Supporting Information

for

Selective Synthesis of Hydroxy Analogues of Valinomycin using Dioxiranes

Cosimo Annese,^{*,†} Immacolata Fanizza,[†] Cosima D. Calvano,[†] Lucia D'Accolti,[†] Caterina Fusco,[§] Ruggero Curci,[‡] and Paul G. Williard^{*,‡}

[†]Dipartimento Chimica, Università di Bari, v. Amendola 173, 70126 Bari, Italy. [§]CNR-ICCOM, UOS Bari, Dipartimento di Chimica, v. Amendola 173, 70126 Bari, Italy [‡]Department of Chemistry, Brown University, Providence, RI 02912.

Corresponding authors Email: pgw@brown.edu; annese@chimica.uniba.it

(30 pages, including this cover)

Table of Contents

1.	Materials and Methods	p. <i>S1</i>
2.	NMR Spectral Data of Compounds 3a-c	p. <i>S3</i>
3.	1D-, 2D NMR, and MALDI mass spectra of compound 3a	p. <i>S6</i>
4.	1D-, 2D NMR, and MALDI mass spectra of compound 3b	p. <i>S14</i>
5.	1D-, 2D NMR, and MALDI mass spectra of compound 3c	p. <i>S22</i>

1. Materials and Methods

The ¹H NMR spectra (400 MHz) were referenced to residual isotopic impurity (2.05 ppm) of acetone- d_6 solvent and/or TMS. The ¹³C NMR spectra (100 MHz) were referenced to the middle peak of acetone- d_6 solvent (30.83 ppm).

The mass spectra were obtained using a Micromass M@LDI[™]–LR (Waters MS Technologies, timeof-flight mass spectrometer equipped with a nitrogen UV laser (337 nm) reflectron optics, fast dual micro-channel plate (MCP) detector. Previous to MS analysis, the samples (dissolved in acetonitrile) were mixed (1:1, v:v) with a 2,5-dihydroxybenzoic acid (DHB) solution [10 mg/mL, in acetonitrile (saturated with KCl)/water 50:50].

The HPLC analyses were run using a Supelcosil ABZ+plus column (150×4.6 mm, 5 mm) or a silica gel (Ascentis[®] Si, 250 × 2.1 mm, 5 mm). Preparative HPLC separations were carried out on a silica gel column (Ascentis[®] Si, 250 × 10 mm, 5 µm).

Acetone and other common solvents were purified by standard methods. Commercial Valinomycin (2) of >95% purity (HPLC) was used without further purification. Commercial 1,1,1-trifluoro-2-propanone (TFP) (bp 22 °C), was purified by fractional distillation over granular P_2O_5 , stored over 5 Å molecular sieves, and routinely redistilled prior to use. Caroat[®] triple salt 2KHSO₅·KHSO₄·K₂SO₄ (a gift from Peroxid-Chemie, Degussa, Germany) was our source of potassium peroxymonosulfate, employed in the synthesis of dioxirane **1b**. Solutions of 0.5-1.0 M methyl(trifluoromethyl)dioxirane (**1b**) in 1,1,1-trifluoropropanone (TFP) were obtained by adopting procedures, equipment, and precautions already reported in detail (Mello, R.; Fiorentino, M.; Fusco, C.; Curci, R. *J. Am. Chem. Soc.* **1989**, *111*, 6749).

The following procedure is representative of valinomycin (2) oxidation using TFDO (1b):

Monohydroxylation of valinomycin. A standardized cold solution of TFDO (**1b**) in 1,1,1trifluoropropanone (TFP) (0.9 M, 1 mL, 0.9 mmol) is added in one portion to a stirred solution of VLM (**2**) (100 mg, 0.090 mmol) in acetone (2 mL) kept at 0 °C. The reaction progress is monitored by HPLC (30 minutes, linear gradient of 70-100% acetonitrile in water; flow rate: 1.0 mL/min; UV detector 220 nm). After 6 h reaction time at 0 °C, the solvent is removed under reduced pressure and the product mixture separated from the unreacted starting material by column chromatography (silica gel, ethyl ether/hexane 3:1). This allows the recover of unreacted valinomycin (55 mg, 0.049 mmol). The mixture of products thus separated in turn undergoes treatment with preparative HPLC (hexane/isopropanol 95:5, flow rate 2.0 mL/min, UV detector 220 nm), affording each reaction products as an amorphous solid in > 95% purity (HPLC): **3a** (16.0 mg , 14 μ mol), **3b** (10.0 mg , 8.9 μ mol), and **3c** (9.1 mg, 8.1 μ mol). Based on the amount valinomycin converted (45 mg), the yield of **3a**, **3b**, and **3c** is estimated as 35, 22, and 20%, respectively.

The NMR spectral data of compound **3a-c** are collected in Tables *S1-S6*. Spectra are shown in Figures *S1-S24*.

Structure assignment of compounds **3a**, **3b**, and **3c** was based on their 1D NMR (¹H, ¹³C, DEPT-135) and 2D NMR (COSY, NOESY, HMQC, HMBC) spectra. The procedure relied on sequence-specific assignments based on the residual NH_{i+1}- α H_i correlations provided by the corresponding ¹H-¹H NOESY NMR spectra. (Cavanagh, J. et al. in *Protein NMR Spectroscopy: Principles and Practice*; Academic, 1996; Chapter 8) This approach was especially useful in discriminating compound **3b** from **3c**, since their structural divergences derive almost entirely from the different residues that are proximal to the hydroxylated valine moiety. For instance, the NMR structure determination of **3b** began by the assignment of the ¹H NMR six downfield doublet signals in the 8.06 ÷7.60 ppm range to the resonance of the six amide protons. In turn, by means of the COSY correlations, the signals in the 4.45÷4.20 ppm range could be attributed to the resonance of the α -CH protons of the valine residues. As a result of dioxirane *O*-insertion into the β -CH bond of the D-Val residue, its α -CH proton resonance (4.45 ppm) appears as a clean doublet, due to single coupling with the vicinal NH proton. The latter resonance was eventually identified as a doublet at 7.60 ppm by the corresponding COSY cross-peak.

2. NMR Spectral Data of Compound 3a-c.

	Residue					
	D-β-ОН-Нуі	D-Hyi	D-Val	L-Val	L-Lac	
NH	-	-	7.74 (d, 8.4) ^{d,e} 7.662 (d, 7.6) ^{d} 7.657 (d, 7.6) ^{d}	7.97 (d, 7.6) ^d 7.94 (d, 6.8) ^d 7.92 (d, 7.2) ^d	-	
α-C <i>H</i>	4.95 (s)	5.01 (d, 4.0) 5.00 (d, 3.6)	$\begin{array}{c} 4.43 \ (\text{dd}, 8.4, 7.2)^e \\ 4.39\text{-}4.34 \ (\text{m}, 2\text{H}) \end{array}$	4.26-4.18 (m, 3H)	5.43-5.35 (m, 3H)	
β-CH	$4.52 (s)^c$		2.39 - 2.14 (m, 8H)			
β-CH ₃	-	-	-	-	1.42 (d, 6.8) 1.409 (d, 6.8) 1.406 (d, 6.4)	
γ-CH ₃	1.28 (s) 1.24 (s)	1.08 - 0.96 (m, 48H)			-	

Table S1. ¹H NMR Chemical shift values (ppm) for compound **3a**.^{*a,b*}

^{*a*}Data are for spectra in acetone- d_6 at 400 MHz. ^{*b*}Signal multiplicity, *J* values (±0.4 Hz), and signal integration values (if >1) are specified in parentheses. ^{*c*}Resonance of the β -OH proton. ^{*d*}Assigned on the basis of the NOESY spectrum (Fig. S5). ^{*e*}Relative to the D-Hyi residue sequential to the D- β -OH-Val residue.

Table S2. ¹³C NMR Chemical shift values (ppm) for compound 3a.^a

	Residue						
	D-β-ОН-Нуі	D-Hyi	D-Val	L-Val	L-Lac		
С=О	173.5, 173.4,	173.5, 173.4, 173.22, 173.16, 173.0, 172.2, 172.0, 171.4, 171.3, 171.0					
α- <i>C</i> H	80.8	80.12 80.08	59.9 59.8 59.6	61.3 61.2 61.1	72.05 71.09 [2]		
β- <i>C</i> H	72.6 ^b	32.17 [2]	32.17 [2] 31.8, 31.61, 31.58, 31.1, 30.88, 30.86				
β- <i>C</i> H ₃	-	-	-	-	18.38 18.35 [2]		
γ- <i>C</i> H ₃	27.8 27.3	20.7 [4], 20.6, 20.5, 20.4 [2], 20.3 [2], 20.2, 19.93, 19.89, 19.7, 18.07, 18.02					

^{*a*}Data are for spectra in acetone- d_6 at 100 MHz. ^{*b*}Resonance of the C-OH carbon.

	Residue					
	D-β-OH-Val	D-Hyi	D-Val	L-Val	L-Lac	
NH	7.60 (d, 8.8)	-	7.72 (d, 8.0) ^d 7.64 (d, 8.4) ^d	$8.06 (d, 6.8)^{d}$ 7.89 (d, 7.6) ^d 7.87 (d, 7.6) ^d	-	
α-CH	4.45 (d, 8.8)	$5.04 (d, 3.6)^e$	4.36 (pseudo-t, 8.0)	4.24-4.16 (m, 2H)	5.39-5.30 (m, 3H)	
a en		5.02 (d, 3.2) 5.01(d, 3.6)	4.32-4.28 (m, 2H)		e.e., e.e. (iii, 511)	
β-CH	$4.57 (s)^{c}$		2.40-2.14 (m, 8H)	-		
β -CH ₃	-	-			1.43-1.39 (m, 9H)	
γ - CH ₃	1.35 (s) 1.31 (s)	1.10-0.97 (m, 48H)			-	

Table S3. ¹H NMR Chemical shift values (ppm) for compound **3b**.^{*a,b*}

^{*a*}Footnote *a*, Table *S1*. ^{*b*}Footnote *b*, Table *S1*. ^{*c*}Resonance of the β -OH proton. ^{*d*}Assigned on the basis of the NOESY spectrum (Fig. *S11*). ^{*e*}Relative to the D-Hyi residue sequential to the D- β -OH-Val residue.

	Residue					
	D-β-OH-Val	D-Hyi	D-Val	L-Val	L-Lac	
С=О	173.9, 173.40, 173.38, 173.25, 173.19, 173.0, 172.1, 172.0, 171.5, 171.2, 171.0, 170.7					
α- <i>C</i> H	62.9	80.2 [2] 80.1	60.1 59.8	61.3 61.2 61.0	72.3 72.0 71.7	
β- <i>С</i> Н	72.6 ^b	32.2 [2] 32.1	31.5, 31.2, 31.11, 31.10, 30.9		-	
β- <i>C</i> H ₃	-			-	18.6 18.44 18.36	
γ- <i>C</i> H ₃	28.9 28.7	20.64 [2], 20.58 [3], 20.4, 20.32 [2], 20.28, 20.2, 20.0 [2], 19.9, 18.14, 18.09 [2]				

Table S4. ¹³C NMR Chemical shift values (ppm) for compound **3b**.^{*a*}

^{*a*}Footnote *a*, Table *S2*. ^{*b*}Resonance of the *C*-OH carbon.

	Residue					
	L-β-OH-Val	D-Hyi	D-Val	L-Val	L-Lac	
NH	7.70 (d, 7.2)	-	7.81 (d, 7.6) ^d 7.67 (d, 8.0) ^d 7.66 (d, 8.0) ^d	7.95 (d, 7.2) ^d 7.88 (d, 7.2) ^d	-	
α-CH	4.37 (d, 7.2)	5.04 (d, 3.6, 2H) 5.02 (d, 4.0)	4.37 (pseudo-t, 8.0) 4.31 (pseudo-t, 7.6) 4.30 (pseudo-t, 8.0)	4.28-4.22 (m, 2H)	5.37-5.28 (m, 3H)	
β-CH	$4.52 (s)^c$	2.40-2.19 (m, 8H)			-	
β-CH ₃	-	-	-	-	1.44-1.40 (m, 9H)	
γ-CH ₃	1.34 (s) 1.33 (s)	1.08-0.94 (m, 48H)			-	

Table S5. ¹H NMR Chemical shift values (ppm) for compound **3c**.^{*a,b*}

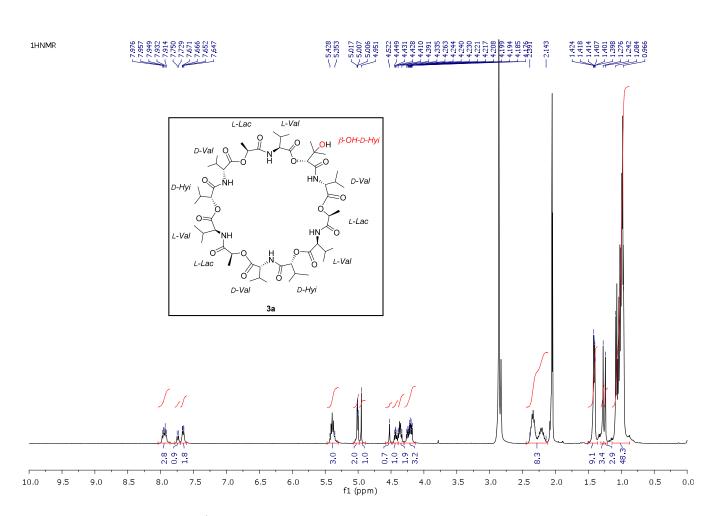
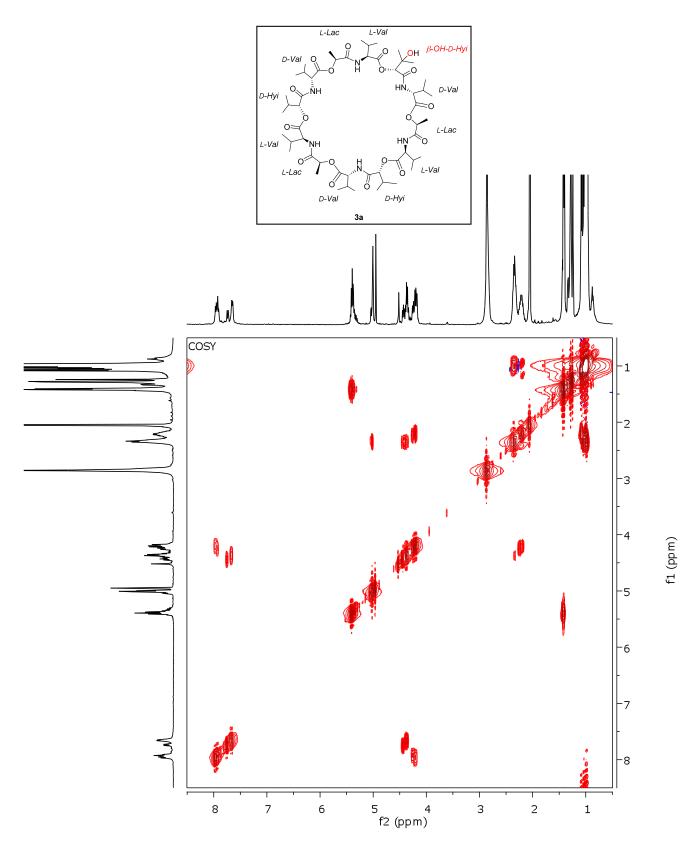
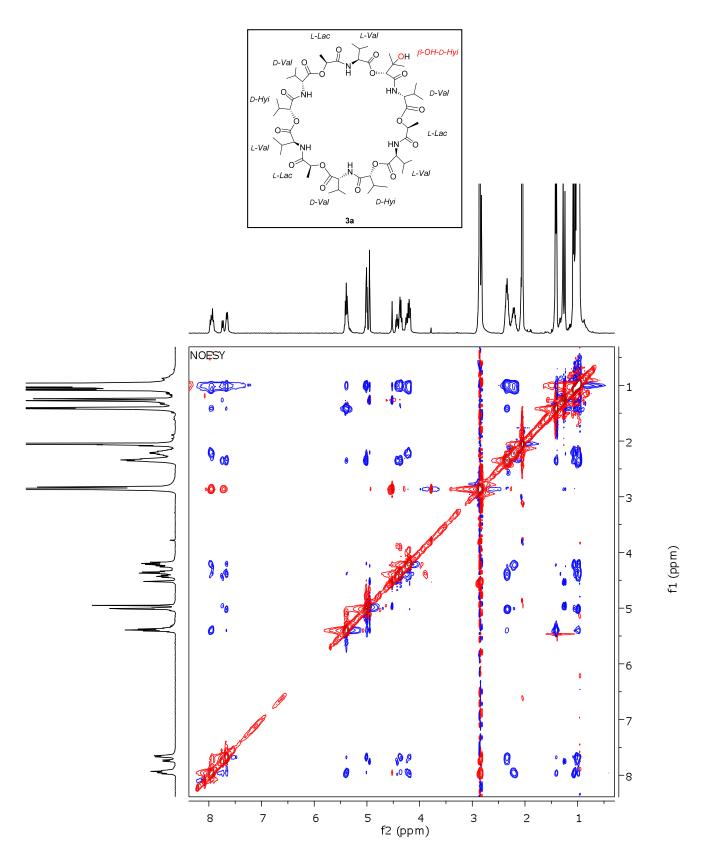
^{*a*}Footnote *a*, Table *S1*. ^{*b*}Footnote *b*, Table *S1*. ^{*c*}Resonance of the β -OH proton. ^{*d*}Assigned on the basis of the NOESY spectrum (Fig. *S19*). ^{*e*}Relative to the D-Hyi residue sequential to the L- β -OH-Val.

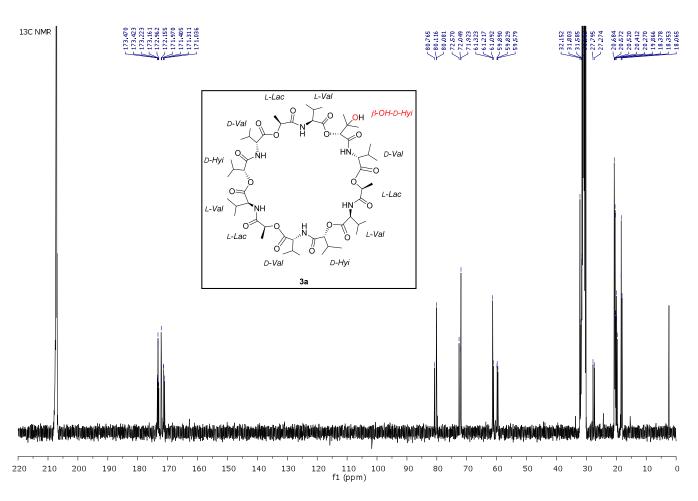
Table S6. ¹³C NMR Chemical shift values (ppm) for compound **3c**.^{*a*}

	Residue					
	L-β-OH-Val	D-Hyi	D-Val	L-Val	L-Lac	
<i>C</i> =0	173.2, 173.0, 172.16, 172.14, 172.12, 171.87, 171.85, 171.82, 171.54, 171.45					
α- <i>C</i> H	63.6	80.2 80.1 79.8	60.4 61.1 60.2 61.0 59.8 61.0		72.16 72.14 71.03	
β- <i>С</i> Н	72.08 ^b	32.3 32.24 32.15 31.5, 31.2, 31.11, 31.10, 30.9 -			-	
CH ₃	28.6 (γ-CH ₃) 28.2 (γ'-CH ₃)	20.7 [2], 20.5 [2], 20.4 [2], 20.36, 20.2 [2], 20.1, 20.0, 19.9, 18.8, 18.7, 18.6, 18.4, 18.2, 18.03, 18.00				

^{*a*}Footnote *a*, Table *S2*. ^{*b*}Resonance of the *C*-OH carbon.

3. 1D-, 2D NMR, and MALDI spectra of compound 3a.


Figure S1. ¹H NMR spectrum of compound 3a (acetone- d_6 , 400 MHz).

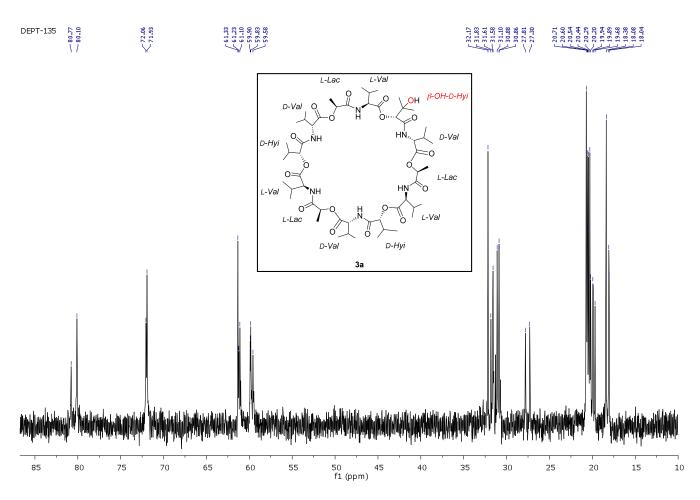

Figure S2. COSY NMR spectrum of compound **3a** (acetone- d_6 , 400 MHz).

Figure *S***3.** NOESY NMR spectrum of compound **3a** (acetone- d_6 , 400 MHz, $t_{mix} = 0.35$ sec).

Figure S4. ¹³C NMR spectrum of compound **3a** (acetone- d_6 , 100 MHz).

Figure *S***5.** ¹³C DEPT-135 NMR spectrum of compound **3a** (acetone- d_6 , 100 MHz).

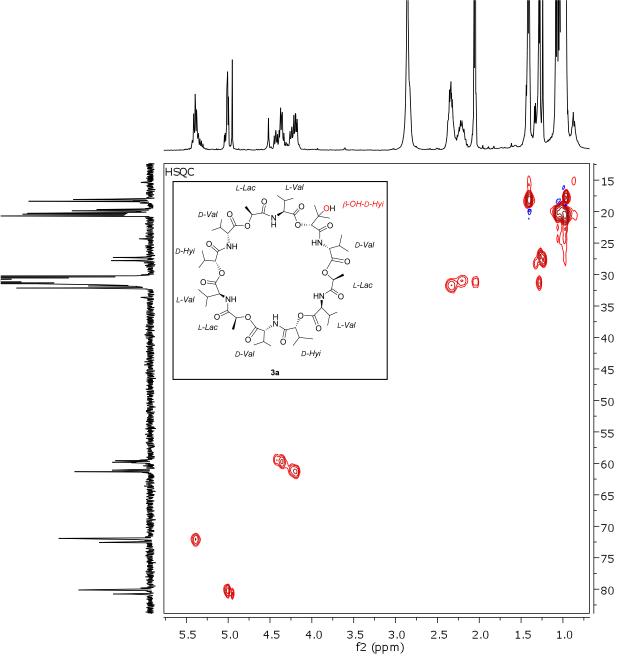


Figure S6. HSQC NMR spectrum of compound 3a (acetone- d_6 , 400 MHz).

f1 (ppm)

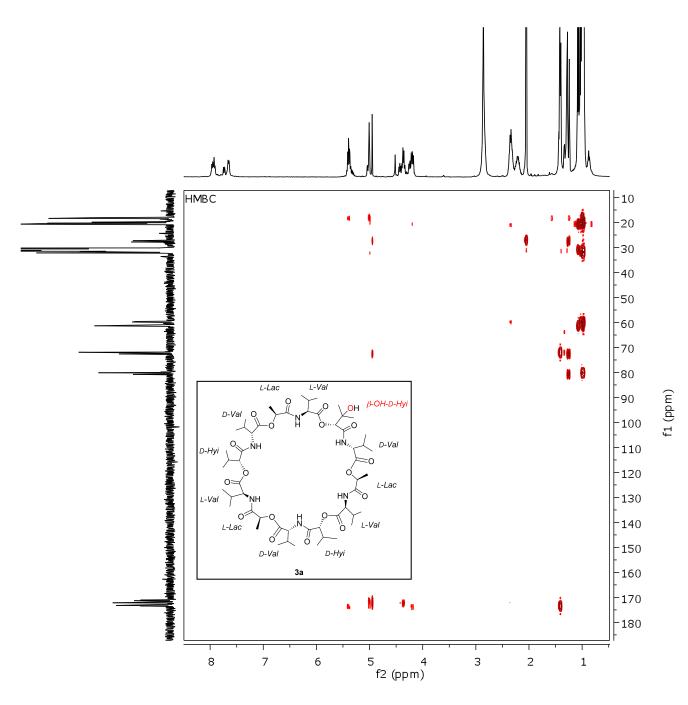


Figure S7. HMBC NMR spectrum of compound 3a (acetone- d_6 , 400 MHz).

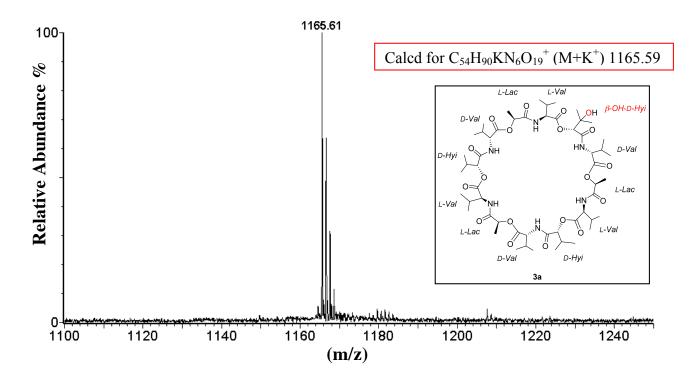
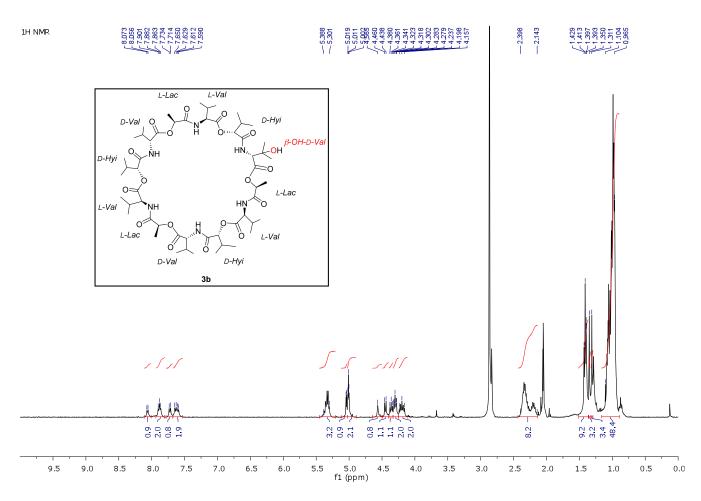
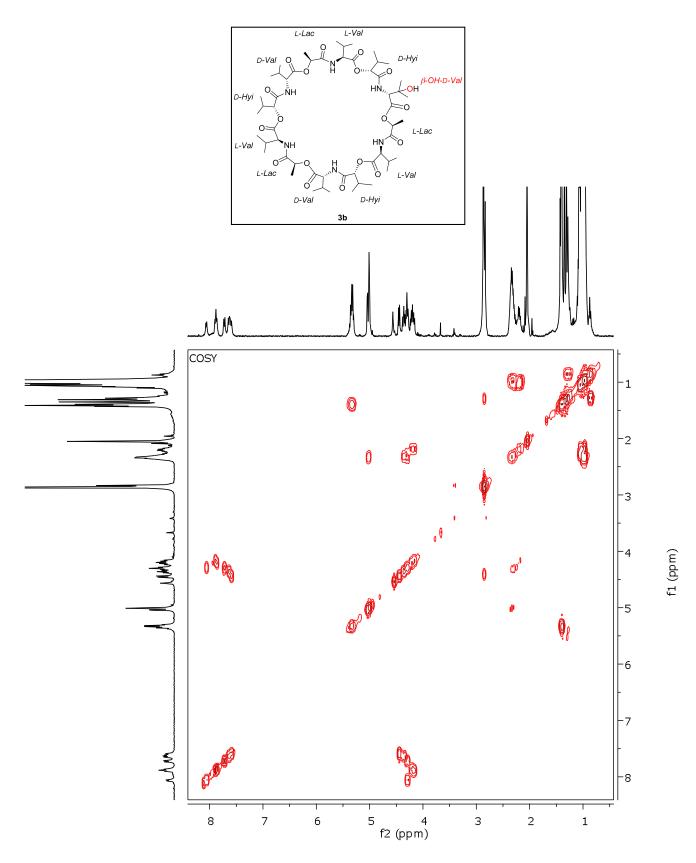
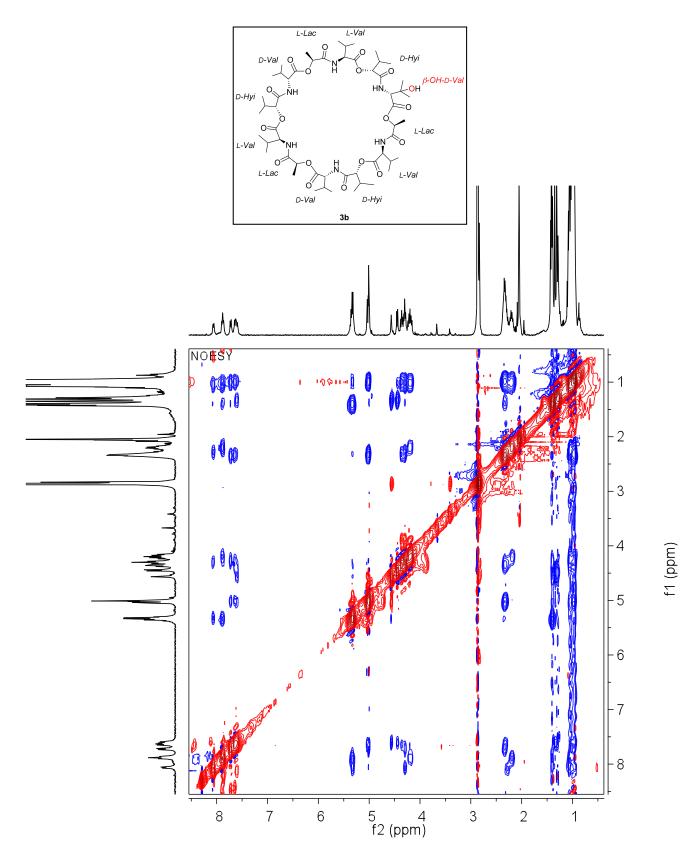
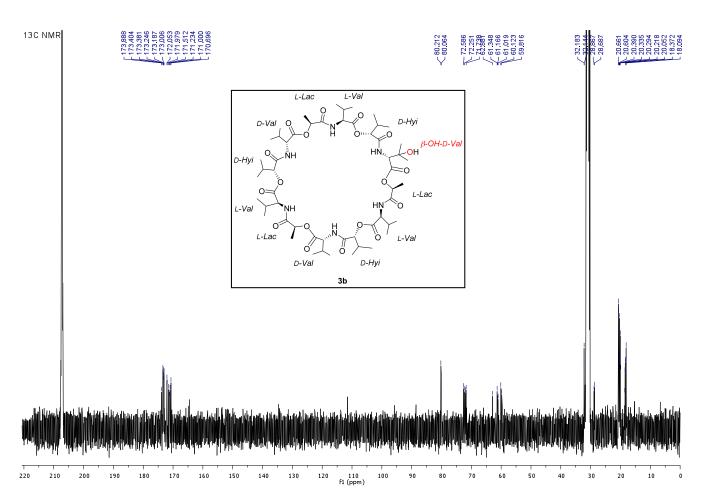



Figure S8. MALDI-ToF mass spectrum of compound 3a in the presence of KCl.

Figure S9. ¹H NMR spectrum of compound **3b** (acetone- d_6 , 400 MHz).

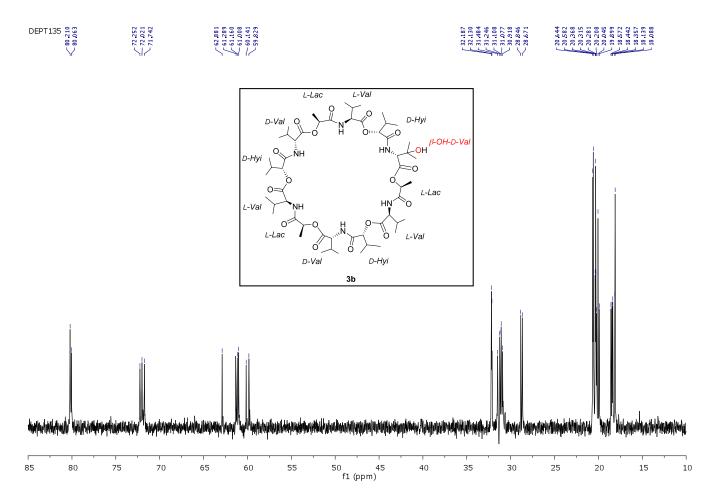

Figure S10. COSY NMR spectrum of compound 3b (acetone- d_6 , 400 MHz).

Figure *S11***.** NOESY NMR spectrum of compound **3b** (acetone- d_6 , 400 MHz, $t_{mix} = 0.35$ sec).

Figure *S12*. ¹³C NMR spectrum of compound **3b** (acetone- d_6 , 100 MHz).

Figure *S13***.** ¹³C DEPT-135 NMR spectrum of compound **3b** (acetone- d_6 , 100 MHz).

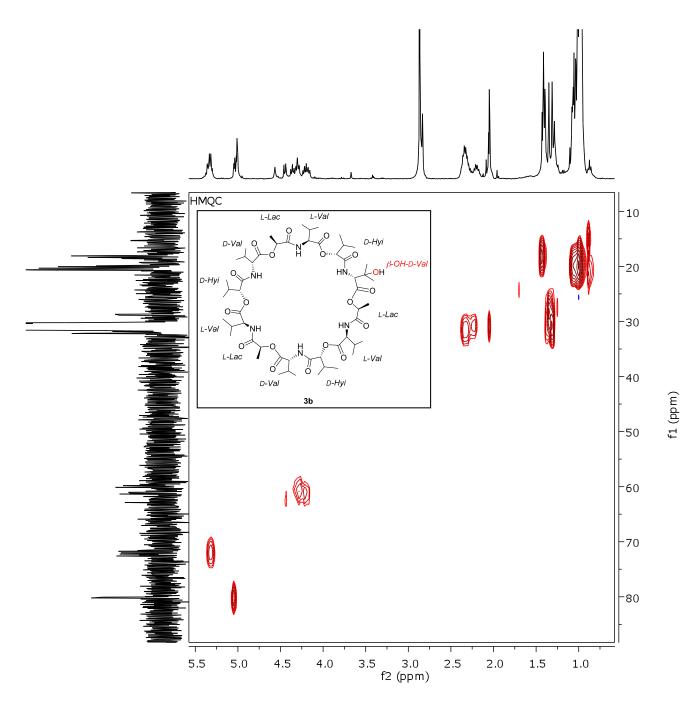
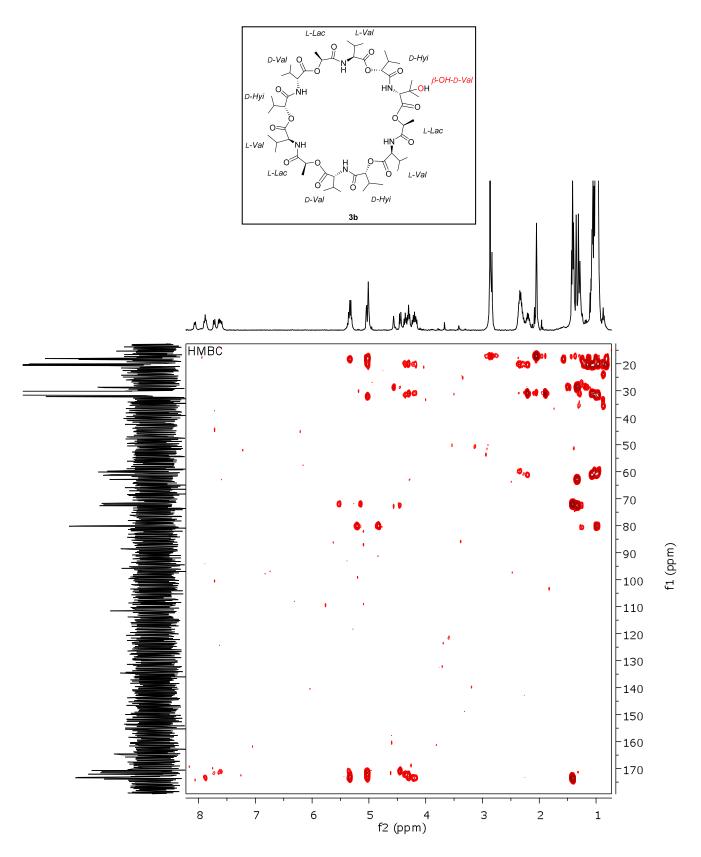



Figure S14. HMQC NMR spectrum of compound **3b** (acetone- d_6 , 400 MHz).

Figure *S15***.** HMBC NMR spectrum of compound **3b** (acetone- d_6 , 400 MHz).

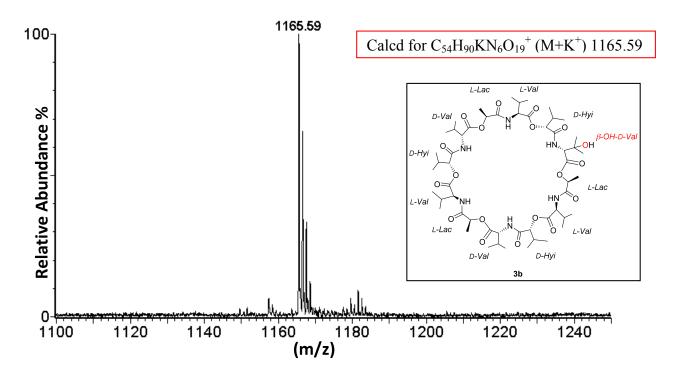
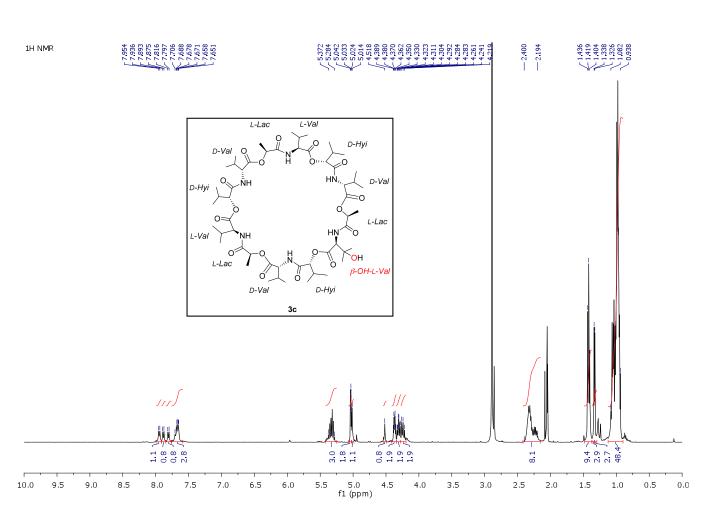



Figure *S16*. MALDI-ToF mass spectrum of compound **3b** in the presence of KCl.

Figure *S17.* ¹H NMR spectrum of compound **3c** (acetone- d_6 , 400 MHz).

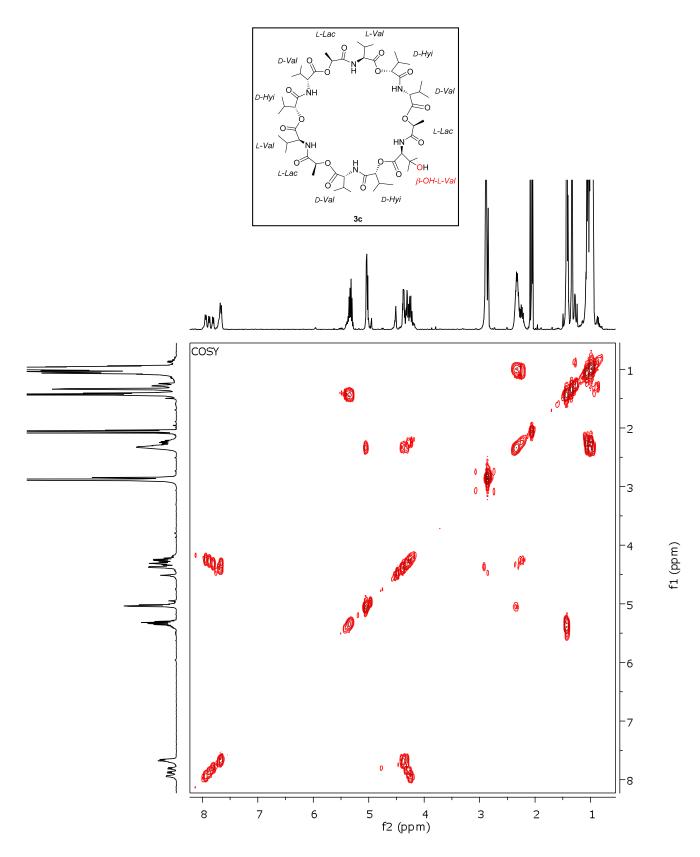
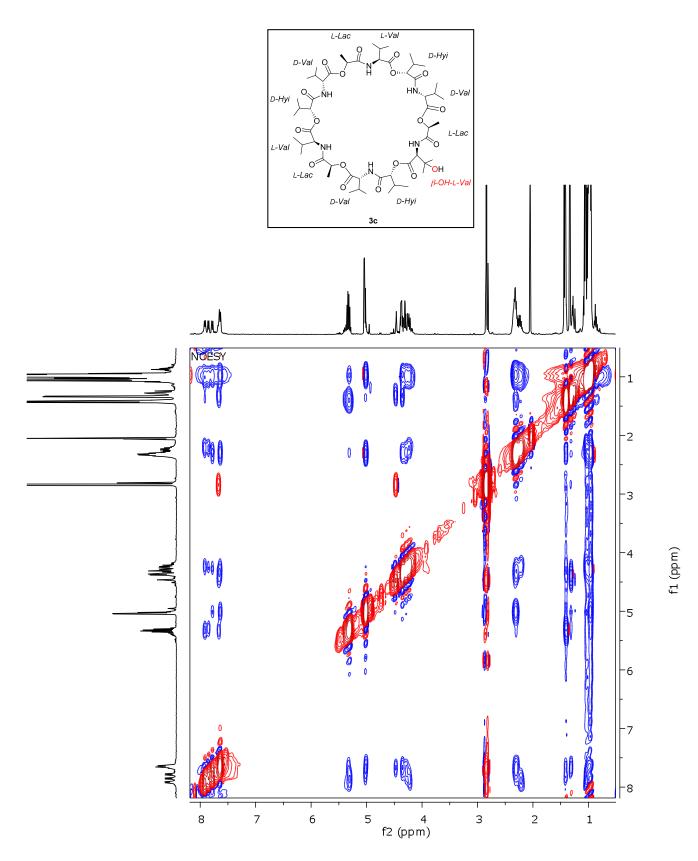
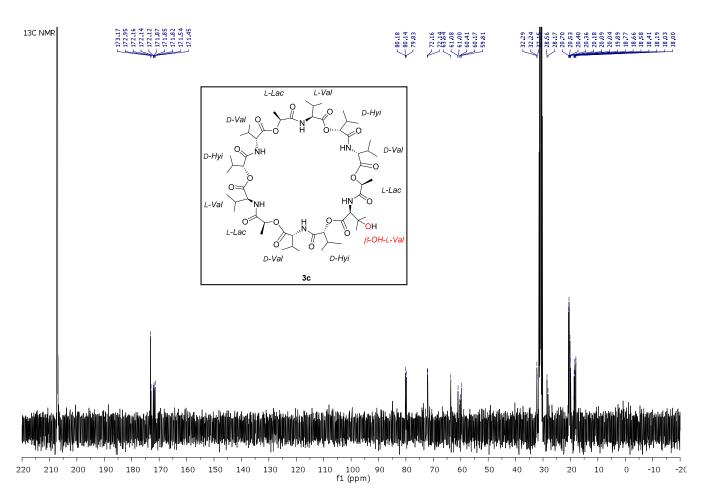




Figure S18. COSY NMR spectrum of compound 3c (acetone- d_6 , 400 MHz).

Figure *S19***.** NOESY NMR spectrum of compound **3c** (acetone- d_6 , 400 MHz, $t_{mix} = 0.35$ sec).

Figure *S20***.** ¹³C NMR spectrum of compound **3**c (acetone- d_6 , 100 MHz).

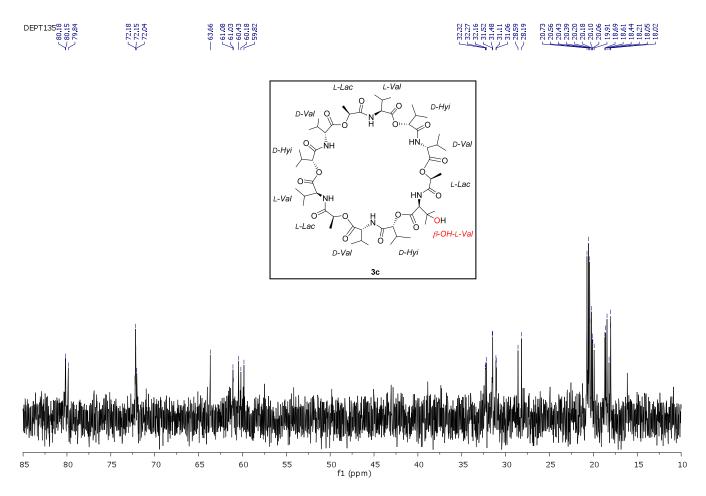
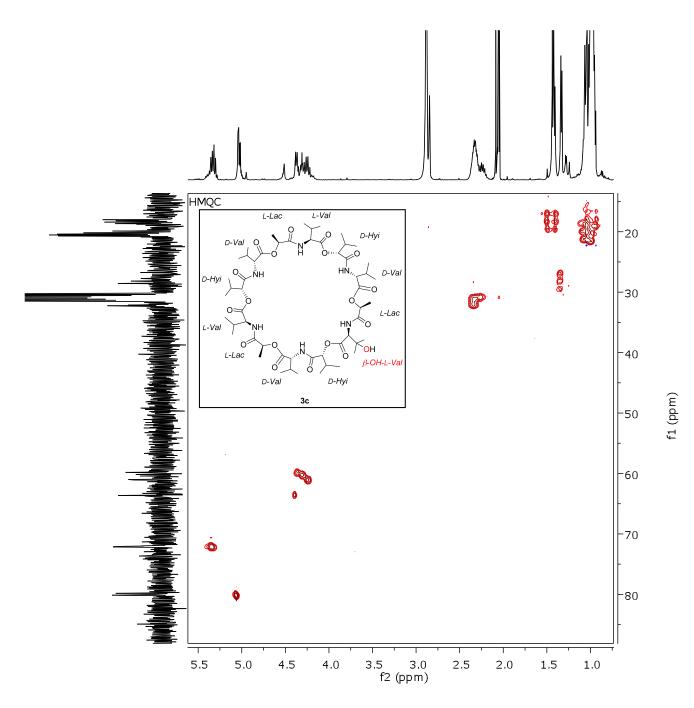
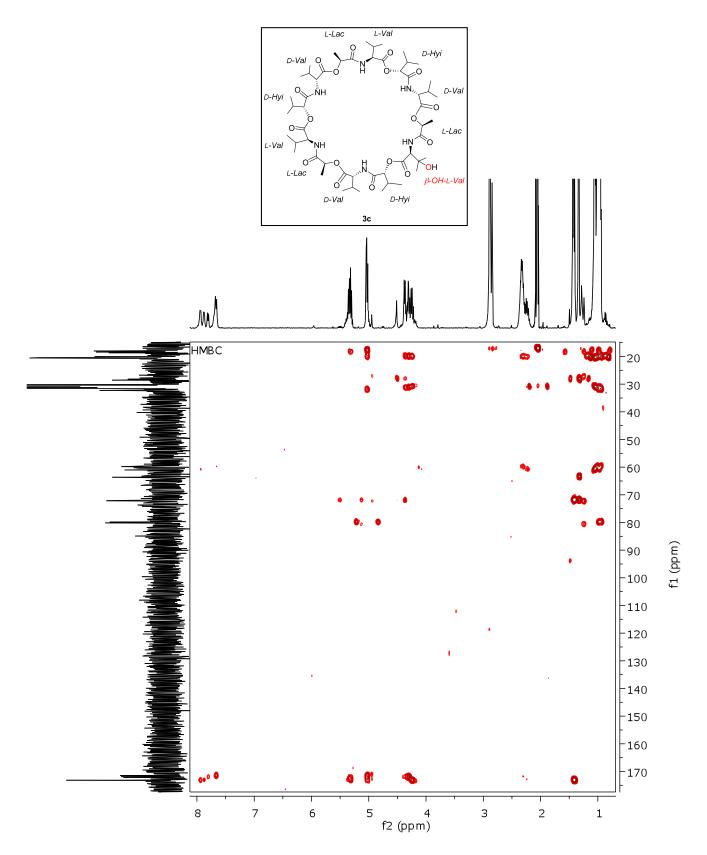




Figure S21. ¹³C DEPT-135 NMR spectrum of compound 3c (acetone- d_6 , 100 MHz).

Figure S22. HMQC NMR spectrum of compound **3c** (acetone- d_6 , 400 MHz).

Figure S23. HMBC NMR spectrum of compound **3c** (acetone- d_6 , 400 MHz).

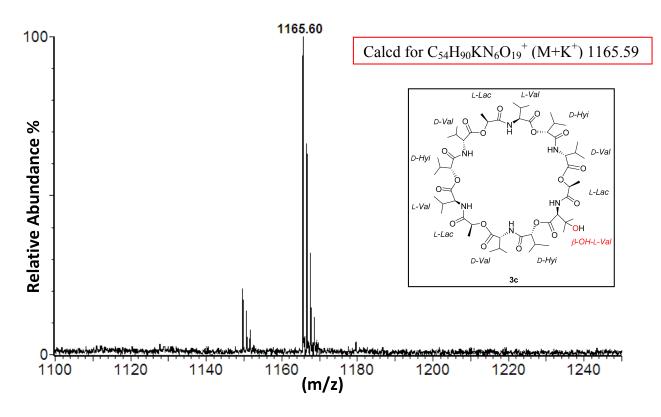


Figure S24. MALDI-ToF mass spectrum of compound 3c in the presence of KCl.