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Supplementary information

Supplementary Figures Legends

Figure S1. Related to Figure 2: Transcription factor binding site motif enrichment associated HMRs
overlapping promoters in human sperm but not in ESCs. P-values of enriched motifs were calculated
using a random subset of HMRs overlapping promoters in both cell types as a background.

Figure S2. Related to Figure 3: A. The AcgT index measured at CpG sites surrounding HMR
boundaries in sperm (grey bars) and ESCs (black bars). Each data point corresponds to a CpG at
positions -5 to +5 relative to HMRs boundaries. B. Observed-to-expected ratio for occurrences of the
AACGTT pattern at each of the CpG positions from -5 to +5 relative to the boundaries of nested ESC
and extended sperm HMRs.

Figure S3. Related to Figure 4: A. Size distribution of retrotransposons that are hypomethylated
(black) and methylated (white) in human sperm. For each bin, the frequency of element copies is
plotted. B. Histograms of Smith-Waterman scores of retro elements relative to their consensus
sequences for hypomethylated and methylated copies. Separate histograms are given for LINE, SINE,
LTR and SVA elements, and for methylation status in human sperm, chimp sperm and human ES cells.
C. Browser tracks showing methylation (orange), read coverage (blue) and HMRs (blue bars) over a
full-length LINE-1 element (L1PA7) hypomethylated in human sperm (upper tracks) but not in ESCs
(bottom tracks). D. Browser track (as displayed in (A)) showing sperm specific hypomethylation of the
ERV HERVS71 in human sperm. E. Average methylation levels across all AluY SINE elements in
human sperm (red) and ESCs (blue). CpG density is also shown in green. Methylation levels and CpG
densities are also shown across flanking regions.

Figure S4 Related to Figure 6: Allele frequency spectra for each possible derived allele nucleotide at
CpG sites treated symmetrically with cytosine as derived allele. For each derived allele, segregating
sites were partitioned according to methylation levels in the intervals {[0.0, 0.2), [0.2, 0.4), ... [0.8,1.0]}.

Supplementary Tables Legends

Tables S1. Related to Figure 1: A. Statistics on sizes, numbers and CpG contents of HMRs and CGls.
B. Association of human and chimp Sperm HMRs, as human ESC HMRs (Lister et al., 2009), with
genome annotations. The distributions of HMRs are shown as a fraction of total HMRs and as a fraction
of each annotation category. An individual HMR can overlap more than one annotation, and similarly a
single annotation feature can overlap multiple HMRs.

Tables S2. Related to Figure 2: A. Gene Ontology analysis for genes with promoters having sperm-
specific hypomethylation. GO term enrichment was calculated using the DAVID software (see
supplementary methods for details). B. Non-redundant Gene Ontology terms for genes with promoters
having sperm-specific hypomethylation. Non-redundant terms and dispensability indexes was
measured using the REVIGO software (see supplementary methods for details). C. Gene Ontology
analysis for genes with hypomethylated promoters in both human ESCs and Sperm. GO term
enrichment was calculated using the DAVID software (see supplementary methods for details). D. Non-
redundant Gene Ontology terms for genes with hypomethylated promoters in both human ESCs and
Sperm. Non-redundant terms and dispensability indexes was measured using the REVIGO software
(see supplementary methods for details).

Table S3. Related to Figure 3: Ratio of hexamer counts at +1 CpG (just inside HMR) over -1 CpG (just
outside HMR), showing only the hexamers with the top 20 ratios for extended sperm HMRs and nested
ESC HMRs.

Tables S4. Related to Figure 4: A. Satellite hypomethylation and methylation frequency according to
centromeric status for human and chimp sperm, as well as human ES cells.

B. Coverage and mapping statistics over human and chimp retrotransposons, including LINE, LTR and
SINE classes, as well as the SVA elements. Percent CpG covered refers to the percent of CpGs
covered by at least one read. Methylation level by read is the average methylation from all reads
mapping into elements from that family. Methylation by copy refers to the average of the mean
methylation levels for each copy. The percent of copies with at least 5 informative reads refers to those
copies for which at least 5 reads map over some CpG within the copy. C. Hypomethylation frequency



statistics for retrotransposon families in human sperm, chimp sperm and human ES cells. Columns
labeled “copies” indicate the number of repeat copies for each family. For each of human sperm,
human ES cells and chimp sperm, the total number of HMRs is indicated, as well as the number of
hypomethylated copies, the expected number of hypomethylated copies, and the enrichment
(hypomethylated copies divided by the expected). All annotations of repeats were taken from the
Repeat Masker track in the UCSC Genome Browser. D. Hypomethylation frequency statistics for
human LTR retrotransposon sub-families in human sperm and ES cells. Columns labeled “copies”
indicate the number of repeat copies for each sub-family. The total number of HMRs is indicated, as
well as the number of hypomethylated copies of the sub-family, the expected number of
hypomethylated copies, and the enrichment (hypomethylated copies divided by the expected). All
annotations of repeats were taken from the Repeat Masker track in the UCSC Genome Browser. E.
Hypomethylation frequency statistics for human LINE retrotransposon sub-families in human sperm and
ES cells. Columns labels and annotations as in E. F. Hypomethylation frequency statistics for human
SINE retrotransposon sub-families in sperm and ES cells. Columns labels and annotations as in E. G.
Hypomethylation frequency statistics for chimp LTR retrotransposon sub-families in chimp sperm.
Columns labels and annotations as in E. H. Hypomethylation frequency statistics for chimp LINE
retrotransposon sub-families in chimp sperm. |. Hypomethylation frequency statistics for chimp SINE
retrotransposon sub-families in chimp sperm.

Tables S5. Related to Figure 6: A. Gene Ontology analysis for human sperm specific HMRs located
within 10kb of a RefSeq promoter (no HMR in chimp sperm). GO term enrichment was calculated using
the DAVID software (see supplementary methods for details).

B. Non-redundant Gene Ontology terms for human sperm specific HMRs located within 10kb of a
RefSeq promoter (no HMR in chimp sperm). Non-redundant terms and dispensability indexes was
measured using the REVIGO software (see supplementary methods for details).
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1 Mapping reads

Reads were mapped using the RMAPBS program. Our pipeline first removed adaptor sequence from any
reads, discarding any reads with fewer than 40 high-quality bases after the adaptor was removed (reads were
required to have at least 10 bases of overlap with the adaptor for any part to be trimmed). Ends of paired-end
reads were mapped separately, and because adaptors were ligated to fragments prior to bisulfite treatment,
the first end of each paired-end read was mapped using T—C wild-cards, and the second end of each read
was mapped allowing A—G wild-cards (for details see Smith et al., 2009). We allowed up to 10 mismatches
when mapping reads, though the average was substantially lower, and low-quality positions in reads were
never counted as a mismatch (recall that at least 40 high-quality positions were required). For each read,
the mapping location was determined to be the location with the fewest mismatches. Reads for which two
locations had the minimum number of mismatches were considered to map ambiguously and discarded.

In sequencing from the same library preparation, when multiple reads mapped to the exact same location,
which we refer to as duplicate reads, we assumed these represent the same original molecule (e.g. PCR
products of the same fragment). We discarded all but one read in the case of duplicates and retained the
one with the fewest mismatches. This step of removing duplicates was only done prior to combining data
from different library preparations. For paired-end reads, after mapping ends separately, any pairs found to
overlap (indicating the original fragment had length less than 202 bases) were collapsed to prevent counting
the same information twice in later analysis.

The reference genomes used were the hgl8 (human) and panTro2 (chimp) genomes downloaded from
the UCSC Genome Browser, and we excluded alternate haplotype sequences and “random” sequences for
human. For chimp we excluded “random” sequences and the “unassembled” chromosome.

Accuracy of the mapping method

We conducted a simulation experiment to determine the portion of reads expected to be mapped to incorrect
locations using the mapping method described above. The simulation used parameters for the following
values:

o Number of reads. We set this value to 10M.
e Read length. We used a read length of 101nt (corresponding to the majority of our sequencing runs).

o Methylation level. Each CpG in sampled reads was considered methylated with probability 0.7. While
this does not simulate a specific methylation level for any given genomic CpG, the effect on mapping
accuracy is the same.

e Bisulfite conversion. We set the simulation bisulfite conversion rate to 0.98, meaning that 98% of Cs
that were not simulated as methylated were converted to Ts.

e Sequencing errors. We set the maximum number of sequencing errors per reads to 10. Each sim-
ulated read had 10 positions for errors sampled at random (though not uniformly; see below) with
replacement. Errors were introduced after simulated bisulfite conversion.

o Error distribution. We used the error probabilities produced by the sequencing instrument in a 101nt
sequencing run to calibrate the probabilities for simulated errors occurring at any given position in the
read. This results in a greater proportion of errors at the 3’ ends of simulated reads.

The simulation was done with human genome assembly hg18 (from UCSC Genome Browser) excluding
unassembled centromeric regions. Simulated reads were mapped back to the genome using the procedure
described above. Of the 1M reads, 939605 mapped back uniquely (94%). The portion mapping back to their



location of origin was 935582 (99.6%). Because of sampling error positions with replacement, along with
the non-uniform distribution for error locations, the average number of mismatches was 4.6 per mapped
read, substantially greater than the average number of mismatches in our data. From this we conclude that
any error introduced into downstream analysis by reads mapped to incorrect locations is sufficiently small
to be negligible.

2 Association between sets of genomic regions and annotations

We stratified measures about CpG content and methylation in genomic regions according to their association
with certain genomic annotations as follows. First we defined these associations so that they partition the set
of regions in question. In other words, our definitions ensured that no HMR would be associated with both
a promoter and a repeat element, even though a repeat could clearly exist inside the promoter of a gene. Our
definitions were as follows:

e Promoter: Any region that overlaps the interval within 1Kb of the transcription start site (TSS).

e Gene-proximal: Any non-promoter region that overlaps the interval starting 10Kb upstream of a TSS
or 10Kb downstream of a transcription termination site.

o Intergenic repeat: Any non-promoter, non-gene proximal region that overlaps a repeat.

e Intergenic non-repeat: Any non-promoter, non-gene proximal region that does not overlap a repeat.

3 Repeat definitions

We analyzed the following classes of repeats: LINE, SINE, LTR, Satellite, DNA, RNA, SVA, tRNA, low
complexity and simple repeats. This list includes most of the repeats annotated in the RepeatMasker track
from the UCSC Genome Browser.

4 SVA elements with identifiable orthologs

We used SVA annotations from UCSC Genome Browser, which are based on RepBase. These annotations
are constructed by matching repeat consensus sequences to the reference genome (hg18 and panTro2). SVA
elements were retained in human if:

1. the interval covered by the human copy lifts over to chimp,
2. the lift over target (in chimp) lifts back to human,
3. the target when lifting back from chimp to human is the same as the original interval.

The same criteria was applied to chimp. This set of SVA elements was used in Fig. 4(A). This highly-
conservative criteria allowed us to compare methylation levels through copies of SVAs that existed in both
species. The total number of these SVA copies included 358 pairs of high-confidence orthologs. The trends
observed for this small, high-confidence set of elements is also reflected in the full sets of elements for
human and chimp.



5 Calculation of basic statistics

Discarding low-quality reads: Reads were first checked for the presence of adaptor sequence, indicating
that the sequenced fragment was too short and sequencing proceeded into the adaptor at the other end of
the fragment. We required at least a 10 base match starting from the beginning of the adaptor, excluding Ns
in reads and allowing up to 2 mismatches. When such an adaptor sequence was found in a read, the read
was trimmed after the beginning position of the match by replacing all subsequent bases (in the 3’ direction)
with an N, which would not induce a mismatch during alignment. Any reads for which the final non-N base
was at position 40 or less was discarded. Finally, any read with fewer than 28 non-N bases through its entire
length of the read was discarded.

Estimating CpG methylation levels: For CpG ¢, define m; as the number of reads showing methylation
over position ¢, counting both strands. Define u; as the number of reads showing lack of methylation over
CpG i. The methylation level is estimated as m;/(m; + u;), which is an estimate of the probability that
CpG 17 is methylated in a molecule sampled randomly from the cell population. Because CpG methylation is
symmetric, m; and u; include observations associated with the cytosines on both strands for the ¢-th CpG.

Depth of coverage and bisulfite conversion: All our measures of coverage are in terms of CpGs. Depth
of coverage (fold coverage) is also measured only at CpGs, and counts only T or C nucleotides (A or G for
the second end of each read). Both these numbers are reflective of numbers calculated using all assembled
bases. Bisulfite conversion is measured as the sum of the number of non-CpG cytosines that are converted
to Ts (as indicated by Ts in reads mapping over non-CpG cytosines in the genome), divided by the total
number of non-CpG cytosines in uniquely mapped reads.

6 Identifying hypomethylated regions (HMRs)

We identified hypomethylated regions (HMRs) using a stochastic segmentation to partition the methylome
into alternating regions of hypermethylation and hypomethylation, the latter appearing as valleys in visual
depictions of methylation profiles. More specifically, our method is based on a Hidden Markov Model
(HMM; Durbin et al., 1999).

Our HMM consists of two states (for high and low methylation). To model the observations made at each
individual CpG we use the following distributions. For a sequence of n CpGs in a contiguous chromosomal
region, let p; denote the true probability that CpG i is methylated in a molecule chosen at random from the
sequenced sample. We assume that p; ~ Beta(a, 3). The BS-seq data provides the numbers m; and u; of
methylated and unmethylated reads, respectively, from which we estimate p; = m;/(m;+u;). In calculating
likelihoods of observations from a particular state (i.e. the emission distribution), we use a Beta-Binomial
distribution. That is, we assume m; ~ BetaBinom(a, 3, m; + u;), and

Pr(m;|a, B, m; + u;) = (mznj: ul) B(m; + a,u; + B)/B(a, B),
(2

where B denotes the beta function. Critically, using this distribution allows us to model methylation proba-

bilities accounting for the amount of data at each CpG while keeping the variance independent of the mean.

To fit distribution parameters for numerical convenience we work directly with the estimates p;. This

is because of the time required for maximum-likelihood computations directly with the Beta-Binomial.

Instead, we estimate the maximum-likelihood parameters as though they were for a Beta distribution, and



therefore satisfy

. n . . n d
9(@) ~w(a-+8) = S log(p) and Y(5)—w(a-+h) = S log(1-p) with ¥(x) = 5 logT(z).
=1 =1

To compute & and /3, we use an iterative procedure. The initial parameter values are calculated as
60 =y (LY log(p)) and 5O = v (L0 log(1 — 7).

This initialization corresponds roughly to the assumption of a + = 1, as ¢)(1) = 0. At each iteration,
these estimates are updated using the formulas

6 = g1 (5 log(py) + (altY + B))

and

B8 = g7t (L300 1og(1 = pi) +w(a=D + f-D) ).

The inverse of the digamma (v») function can be calculated very easily by noting that 1/ ~!(x) = e* + e, for
0 < € < 1 for any relevant values of x. We use a bisection search around e to evaluate ¢)~*, and apply the
iterative procedure until convergence criteria are satisfied.

After training the HMM parameters, HMRs were identified by posterior decoding, and then each was
scored according to the sum of all (1 — p;) for each CpG i in the HMR. Since a single CpG with an very
high number of reads and a very high methylation level can theoretically be identified as a single-CpG HMR
under our model, we included a procedure to identify only significant HMRs based on their score. The CpGs
were randomly permuted, and then the random permutation was decoded to obtain an empirical distribution
of random HMR scores. We obtained p-values from this random distribution, and then applied the method
of Benjamini & Hochberg (1995) to identify a cutoff for a false discovery rate (FDR) of 0.05. Finally, we
retained as HMRs only those regions having a score more extreme than the identified 0.05 FDR cutoff.

7 Measuring sequence divergence and CpG decay

We measured nucleotide-level conservation between human (hg18), chimp (panTro2) and gorilla (gorGor1)
by using the MULTIZ 44-way alignment available through the UCSC Genome Browser (Blanchette et al.,
2004). This alignment is referenced on human. Alignments for genomic intervals were extracted by iden-
tifying the blocks containing the start and end points of the region in human. If one of the two end-points
was not found in the alignment, the region was determined not to be alignable. Positions in the alignments
that correspond to gaps were not counted. A sequence was called “under decay” if it lost more than 5%
of its CpGs; we required the inferred ancestral sequence to have at least 20 CpGs in order to make this
determination.

8 Analysis of nucleosome retention data

Nucleosome retention data was taken from Hammoud et al. (2009). Data from different donors for histone
ChIP-seq experiments was pooled, and mapped to the hgl8 assembly using RMAP. Domains of retained
nucleosomes and the H3K4me3 and H3K27me3 modifications were inferred using the RSEG algorithm
(Song & Smith, 2011). This method identified 118318, 105150 and 193158 enriched domains for H3K4me3,
H3K27me3 and retained histones, respectively.



9 Gene Ontology Analysis

To measure Gene Ontology category enrichment we used the web interface to the DAVID tool (Huang et
al., 2008). For sperm and ES cell-specific hypomethylated promoters we required that the promoter (-1kb
to +1kb) overlap an HMR in one cell type, have a methylation level at least 0.5 in the other cell type, and
have a difference of at least 2-fold between the lower and higher. We used RefSeq promoters downloaded
from the UCSC Table Browser. To eliminate redundancy in the sets of Gene Ontology categories identified
as enriched we used the REVIGO software through the web interface (ékunca et al., 2009).

10 Motif Enrichment Analysis

We used programs for the CREAD package to analyze the HMR sequences for identifying enriched TFBS
motifs. We used both libraries of known motifs from both TRANSFAC (?) and JASPAR (?). We measured
enrichment relative to a randomly selected set of 5000 promoters from among those that had low methylation
levels in both sperm and ES cells. To eliminate bias due to different CpG content, CpG dinucleotides were
inserted (or deleted) randomly in the background sequence set to bring the level of CpG up to that in the
foreground. When randomly removing CpGs, they were mutated to TpG or CpA. The enrichment was
measured using the Binomial p-value option in the motifclass program of CREAD.

11 Enrichment of Sequence Patterns at HMR Boundaries

To measure enrichment of sequence patterns at boundaries of nested and extended HMRs we used only those
HMRs where a sperm HMR fully contained exactly one ESC HMR. We only considered hexameric patterns
that had a CpG dinucleotide at the center and no other CpG dinucleotides in order to avoid bias introduced
by the fact that CpG content will differ on either side of an HMR boundary (which we already know). We
determined the expected number of occurrences of a sequence pattern by counting the number of genomic
CpGs centered on that pattern, and dividing by the number of genomic CpGs.

12 Use of Individual Variation Data from HapMap

Individual variation data from HapMap 3 (including phase II and III) was downloaded from
http://hapmap.ncbi.nlm.nih.gov

We used the CEU population, as this most closely matched the sperm donors, and the amount of data was
almost as high as any of the other 10 populations. In identifying sites to use, we took only sites where the
HapMap annotated ancestral allele was at the C of a CpG site (on either strand), and we also required that at
least 5 reads mapped over that CpG in our bisulfite sequencing data. We used Chi-squared goodness-of-fit
tests to determine that the frequency spectra differed between low and high methylation levels for each type
of derived nucleotide (A, G or T).
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