Supporting Information

for

Multistep flow synthesis of vinyl azides and their use in the copper-catalyzed Huisgen-type cycloaddition under inductive-heating conditions

Lukas Kupracz, Jan Hartwig, Jens Wegner, Sascha Ceylan, Andreas Kirschning*

Address: Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1b, 30167 Hannover, Germany

Email: Lukas Kupracz - lukas.kupracz@oci.uni-hannover.de; Jan Hartwig jan.hartwig@oci.uni-hannover.de; Jens Wegner - jens.wegner@oci.uni-hannover.de; Andreas Kirschning* - andreas.kirschning@oci.uni-hannover.de

* Corresponding author

Details on individual reactions and analytical data

Experimental

NMR spectra were recorded on a Bruker AV400 spectrometer at 400 MHz (¹H NMR) and at 100 MHz (¹³C NMR) in CDCl₃. Spectra are reported as values in ppm relative to (residual undeuterated) solvent signal as internal standard. Mass spectra (EI) were obtained at 70 eV with a type Finnigan Mat 312 or (ESI) with a type Q-Tof Premier (Waters). Melting points were determined in open glass capillaries with an OptiMelt from Stanford Research Systems (Sunnyvale, USA) and are uncorrected. Analytical thin-layer chromatography was performed with precoated silica gel 60 F₂₅₄ plates (Merck, Darmstadt), and the spots were visualized with UV light at 254 nm or by H₂SO₄/4-methoxybenzaldehyde staining with in ethanol. Flash column chromatography was performed on a Biotage System.

The inductors were designed and manufactured by IFF GmbH (Ismaning, Germany). Pumps were obtained from Knauer GmbH (Berlin, Germany). The temperature was measured on the reactor surface by means of an IR pyrometer obtained from optris GmbH (LaserSight model). Copper turnings were purchased from Sigma-Aldrich. Commercially available reagents and dry solvents (DMF, CH₂Cl₂) were used as received.

Analytical data

(1-Azido-2-iodoethyl)benzene (3a)

Compound **3a** was prepared in 98% yield as a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.47–7.29 (m, 5H), 4.72 (t, *J* = 7.0 Hz, 1H), 3.40 (d, *J* = 7.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 137.8, 129.1, 126.6, 67.1, 8.0.

All data were in accordance with published data [1].

2-(1-Azido-2-iodoethyl)naphthalene (3b)

Compound **3b** was prepared in 91% yield as a pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.92–7.87 (m,3H), 7.81 (s, 1H), 7.57–7.54 (m, 2H), 7.42 (dd, *J* = 8.2, 1.4 Hz, 2H), 4.90 (t, *J* = 6.8 Hz, 1H), 3.49 (d, *J* = 7.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 135.1, 133.4, 133.0, 129.1, 128.1, 127.8, 126.7, 126.3, 123.6, 67.3, 8.0.

All data were in accordance with published data [2].

1-(1-Azido-2-iodoethyl)-4-(*tert*-butyl)benzene (3c)

Compound **3c** was prepared in 61% yield as a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.07 (d, *J* = 8.2 Hz, 2H), 6.90 (d, *J* = 8.2 Hz, 2H), 4.35 (t, *J* = 7.5 Hz, 1H), 3.04–3.02 (m, 2H), 0.98 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 152.0, 134.9, 126.2, 125.9, 67.0, 34.6, 31.2, 8.4; LRMS (EI) [M + H⁺] calcd for C₁₂H₁₇IN₃⁺, 330.0467; found, 330.

1-(1-Azido-2-iodoethyl)-4-methoxybenzene (3d)

Compound **3d** was prepared in 75% yield as a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, *J* = 8.5 Hz, 2H), 6.96 (d, *J* = 8.5 Hz, 2H), 4.65 (dd, *J* = 8.2, 5.1 Hz, 1H), 3.84 (s, 3H), 3.51 (dd, *J* = 12.6, 8.5 Hz, 1H), 3.43 (dd, *J* = 12.9, 5.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 160.0, 129.8, 128.2, 114.4, 65.0, 55.2, 8.4.

All data were in accordance with published data [3].

1-(1-Azido-2-iodoethyl)-4-chlorobenzene (3e)

Compound **3e** was prepared in 78% yield as a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 8.2 Hz, 2H), 7.29 (d, *J* = 8.6 Hz, 1H), 4.72 (t, *J* = 6.8 Hz, 1H), 3.39 (d, *J* = 7.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 136.3, 134.8, 129.2, 128.0, 66.1, 7.8; LRMS (EI) [M + H⁺] calcd for C₈H₈ClN₃⁺, 307.9451; found, 308.

(1-Azido-2-iodoethyl)cyclohexane (3f)

Compound **3f** was prepared in 70% yield as a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 3.77 (dd, *J* = 13.0, 6.5 Hz, 1H), 3.70 (dd, *J* = 13.0, 7.2 Hz, 1H), 3.38–3.32 (m, 1H), 3.28–3.24 (m, 1H), 1.82–1.58 (m, 5H), 1.36–1.09 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 68.6, 42.4, 29.7, 28.0, 26.0, 7.1; LRMS (EI) [M + H⁺] calcd for C₈H₁₅IN₃⁺, 280.01293; found, 280.

(1-Azidovinyl)benzene (4a)

Compound **4a** was prepared in 91% yield as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.58–7.56 (m, 2H), 7.36–7.33 (m, 3H), 5.44 (d, J = 2.0 Hz, 1H), 4.97 (d, J = 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 145.0, 134.2, 129.1, 128.4, 125.5, 98.0;

All data were in accordance with published data [4].

2-(1-Azidovinyl)naphthalene (4b)

Compound **4b** was prepared in 88% yield as a colorless solid; mp 56 °C (Lit: 56– 58 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.80–7.92 (m, 3H), 7.67 (dd, *J* = 8.7, 1.9 Hz, 1H), 7.5 (d, *J* = 9.6 Hz, 1H), 7.50 (d, *J* = 2.4 Hz, 1H), 5.59 (d, *J* = 2.7 Hz, 1H), 5.07 (d, 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 145.0, 133.4, 133.0, 131.6, 128.7, 128.3, 127.7, 126.8, 126.6, 125.1, 123.2, 98.4; HRMS(ESI) [M + H⁺] calcd for C₁₂H₁₀N₃⁺, 196,0875; found, 196.0871.

All data were in accordance with published data [5].

1-(1-Azidovinyl)-4-(*tert*-butyl)benzene (4c)

Compound **4c** was prepared in 52% yield as a colorless solid; mp 44 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.5 Hz, 2H), 7.38 (d, *J* = 8.9 Hz, 2H), 5.4 (d, *J* = 2.4 Hz, 1H), 4.92 (d, *J* = 2.4 Hz, 1H), 1.32 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 152.5, 145.1, 125.5, 125.4, 97.4, 34.8, 31.4; HRMS (ESI) [M + H⁺] calcd for C₁₂H₁₆N₃⁺, 202.1344; found, 202.1348.

1-(1-Azidovinyl)-4-methoxybenzene (4d)

Compound **4d** was prepared in 68% yield as a colorless solid; mp 38 °C (Lit: 39– 40 °C [6]); ¹H NMR (400 MHz, CDCl₃) δ 7,49 (d, *J* = 8.9 Hz, 2H), 6.87 (d, *J* = 8.9 Hz, 2H), 5.31 (d, *J* = 2.4 Hz, 1H), 4.86 (d, *J* = 2.4 Hz, 1H), 3.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.5, 144.8, 127.1, 113.9, 96.3, 55.5 (one aromatic carbon is not resolved); HRMS (ESI) [M + H⁺] calcd for C₉H₁₀N₃O⁺, 176.0824; found, 176.0825. All data were in accordance with published data [3].

1-(1-Azidovinyl)-4-chlorobenzene (4e)

Compound **4e** was prepared in 45% yield as a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 8.7 Hz, 1H), 7.32 (d, *J* = 8.7 Hz, 1H), 5.43 (d, *J* = 2.6 Hz, 1H), 4.97 (d, *J* = 2.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 140.2, 127.8, 113.9, 101.2, 98.1; HRMS (ESI) [M + H⁺] calcd for C₈H₇Cl N₃⁺, 180.0328; found, 180.0331.

4-(1-Azidovinyl)pyridine (4g)

Compound **4g** was prepared in 42% yield as a yellow solid; mp 34 °C; ¹H NMR (400 MHz, CDCl₃,) δ 8.61 (d, *J* = 6.1 Hz, 2H), 7.44 (d, *J* = 6.1 Hz, 2H), 5.67 (d, *J* = 3.1 Hz, 1H), 5.13 (d, *J* = 3.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 154.1, 143.2, 141.6, 119.7, 100.9; HRMS (ESI) [M + H⁺] calcd for C₇H₇N₄⁺, 147.0671; found, 147.0670.

(E)-(1-Azidoprop-1-en-1-yl)benzene (4h)

Compound **4h** was prepared in 70% yield as a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.30–7.44 (m, 5H), 5.48 (q, *J* = 7.3 Hz, 1H), 1.72 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 128.9, 128.7, 128.6, 112.2, 13.9; HRMS (ESI) [M + H⁺] calcd for C₉H₁₀N₃⁺,160.0875; found, 160.0874.

Table S1: NOE effects in 4h.

	rel. NOE effect [%]
H _b /H _c	1
H _b /H _a	0.79
H _c /H _b	_a
H _c /H _a	_a

^aNOE not observed.

(E)-3-Azido-3-phenylprop-2-en-1-ol (4i)

Compound **4i** was prepared in 91% yield as a colorless oil;¹H NMR (400 MHz, CDCl₃) δ 7.39–7.45 (m, 3H), 7.31–7.35 (m, 2H), 5.63 (t, *J* = 7.5 Hz, 1H), 4.16 (d, *J* = 7.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 129.8, 129.5, 129.3, 128.7, 128.7, 115.2, 59.4; HRMS (ESI) [M + H⁺] calcd for C₉H₁₀N₃O⁺, 176.0824; found, 176.0821.

Table S2: NOE effects in 4i.

	rel. NOE effect [%]
H _b /H _c	1
H _b /H _a	0.98
H _c /H _b	0.42
H _c /H _a	_a

^aNOE not observed.

4-Phenyl-1-(1-phenylvinyl)-1H-1,2,3-triazole (12a)

Compound **12a** was prepared in 78% yield as a yellow oil; ¹H NMR (CDCl₃) δ 7.85 (d, J = 7.5 Hz, 2H), 7.80 (s, 1H), 7.48–7.33 (m, 8H), 5.87 (d, J = 0.7 Hz, 1H), 5.56 (d, J = 0.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 147.6, 143.0, 134.6, 130.2, 129.9, 128.9, 128.3, 127.3, 125.8, 119.8, 109.4; HRMS (ESI) [M + H⁺] calcd for C₁₆H₁₄N₃, 248.118; found, 248.120.

All data were in accordance with published data [7].

4-Butyl-1-(1-phenylvinyl)-1*H*-1,2,3-triazole (12b)

Compound **12b** was prepared in 39% yield as a yellow oil; ¹H NMR (CDCl₃) δ 7.43–7.37 (m, 3H), 7.33–7.30 (m, 2H), 7.31 (s, 1H), 5.76 (s, 1H), 5.48 (s, 1H), 2.75 (t, *J* = 7.6 Hz, 2H), 1.67 (quint, *J* = 7.6 Hz, 2H), 1.39 (sext, *J* = 7.4 Hz, 2H), 0.93 (t, *J* = 7.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 148.28, 143.10, 134.84, 129.70, 128.72,

S8

127.30, 120.96, 108.85, 31.43, 25.28, 22.29, 13.78; HRMS (ESI) [M + H⁺] calcd for $C_{16}H_{19}N_3$, 228.1501; found, 220.1501.

1-[1-(Naphthalen-2-yl)vinyl]-4-phenyl-1*H*-1,2,3-triazole (12c)

Compound **12c** was prepared in 75% yield as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.92–7.81 (m, 7H), 7.57–7.53 (m, 2H), 7.48 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.46–7.40 (m, 2H), 7.38–7.32 (m, 1H), 5.95 (d, *J* = 0.9 Hz, 1H), 5.70 (d, *J* = 0.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 148.0, 143.4, 134.1, 133.3, 132.2, 130.6, 129.2, 129.1, 128.8, 128.7, 128.1, 127.6, 127.5, 127.3, 126.2, 124.7, 120.3, 110.3; HRMS (ESI) [M + H⁺] calcd for C₂₀H₁₆N₃⁺, 298.1344; found, 298.1344.

4-(4-Bromophenyl)-1-(1-phenylvinyl)-1*H*-1,2,3-triazole (12d)

Compound **12d** was prepared in 55% yield as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (s, 1H), 7.72 (d, *J* = 8.6 Hz, 2H), 7.55 (d, *J* = 8.6 Hz, 2H), 7.49–7.36 (m, 5H), 5.87 (d, *J* = 1.1 Hz, 1H), 5.56 (d, *J* = 1.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 146.58, 142.89, 134.50, 132.01, 129.97, 129.17, 128.91, 127.34, 127.30, 122.25, 119.86, 109.56; HRMS (ESI) [M + H⁺] calcd for C₁₆H₁₃BrN₃⁺, 326.0293; found, 326.0293.

4-Benzyl-1-(1-phenylvinyl)-1*H*-1,2,3-triazole (12e)

Compound **12e** was prepared in 63% yield as a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.35–7.43 (m, 3H), 7.20–7.33 (m, 8H), 5.74 (s, 1H), 5.48 (s, 1H), 5.14 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 143.3, 138.9, 134.8, 129.9, 128.9, 128.8, 128.8, 127.4, 126.7, 109.3, 33.3; HRMS (ESI) [M + H⁺] calcd for C₁₇H₁₆N₃⁺, 262.1344; found, 262.1344.

4-(3-Chloropropyl)-1-(1-phenylvinyl)-1H-1,2,3-triazole (12f)

Compound **12f** was prepared in 48% yield as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.36–7.45 (m, 4H), 7.29–7.35 (m, 2H), 5.77 (s, 1H), 5.49 (s, 1H), 3.6 (t, *J* = 6.3 Hz, 2H), 2.92 (t, *J* = 7.5 Hz, 2H), 2.20 (quin, *J* = 7.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 146.4, 143.2, 134.8, 130.0, 128.9, 127.5, 121.7, 109.2, 44.3, 31.9, 22.8; HRMS (ESI) [M + H⁺] calcd for C₁₃H₁₅CIN₃⁺, 248.0955; found, 248.0955.

4-[1-(1-Phenylvinyl)-1H-1,2,3-triazol-4-yl]butan-1-ol (12g)

Compound **12g** was prepared in 41% yield as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.28–7.43 (m, 6H), 5.75 (s, 1H), 5.47 (s, 1H), 3.67 (t, *J* = 6.3 Hz, 2H), 2.78 (t, *J* = 7.5 Hz, 2H), 1.76–1.82 (m, 2H), 1.64 (dt, *J* = 14.8, 6.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.6, 143.2, 132.9, 130.9, 128,9, 127.4, 121.3, 109.1, 62.4, 32.2, 25.6, 25.3 ppm; HRMS (ESI) [M + H⁺] calcd for C₁₄H₁₈N₃O⁺, 244.1450; found, 244.1454.

4-Butyl-1-[1-(naphthalen-2-yl)vinyl]-1H-1,2,3-triazole (12h)

Compound **12h** was prepared in 53% yield as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.88–7.81 (m, 3H), 7.78 (s, 1H), 7.55–7.52 (m, 2H), 7.42 (dd, *J* = 8.5, 2.0 Hz, 1H), 7.35 (s, 1H), 5.85 (s, 1H), 5.62 (s, 1H), 2.78 (t, *J* = 7.7 Hz, 2H), 1.69 (quint, *J* = 7.7 2H), 1.41 (sext, *J* = 7.4 Hz, 2H), 0.94 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.7, 143.2, 133.7, 132.9, 132.2, 128.6, 128.4, 127.7, 127.1, 127.1, 126.8, 124.4, 121.1, 109.4, 31.4, 25.3, 22.3, 13.8; HRMS (ESI) [M + H⁺] calcd for C₁₈H₂₀N₃⁺, 278.1657; found, 278.1657.

4-Benzyl-1-[1-(naphthalen-2-yl)vinyl]-1H-1,2,3-triazole (12i)

Compound **12i** was prepared in 59% yield as a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.87–7.79 (m, 3H), 7.76 (s, 1H), 7.56–7.49 (m, 2H), 7.39 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.32–7.28 (m, 5H), 7.25–7.19 (m, 1H), 5.82 (d, *J* = 0.8 Hz, 1H), 5.61 (d, *J* = 0.8 Hz, 1H), 4.16 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 147.9, 143.5, 139.1, 134.0, 133.3, 132.3, 129.0, 128.9, 128.7, 128.0, 127.5, 127.4, 127.0, 126.8, 126.5, 124.2, 121.9, 109.6, 32.2; HRMS (ESI) [M + H⁺] calcd for C₂₁H₁₈N₃⁺, 312.3877; found, 312.3878.

4-(4-Bromophenyl)-1-[1-(naphthalen-2-yl)vinyl]-1H-1,2,3-triazole (12j)

Compound **12j** was prepared in 47% yield as a colorless solid; mp 171 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.91–7.82 (m, 5H), 7.73 (d, *J* = 8.6 Hz, 2H), 7.57–7.52 (m, 4H), 7.46 (dd, *J* = 8.6, 1.9 Hz, 1H), 5.94 (d, *J* = 1.1 Hz, 1H), 5.69 (d, *J* = 1.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 146.6, 142.9, 133.8, 133.0, 132, 131.7, 129.2, 128.8, 128.4, 127.7, 127.3, 127.3, 127.1, 127.0, 124.3, 122.3, 120.0, 110.0; HRMS (ESI) [M + H⁺] calcd for C₂₀H₁₅BrN₃⁺, 376.0449; found, 376.0451.

4-(4-Bromophenyl)-1-[1-(4-methoxyphenyl)vinyl]-1*H*-1,2,3-triazole (12k)

Compound **12k** was prepared in 51% yield as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (s, 1H), 7.72 (d, *J* = 8.5 Hz, 2H), 7.54 (d, *J* = 8.5 Hz, 2H), 7.29 (d, *J* = 8.8 Hz, 2H), 6.93 (d, *J* = 8.8 Hz, 2H), 5.74 (d, *J* = 1.0 Hz, 1H), 5.46 (d, *J* = 1.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 161.2, 146.8, 142.9, 132.3, 129.6, 129.1, 127.6, 127.2, 122.5, 120.3, 114.6, 108.3, 55.8; HRMS (ESI) [M + H⁺] calcd for C₁₇H₁₅BrN₃O⁺, 356.0398; found, 356.0395.

```
(E)-3-(4-Benzyl-1H-1,2,3-triazol-1-yl)-3-phenylprop-2-en-1-ol (12l)
```


Compound **12I** was prepared in 39% yield as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.47–7.40 (m, 3H), 7.32–7.20 (m, 8H), 6.62 (t, *J* = 7.2 Hz, 1H), 4.30 (d, *J* = 7.2 Hz, 2H), 4.10 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 147.7, 139.0, 137.9, 132.8, 130.2, 129.6, 129.1, 129.0, 128.9, 126.9, 123.5, 121.8, 59.2, 32.4; HRMS (ESI) [M + H⁺] calcd for C₁₈H₁₈N₃O⁺, 292.1450; found, 292.1453.

References

- Terent'ev, A. O.; Krylov, I. B.; Kokorekin, V. A.; Nikishin, G. I. Synth. Commun.
 2008, 38, 3797–3809. doi:10.1080/00397910802226572
- Padwa, A.; Dharan, M.; Smolanoff, J.; Wetmore, S. I. *J. Am. Chem. Soc.* 1973, *95*, 1945–1954. doi:10.1021/ja00787a039
- Zhao, W.; Carreira, E. M. Chem.–Eur. J., 2006, 12, 7254–7263. doi:10.1002/chem.200600527
- Shi, F.; Waldo, J. P.; Chen, Y.; Larock, R. C. Org. Lett. 2008, 10, 2409–2412. doi:10.1021/ol800675u
- Wang, Y.-F.; Toh, K. K.; Chiba, S.; Narasaka, K. Org. Lett. 2008, 10, 5019– 5022. doi:10.1021/ol802120u
- 6. Jordan, D. J. Org. Chem. 1989, 54, 3584–3587. doi:10.1021/jo00276a017
- Duan, H.; Yan, W.; Sengupta, S.; Shi, X. *Bioorg. Med. Chem. Lett.* 2009, 19, 3899–3902. doi:10.1016/j.bmcl.2009.03.096