 241-249.
- 48. Bent, AF, et al. (1994) RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. *Science* 265: 1856-1860.
- 49. Gopalan, S, et al. (1996) Expression of the *Pseudomonas syringae* avirulence protein AvrB in plant cells alleviates its dependence on the hypersensitive response and pathogenicity (Hrp) secretion system in eliciting genotype-specific hypersensitive cell death. *Plant Cell* 8: 1095-1105.

- 50. Kim, MG, et al. (2005) Two *Pseudomonas syringae* type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. *Cell* 121: 749-759.
- 51. Wirthmueller, L, Zhang, Y, Jones, JD, Parker, JE (2007) Nuclear accumulation of the Arabidopsis immune receptor RPS4 is necessary for triggering EDS1-dependent defence. *Curr Biol* 17: 2023-2029.
- 52. Warren, RF, Merritt, PM, Holub, E, Innes, RW (1999) Identification of three putative signal transduction genes involved in R gene-specified disease resistance in Arabidopsis. *Genetics* 152: 401-412.
- 53. Feys, BJ, et al. (2005) Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity. *Plant Cell* 17: 2601-2613.
- 54. Denoux, C, et al. (2008) Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. *Mol.Plant* 1: 423-445.
- Grant, JJ, Chini, A, Basu, D, Loake, GJ (2003) Targeted activation tagging of the Arabidopsis NBS-LRR gene, *ADR1*, conveys resistance to virulent pathogens. *Mol.Plant Microbe Interact*. 16, 669-680.
- 56. Bindschedler, LV, Palmblad, M, Cramer, R (2008) Hydroponic isotope labelling of entire plants (HILEP) for quantitative plant proteomics; an oxidative stress case study. *Phytochemistry* 69: 1962-1972.
- 57. Xiao, S et al. (2001) Broad-spectrum mildew resistance in *Arabidopsis thaliana* mediated by RPW8. *Science* 291: 118-120.
- 58. Orgil, U, Araki, H, Tangchaiburana, S, Berkey, R, Xiao, S (2007) Intraspecific genetic variations, fitness cost and benefit of *RPW8*, a disease resistance locus in *Arabidopsis thaliana*. *Genetics* 176: 2317-2333.
- 59. La Camera, S, et al. (2005) A pathogen-inducible patatin-like lipid acyl hydrolase facilitates fungal and bacterial host colonization in Arabidopsis. *Plant J* 44: 810-825.
- 60. Mukherjee, AK, et al. (2010) Proteomics of the response of *Arabidopsis thaliana* to infection with *Alternaria brassicicola*. *J Proteomics* 73: 709-720.
- 61. Takenaka, Y, Nakano, S, Tamoi, M, Sakuda, S, Fukamizo, T (2009) Chitinase gene expression in response to environmental stresses in *Arabidopsis thaliana*: chitinase inhibitor allosamidin enhances stress tolerance *Biosci Biotechnol Biochem* 73: 1066-1071.
- 62. Capelli, N, Diogon, T, Greppin, H, Simon, P (1997) Isolation and characterization of a cDNA clone encoding an osmotin-like protein from *Arabidopsis thaliana*. *Gene* 191: 51-56.
- 63. Vellosillo, T, et al. (2007) Oxylipins produced by the 9-lipoxygenase pathway in Arabidopsis regulate lateral root development and defense responses through a specific signaling cascade. *Plant Cell* 19: 831-846.
- 64. He, ZH, He, D, Kohorn, BD (1998) Requirement for the induced expression of a cell wall associated receptor kinase for survival during the pathogen response. *Plant J* 14: 55-63.

- 65. Diener AC, Ausubel, FM (2005) *RESISTANCE TO FUSARIUM OXYSPORUM 1*, a dominant Arabidopsis disease-resistance gene, is not race specific. *Genetics* 171: 305-321.
- 66. Pogany, M et al. (2009) Dual roles of reactive oxygen species and NADPH oxidase rbohD in an *Arabidopsis-Alternaria* pathosystem *Plant Physiol* 151: 1459-1475.
- 67. Torres, MA, Dangl, JL, Jones, JD (2002) Arabidopsis *gp91^{phox}* homologues *AtrbohD* and *AtrbohF* are required for accumulation of reactive oxygen intermediates in the plant defense response. *Proc Natl Acad Sci USA* 99: 517-522.
- 68. Xie, DX, Feys, BF, James, S, Nieto-Rostro, M, Turner, JG (1998) *COl1*: an Arabidopsis gene required for jasmonate-regulated defense and fertility. *Science* 280: 1091-1094.
- 69. Xiao, S, et al. (2004) COS1: an Arabidopsis *coronatine insensitive1* suppressor essential for regulation of jasmonate-mediated plant defense and senescence. *Plant Cell* 16: 1132-1142.
- 70. Coego, A, et al. (2005) An Arabidopsis homeodomain transcription factor, OVEREXPRESSOR OF CATIONIC PEROXIDASE 3, mediates resistance to infection by necrotrophic pathogens. *Plant Cell* 17: 2123-2137.
- 71. Staswick, PE, Tiryaki, I, Rowe, ML (2002) Jasmonate response locus *JAR1* and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. *Plant Cell* 14: 1405-1415.
- Laudert, D, Pfannschmidt, U, Lottspeich, F, Hollander-Czytko, H, Weiler, EW (1996) Cloning, molecular and functional characterization of Arabidopsis thaliana allene oxide synthase (CYP 74), the first enzyme of the octadecanoid pathway to jasmonates. *Plant Mol Biol* 31: 323-335.
- 73. Pajerowska, KM, Parker, JE, Gebhardt, C (2005) Potato homologs of *Arabidopsis thaliana* genes functional in defense signaling-identification, genetic mapping, and molecular cloning. *Mol Plant Microbe Interact.* 18: 1107-1119.
- 74. Sanders, PM, et al. (2000) The Arabidopsis *DELAYED DEHISCENCE1* gene encodes an enzyme in the jasmonic acid synthesis pathway. *Plant Cell* 12: 1041-1062.
- 75. Schilmiller, AL, Koo, AJ, Howe, GA (2007) Functional diversification of acyl-coenzyme A oxidases in jasmonic acid biosynthesis and action. *Plant Physiol* 143: 812-824.
- 76. Seo, HS, et al. (2001) Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonateregulated plant responses. *Proc Natl Acad Sci USA* 98: 4788-4793.
- 77. Kariola, T, Brader, G, Li, J, Palva, ET (2005) Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants. *Plant Cell* 17: 282-294.
- Leon, J, Rojo, E, Titarenko, E, Sanchez-Serrano, JJ (1998) Jasmonic acid-dependent and independent wound signal transduction pathways are differentially regulated by Ca²⁺/calmodulin in *Arabidopsis thaliana*. *Mol Gen Genet* 258: 412-419.
- 79. Lopukhina, A, Dettenberg, M, Weiler, EW, Hollander-Czytko, H (2001) Cloning and characterization of a coronatine-regulated tyrosine aminotransferase from Arabidopsis. *Plant Physiol* 126: 1678-1687.

- 80. Sels, J, Mathys, J, De Coninck, BM, Cammue, BP, De Bolle, MF (2008) Plant pathogenesisrelated (PR) proteins: a focus on PR peptides. *Plant Physiol Biochem* 46: 941-950.
- 81. Lorenzo, O, Chico, JM, Sanchez-Serrano, JJ, Solano, R (2004) *JASMONATE-INSENSITIVE1* encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. *Plant Cell* 16: 1938-1950.
- 82. Dombrecht, B, et al. (2007) MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. *Plant Cell* 19: 2225-2245.
- 83. Bohlmann, H, et al. (1998) Wounding and chemicals induce expression of the *Arabidopsis thaliana* gene *Thi2.* 1, encoding a fungal defense thionin, via the octadecanoid pathway. *FEBS Lett* 437: 281-286.
- 84. Pye, VE, Christensen, CE, Dyer, JH, Arent, S, Henriksen, A (2010) Peroxisomal plant 3ketoacyl-CoA thiolase structure and activity are regulated by a sensitive redox switch. *J Biol Chem.* 285: 24078-24088.
- 85. Carrie, C, Murcha, MW, Millar, AH, Smith, SM, Whelan, J (2007) Nine 3-ketoacyl-CoA thiolases (KATs) and acetoacetyl-CoA thiolases (ACATs) encoded by five genes in *Arabidopsis thaliana* are targeted either to peroxisomes or cytosol but not to mitochondria. *Plant Mol Biol* 63: 97-108.
- 86. Austin, MJ, et al. (2002) Regulatory role of SGT1 in early R gene-mediated plant defenses. *Science* 295: 2077-2080.
- 87. Tor, M, et al. (2002) Arabidopsis *SGT1b* is required for defense signaling conferred by several downy mildew resistance genes. *Plant Cell* 14: 993-1003.
- 88. Maldonado, A, Doerner, P, Dixon, R, Lamb, C, Cameron, R (2002) A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. *Nature* 419: 399-403.
- 89. Asai, T, et al. (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. *Nature* 415: 977-983.
- 90. Doczi R, et al. (2007) The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling. *Plant Cell* 19: 3266-3279.
- 91. Brodersen, P, et al. (2006) Arabidopsis MAP kinase 4 regulates salicylic acid-and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. *Plant J* 47: 532-546.
- 92. Beckers, GJ, et al. (2009) Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in *Arabidopsis thaliana*. *Plant Cell* 21: 944-953.
- 93. Qiu, JL, et al. (2008) Arabidopsis mitogen-activated protein kinase kinases MKK1 and MKK2 have overlapping functions in defense signaling mediated by MEKK1, MPK4, and MKS1. *Plant Physiol* 148: 212-222.
- 94. Xu, J, et al. (2008) Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. *J Biol Chem* 283: 26996-27006.

- 95. Lee, JS, Ellis, BE (2007) Arabidopsis MAPK phosphatase 2 (MKP2) positively regulates oxidative stress tolerance and inactivates the MPK3 and MPK6 MAPKs. *J Biol Chem* 282: 25020-25029.
- 96. Lampard, GR, Macalister, CA, Bergmann, DC (2008) Arabidopsis stomatal initiation is controlled by MAPK-mediated regulation of the bHLH SPEECHLESS. *Science* 322: 1113-1116.
- 97. Ortiz-Masia, D, Perez-Amador, MA, Carbonell, J, Marcote, MJ (2007) Diverse stress signals activate the C1 subgroup MAP kinases of Arabidopsis. *FEBS Lett* 581: 1834-1840.
- 98. Zhang, X, et al. (2007) Overexpression of Arabidopsis *MAP kinase kinase 7* leads to activation of plant basal and systemic acquired resistance. *Plant J* 52: 1066-1079.
- 99. Hadiarto, T et al. (2006) Activation of Arabidopsis MAPK kinase kinase (AtMEKK1) and induction of AtMEKK1–AtMEK1 pathway by wounding. *Planta* 223: 708-713.
- 100. Chini, A, et al. (2007) The JAZ family of repressors is the missing link in jasmonate signalling. *Nature* 448: 666-671.
- 101. Melotto, M, et al. (2008) A critical role of two positively charged amino acids in the Jas motif of Arabidopsis JAZ proteins in mediating coronatine- and jasmonoyl isoleucine-dependent interactions with the COI1 F-box protein. *Plant J* 55: 979-988.
- 102. Thines, B, et al. (2007) JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. *Nature* 448: 661-665.
- 103. Yan, Y, et al. (2007) A downstream mediator in the growth repression limb of the jasmonate pathway. *Plant Cell* 19: 2470-2483.
- 104. Pauwels, L, et al. (2010) NINJA connects the co-repressor TOPLESS to jasmonate signalling. *Nature* 464: 788-791.
- 105. Truman, WM, Bennett, MH, Turnbull, CG, Grant, MR (2010) Arabidopsis auxin mutants are compromised in systemic acquired resistance and exhibit aberrant accumulation of various indolic compounds. *Plant Physiol* 152: 1562-1573.
- 106. Lorenzo, O, Piqueras, R, Sanchez-Serrano, JJ, Solano, R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. *Plant Cell* 15: 165-178.
- Kang, HG, Fang, Y, Singh, KB (1999) A glucocorticoid-inducible transcription system causes severe growth defects in Arabidopsis and induces defense-related genes. *Plant J* 20: 127-133.
- 108. McGrath, KC, et al. (2005) Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. *Plant Physiol* 139: 949-959.
- 109. Adie, BA, et al. (2007) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. *Plant Cell* 19: 1665-1681.
- 110. Chang, C, Kwok, SF, Bleecker, AB, Meyerowitz, EM (1993) Arabidopsis ethylene-response gene *ETR1*: similarity of product to two-component regulators. *Science* 262: 539-544.

- 111. Christians, MJ, Robles, LM, Zeller, SM, Larsen, PB (2008) The *eer5* mutation, which affects a novel proteasome-related subunit, indicates a prominent role for the COP9 signalosome in resetting the ethylene-signaling pathway in Arabidopsis. *Plant J* 55: 467-477.
- 112. Resnick, JS, Wen, CK, Shockey, JA, Chang, C (2006) *REVERSION-TO-ETHYLENE SENSITIVITY1*, a conserved gene that regulates ethylene receptor function in Arabidopsis. *Proc Natl Acad Sci USA* 103: 7917-7922.
- 113. Journot-Catalino, N, Somssich, IE, Roby, D, Kroj, T (2006) The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in *Arabidopsis thaliana*. *Plant Cell* 18: 3289-3302.
- 114. Chen CH, Chen, ZX (2002) Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. *Plant Physiol* 129: 706-716.
- 115. Xu, X, Chen, C, Fan, B, Chen, Z (2006) Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. *Plant Cell* 18: 1310-1326.
- 116. Dong, J, Chen, C, Chen, Z (2003) Expression profiles of the Arabidopsis *WRKY* gene superfamily during plant defense response. *Plant Mol Biol* 51: 21-37.
- 117. Zheng, Z, Qamar, SA, Chen, Z, Mengiste, T (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. *Plant J* 48: 592-605.
- 118. Li, J, Brader, G, Kariola, T, Palva, ET (2006) WRKY70 modulates the selection of signaling pathways in plant defense. *Plant J* 46: 477-491.