Supporting information

Posttranslational modifications of the photoreceptor-specific ABC transporter ABCA4 †

Yaroslav Tsybovsky^{‡1}, Benlian Wang^{§1}, Faraz Quazi[@], Robert S. Molday[@], Krzysztof Palczewski^{‡*}

[‡]Department of Pharmacology and [§]Center for Proteomics and Mass Spectrometry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA

[®]Department of Biochemistry and Molecular Biology, Centre for Macular Research, University of British Columbia, Vancouver, BC, V6T 1Z3 Canada

¹Equal contributions

*To whom correspondence should be addressed: E-mail: Krzysztof Palczewski (kxp65@cwru.edu). Phone: (216) 368-4631. Fax: (216) 368-1300.

Region	Position in sequence	Glycosylated ABCA4	Deglycosylated ABCA4 85%		
ECD1	46 - 651	82%			
ECD2	1392 – 1677	85%	90%		
Cyto1	856 - 1370	88%	88%		
Cyto2	1897 – 2281	97%	91%		
Transmembrane	24 - 45	69%	52%		
	652 - 855				
	1371 – 1391				
	1678 - 1896				
Total		84%	81%		

Table S1. Combined trypsin/chymotrypsin sequence coverage of native bovine ABCA4¹.

¹Mass spectrometry was performed as described in Experimental Procedures. ECD1, ECD2, Cyto1, Cyto2: exocytoplasmic domains 1 and 2, cytoplasmic domains 1 and 2, respectively.

N-glycosylation	Peptide sequence	Observed	Glycan composition
site	Ν	-glycopeptide m/z	
N415	NA <u>N</u> STFEELER	1344.54(2+)	Hex6(HexNAc) ₂
		1425.58(2+)	Hex7(HexNAc) ₂
		1506.60(2+)	Hex8(HexNAc) ₂
		1587.63(2+)	Hex9(HexNAc) ₂
N504	DIF <u>N</u> ITDR	1206.99(2+)	Hex2(HexNAc)1+Hex3(HexNAc) ₂
		1288.04(2+)	Hex3(HexNAc)1+Hex3(HexNAc) ₂
		1352.56(2+)	Hex2(HexNAc)1(NeuAc)1+Hex3(HexNAc) ₂
		1433.59(2+)	Hex3(HexNAc)1(NeuAc)1+Hex3(HexNAc) ₂
		1328.03(2+)	Hex3(HexNAc)1(phos)1+Hex3(HexNAc) ₂
N1455	CLKEEWLPEFPCGNSSPWK	1153.83(3+)	(HexNAc)1+Hex ₃ (HexNAc) ₂
	-	1221.53(3+)	$(\text{HexNAc})^2 + \text{Hex}_3(\text{HexNAc})_2$
N1527	STEILODLTDR N VSDFLVK	1137.20(3+)	Hex _e (HexNAc) ₂
		1191.22(3+)	$Hex_6(HexNAc)_2$
		1245.24(3+)	$Hex_7(HexNAc)_2$
		1299.26(3+)	$Hex_8(HexNAc)_2$
		1353.28(3+)	$Hex_9(HexNAc)_2$
N1586	LPAPPFTGEALVGFLSDLGQLM <u>N</u> VS GGPMTR	1065.51(4+)	$Hex_4(HexNAc)_2$
		1106.02(4+)	$Hex_5(HexNAc)_2$
		1146.53(4+)	$\text{Hex}_6(\text{HexNAc})_2$
N1660	DKNPEEYGITVISQPLNLTK	1213.24(3+)	$Hex_6(HexNAc)_2$
	-	1267.26(3+)	$\text{Hex}_7(\text{HexNAc})_2$
		1321.28(3+)	$Hex_8(HexNAc)_2$
		1375.30(3+)	$Hex_9(HexNAc)_2$

Table S2. Glycosylated peptides and composition of oligosaccharides in native bovine ABCA4¹.

¹Mass spectrometry was performed as described in Experimental Procedures. Hex, hexose; HexNAc, N-acetylhexosamine; NeuAc, N-acetylneuraminic acid; phos, phosphate. **Table S3**. Specificities of lectins used in this study¹.

Abbreviation	Full name	Specificity	Binding
			detected?
ConA	Concanavalin A	α-linked mannose	yes
LCA	Lens culinaris agglutinin	α-linked mannose	yes
PSA	Pisum sativum agglutinin	α -linked mannose-containing oligosaccharides	yes
WGA	Wheat germ agglutinin	N-acetylglucosamine and sialic acid	yes
Suc. WGA	Succinylated WGA	N-acetylglucosamine	yes
MAL	Maackia amurensis lectin II	$(\alpha-2,3)$ linked sialic acid	yes
UEA-I	Ulex europaeus agglutinin I	α -linked fucose	no
RCA120	Ricinus communis agglutinin I	oligosaccharides ending in galactose; N-	no
		acetylgalactosamine	
DBA	Dolichos biflorus agglutinin	α-linked N-acetylgalactosamine	
GSL-I	Griffonia (Bandeiraea) simplicifolia lectin	α -linked N-acetylgalactoeamine	no
	Ι		
SBA	Soybean agglutinin	terminal α - or β -linked N-acetylgalactosamine, galactose	no
PNA	Peanut agglutinin	galactosyl (β -1,3) N-acetylgalactosamine	no
РНА-Е, РНА-	Phaseolus vulgaris agglutinin E and L	terminal galactose, N-acetylglucosamine and mannose	no
L		residues of complex glycans on mammalian glycoproteins	

¹Details of the lectin binding assays are explained in Experimental Procedures.

MGFARQIKLL LWKNWTLRKR QKIRFVVELV WPLSLFLVLI WLRNVNPLYS KHECHFPNKA MPSAGMLPWL QGIFCNVNNP CFQSPTAGES PGIVSNYNNS 1 101 ILARVYRDFQ ELLMDAPESQ HLGQVWRELR TLSQLMNTLR MHPERIAGRG IRIREVLKDD EMLTLFLVKN IGLSDSVVYL LVNSQVRPEQ FARGVPDLML KDIACSEALL ERFLIFPQRR AAQTVRGSLC SLSQGTLQWM EDTLYANVDF FKLFHVFPRL LDSRSQGMNL RSWGRILSDM SPRIQEFIHR PSVQDLLWVT 201 RPLVQTGGPE TFTQLMGILS DLLCGYPEGG GSRVFSFNWY EDNNYKAFLG IDSTRKDPIY SYDERTTTFC NALIQSLESN PLTKIAWRAA KPLLMGKILF 301 TPDSPATRRI LKNANSTFEE LERVRKLVKV WEEVGPQIWY FFDKSTQMSM IRDTLENPTV KAFWNRQLGE EGITAEAVLN FLYNGPREGQ ADDVDNFNWR 401 DIFNITDRAL RLANQYLECL ILDKFESYDD EFQLTQRALS LLEENRFWAG VVFPDMHPWT SSLPPHVKYK IRMDIDVVEK TNKIKDRYWD SGPRADPVED 501 FRYIWGGFAY LQDMVEHGIT RSQAQEEVPV GIYLQQMPYP CFVDDSFMII LNRCFPIFMV LAWIYSVSMT VKSIVLEKEL RLKETLKNQG VSNRVIWCTW 601 FLDSFSIMSM SICLLTIFIM HGRILHYSNP FILFLFLAF SIATIMQCFL LSTFFSRASL AAACSGVIYF TLYLPHILCF AWQDRITADM KMAVSLLSPV 701 801 AFGFGTEYLA RFEEQGVGLQ WSNIGNSPME GDEFSFLMSM KMMLLDAALY GLLAWYLDQV FPGDYGTPLP WYFLLQESYW LGGEGCSTRE ERALEKTEPI TEEMEDPEYP EGINDCFFER ELPGLVPGVC VKNLVKIFEP YGRPAVDRLN ITFYESQITA FLGHNGAGKT TTLSIMTGLL PPTSGTVLVG GKDIETNLDA 901 IRQSLGMCPQ HNILFHHLTV AEHILFYAQL KGRSWDEAQL EMEAMLEDTG LHHKRNEEAR DLSGGVQRKL SVAIAFVGDA KVVVLDEPTS GVDPYSRRSI 1001 WDLLLKYRSG RTIIMSTHHM DEADILGDRI AIISQGRLYC SGTPLFLKNC FGTGFYLTLV RRMKTIQSQG RGREATCSCA SKGFSVRCPA CAEAITPEQV 1101 1201 LDGDVNELTD MVHHHVPEAK LVECIGQELI FLLPNKNFKQ RAYASLFREL EETLADLGLS SFGISDTPLE EIFLKVTEDL DSGHLFAGGT QQKRENINLR HPCSGPSEKA GOTPOGSSSH PGEPAAHPEG OPPPEREGHS RLNSGARLIV OHVOALLVKR FOHTIRSHKD FLAOIVLPAT FVFLALMLSL IIPPFGEYPA 1301 LTLHPWMYGO OYTFFSMDOP DSEWLSALAD VLVNKPGFGN RCLKEEWLPE FPCGNSSPWK TPSVSPDVTH LLOOOKWTAD OPSPSCRCST REKLTMLPEC 1401 PEGAGGLPPP QRIQRSTEIL QDLTDRNVSD FLVKTYPALI RSSLKSKFWV NEQRYGGISV GGKLPAPPFT GEALVGFLSD LGQLMNVSGG PMTREAAKEM 1501 PAFLKQLETE DNIKVWFNNK GWHALVSFLN VAHNAILRAS LHKDKNPEEY GITVISQPLN LTKEQLSEIT VLTTSVDAVV AICVIFAMSF VPASFVLYLI 1601 QERVNKAKHL QFVSGVSPTT YWLTNFLWDI MNYTVSAALV VGIFIGFQKK AYTSSENLPA LVALLMLYGW AVIPMMYPAS FLFDIPSTAY VALSCANLFI 1701 GINSSAITFV LELFENNRTL LRINAMLRKL LIIFPHFCLG RGLIDLALSQ AVTDVYAQFG EAHSSNPFQW DLIGKNLAAM AVEGVVYFLL TLLIQYQFFF 1801 SRWTTEPAKE PITDEDDDVA EERQRIISGG NKTDILRLNE LTKVYSGTSS PAVDRLCVGV RPGECFGLLG VNGAGKTTTF KMLTGDTAVT SGDATVAGKS 1901 ILTNISDVHQ SMGYCPQFDA IDDLLTGREH LYLYARLRGV PAEEIERVTN WSIQSLGLSL YADRLAGTYS GGNKRKLSTA IALIGCPPLV LLDEPTTGMD 2001 2101 PQARRMLWNT IMGIIREERA VVLTSHSMEE CEALCTRLAI MVKGAFQCLG TIQHLKSKFG DGYIVTMKIR SPKDDLLPDL GPVEQFFQGN FPGSVQRERH 2201 YNTLQFQVSS SSLARIFRLL VSHKDSLLIE EYSVTQTTLD QVFVNFAKQQ NETYDLPLHP RTAGASRQAK EVDKGNSAPQ G

Fig. S1. Sequence coverage of glycosylated native bovine ABCA4. Peptides detected after digestion by trypsin are indicated in red, and those by chymotrypsin in blue. Protein purification, enzymatic digestion and mass spectrometry experiments are described in Experimental Procedures.

1	MGFARQIKLL	LWKNWTLRKR	QKIRFVVELV	WPLSLFLVLI	WLRNVNPLYS	KHECHFPNKA	MPSAGMLPWL	QGIFCNVNNP	CFQSPTAGES	PGIVSNYNNS
101	ILAR <u>VYRDFQ</u>	ELLMDAPESQ	HLGQVWRELR	TLSQLMNTLR	MHPERIAGRG	IRIR <u>EVLKDD</u>	EMLTLFLVKN	IGLSDSVVYL	LVNSQVRPEQ	FARGVPDLML
201	<u>KDIACSEALL</u>	ERFLIFPQRR	AAQTVRGSLC	SLSQGTLQWM	EDTLYANVDF	FKLFHVFPRL	LDSR <u>SQGMNL</u>	RSWGRILSDM	<u>SPR</u> IQEFIHR	PSVQDLLWVT
301	RPLVQTGGPE	TFTQLMGILS	DLLCGYPEGG	GSRVFSFNWY	EDNNYKAFLG	IDSTRKDPIY	SYDERTTTFC	NALIQSLESN	PLTKIAWRAA	KPLLMGKILF
401	<u>TPDSPATR</u> RI	LK <u>NANSTFEE</u>	<u>LER</u> VRKLVK <u>V</u>	WEEVGPQIWY	FFDKSTQMSM	IRDTLENPTV	KAFWNRQLGE	EGITAEAVLN	FLYNGPREGQ	ADDVDNFNWR
501	DIFNITDRAL	RLANQYLECL	ILDKFESYDD	EFQLTQRALS	LLEENRFWAG	VVFPDMHPWT	SSLPPHVKYK	IRMDIDVVEK	TNKIKDRYWD	SGPRADPVED
601	FRYIWGGFAY	LQDMVEHGIT	RSQAQEEVPV	GIYLQQMPYP	CFVDDSFMII	LNRCFPIFMV	LAWIYSVSMT	VK <u>SIVLEK</u> EL	RLKETLKNQG	VSNRVIWCTW
701	FLDSFSIMSM	SICLLTIFIM	HGRILHYSNP	FILFLFLLAF	SIATIMQCFL	LSTFFSRASL	AAACSGVIYF	TLYLPHILCF	AWQDRITADM	KMAVSLLSPV
801	AFGFGTEYLA	RFEEQGVGLQ	WSNIGNSPME	GDEFSFLMSM	KMMLLDAALY	GLLAWYLDQV	FPGDYGTPLP	WYFLLQESYW	LGGEGCSTRE	ERALEK <u>TEPI</u>
901	TEEMEDPEYP	EGINDCFFER	ELPGLVPGVC	VKNLVKIFEP	YGRPAVDRLN	ITFYESQITA	FLGHNGAGKT	TTLSIMTGLL	PPTSGTVLVG	GKDIETNLDA
1001	<u>IR</u> QSLGMCPQ	HNILFHHLTV	AEHILFYAQL	KGRSWDEAQL	EMEAMLEDTG	LHHKRNEEAR	DLSGGVQRKL	SVAIAFVGDA	KVVVLDEPTS	GVDPYSRRSI
1101	WDLLLKYRSG	RTIIMSTHHM	DEADILGDRI	AIISQGRLYC	SGTPLFLKNC	FGTGFYLTLV	RRMKTIQSQG	RGREATCSCA	SKGFSVR <u>CPA</u>	CAEAITPEQV
1201	LDGDVNELTD	MVHHHVPEAK	LVECIGQELI	FLLPNKNFKQ	RAYASLFREL	EETLADLGLS	SFGISDTPLE	EIFLKVTEDL	DSGHLFAGGT	QQKRENINLR
1301	HPCSGPSEKA	GQTPQGSSSH	PGEPAAHPEG	QPPPEREGHS	RLNSGARLIV	QHVQALLVKR	FQHTIRSHKD	FLAQIVLPAT	FVFLALMLSL	IIPPFGEYPA
1401	LTLHPWMYGQ	QYTFFSMDQP	DSEWLSALAD	VLVNKPGFGN	RCLKEEWLPE	FPCGNSSPWK	TPSVSPDVTH	LLQQQKWTAD	QPSPSCRCST	REKLTMLPEC
1501	PEGAGGLPPP	QRIQRSTEIL	QDLTDRNVSD	FLVKTYPALI	RSSLKSKFWV	NEQRYGGISV	GGKLPAPPFT	GEALVGFLSD	LGQLMNVSGG	PMTREAAKEM
1601	PAFLKQLETE	DNIKVWFNNK	GWHALVSFLN	VAHNAILRAS	LHKDKNPEEY	GITVISQPLN	LTKEQLSEIT	VLTTSVDAVV	AICVIFAMSF	VPASFVLYLI
1701	QERVNKAKHL	QFVSGVSPTT	YWLTNFLWDI	MNYTVSAALV	VGIFIGFQKK	AYTSSENLPA	LVALLMLYGW	AVIPMMYPAS	FLFDIPSTAY	VALSCANLFI
1801	GINSSAITFV	LELFENNRTL	LRINAMLRKL	LIIFPHFCLG	RGLIDLALSQ	AVTDVYAQFG	EAHSSNPFQW	DLIGKNLAAM	AVEGVVYFLL	TLLIQYQFFF
1901	SRWTTEPAKE	PITDEDDDVA	EERQRIISGG	NKTDILRLNE	LTKVYSGTSS	PAVDRLCVGV	RPGECFGLLG	VNGAGKTTTF	KMLTGDTAVT	SGDATVAGKS
2001	ILTNISDVHQ	SMGYCPQFDA	IDDLLTGREH	LYLYARLRGV	PAEEIERVTN	WSIQSLGLSL	YADRLAGTYS	GGNKRKLSTA	IALIGCPPLV	LLDEPTTGMD
2101	PQARRMLWNT	IMGIIREERA	VVLTSHSMEE	CEALCTRLAI	MVKGAFQCLG	TIQHLKSKFG	DGYIVTMKIR	SPKDDLLPDL	GPVEQFFQGN	FPGSVQRERH
2201	YNTLQFQVSS	SSLARIFRLL	VSHKDSLLIE	EYSVTQTTLD	QVFVNFAKQQ	NETYDLPLHP	RTAGASRQAK	EVDKGNSAPQ	G	

Fig. S2. Sequence coverage of ABCA4 deglycosylated with PNGas F. Seven peptides containing the N-glycosylation motif N-X-S/T (where X is any amino acid except proline) were detected based on conversion of Asn residues to Asp by PNGase F. Peptides detected after digestion by trypsin are indicated in red, and those by chymotrypsin in blue.

Fig. S3. Determination of glycan compositions in native bovine ABCA4. Representative tandem mass spectra of glycosylated peptides listed in **Table S2** reflect collision-induced dissociation of attached oligosaccharides. See Experimental Procedures and Results for details.

Fig. S4. Tandem mass spectrum of **TEPITEEMEDPEYPEGINDCFFER**, peptide 897-920, with doubly charged precursor ion m/z of 1514.09 suggests phosphorylation of T901 (shown in red).

Fig. S5. Tandem mass spectrum of **AGQTPQGSSSHPGEPAAHPEGQPPPER**, peptide 1310-1336, with triply charged precursor ion m/z of 928.42. Mass shift on precursor ion of +80 Da and loss of H_3PO_4 on precursor ion and b_4 ions suggest phosphorylation of T1313 (shown in red).

Fig. S6. Tandem mass spectrum of **AGQTPQGSSSHPGEPAAHPEGQPPPER**, peptide 1310-1336, with triply charged precursor ion m/z of 955.07. Mass shift of +160 Da and the neutral loss of $2H_3PO_4$ on the precursor ion suggest two phosphorylation sites on this peptide. One site is on T1313 (shown in red), the other is among S1317 -1319.

Fig. S7. Tandem mass spectrum of peptide **AGQTPQGSSSHPGEPAAHPEGQPPPER**, peptide 1310-1336, with the triply charged precursor ion m/z of 981.73. Mass shift of +240 Da suggests three phosphorylation sites on this peptide. One site is on T1313 (shown in red), the two others are among S1317 -1319.

Fig. S8. Tandem mass spectrum of **GFSVR**, peptide 1183-1187, with doubly charged precursor ion m/z of 323.24 suggests a phosphorylation site on S1185 (shown in red).

AGQTPQGSSSHPGEPAAHPEGQPPPER

Fig. S9. Chromatograms showing base peaks corresponding to the

AGQTPQGSSSHPGEPAAHPEGQPPPER peptide (residues 1310-1326) phosphorylated at 0, 1, 2 and 3 sites (top to bottom). Phosphorylation sites described in the current paper are shown in red (only two of the three consecutive Ser residues became phosphorylated). Calculated from the corresponded peak areas, the ratios of the unphosphorylated peptide to the peptides carrying 1, 2 and 3 phosphate groups are 1:0.29, 1:0.11 and 1:0.03, respectively.

Fig. S10. Dephosphorylation of native bovine ABCA4 with PP2A at 4°C. PP2A treated samples of ABCA4 were resolved on a SDS-PAGE gel and stained with ProQ Diamond as described in Experimental Procedures. ini: ABCA4 before addition of PP2A.