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SUPPLEMENTARY MATERIAL 
 
Activation, Fast Inactivation, and Slow Inactivation Analysis 

Conductance curves were computed from current/voltage relationships using the 
equation: 

 
Equation S1: G = Imax/(Vm-Erev) 

 
where, G is conductance, Imax represents the peak test pulse current, Vm is the test pulse voltage, 
and Erev is the measured reversal potential. Values were plotted as a function of test potential and 
then fitted with the Boltzmann equation: 
 

Equation S2: f(x) = 1/(1+exp(-ze0(Vm-V1/2)kT)) 
 
where, z is the apparent valence, e0 is the elementary charge, V1/2 is the midpoint, T is the 
recording temperature in °K, and k is the Boltzmann constant. Steady-state fast inactivation and 
steady-state slow inactivation data were fitted with a modified Boltzmann equation: 
 

Equation S3: f(x) = (I1-I2)/(1 + exp(-ze0(Vm-V1/2)kT)) + I2 
 
where, I1-I2 are the maximum and minimum values of the fit, respectively. All other values are 
identical to Equation S2. The time constants of the recovery and onset of fast inactivation and the 
recovery (pH 6.0 only) and onset of slow inactivation were calculated from the single 
exponential equation: 
 

Equation S4: f(x) = Yo + Aexp(-x/τ) 
 
where, Y0 is the asymptote of the fit, A is the relative component of the exponent, τ is the time 
constant, and x is time. The time constants of fast inactivation onset and recovery were plotted as 
a function of prepulse and interpulse voltage, respectively, and fitted with the Eyring model: 

 
Equation S5: f(x) = 1/[(τMexp(-wb(V-VP)/T)) + (τMexp(w(1-b)(V-VP)/T))] 

 
where, τM is the inverse of the maximum time constant, w is the reaction velocity, b is the barrier 
distance, V is the voltage,  VP is the voltage at the peak of the fit, and T is the temperature. Slow 
inactivation recovery (pH 7.4 only) and use-dependent inaction data were fitted with the double 
exponential equation: 
 

Equation S6:  f(x) = Yo + A1exp(-x/τ1) + A2exp(-x/τ2) 
 
where, Y0 is the asymptote of the fit, A1 is the relative component of the first exponent, τ1 is the 
slow time constant, A2 is the relative component of the second exponent, τ2  is the fast time 
constant and x is time. Goodness of fit for slow inactivation recovery data was based on reduced 
χ2 analyses. 
 
 



Modeling Parameters 
The original ten Tusscher model (1) was programmed into Python code using the 

modules NumPy© (Enthought Inc., Austin, TX, USA), matplotlib© (John Hunter). The code was 
then updated to include their new calcium current and slow delayed potassium current equations 
(2, 3).  A late persistent sodium current was added following the formulas of Hund and Rudy (4).  
The maximal sodium conductance value was replaced with the Luo-Rudy dynamic model value 
to better reflect our experimental data (5).  The slow delayed rectifier potassium conductance 
(GKr) was changed to incorporate the role of internal calcium concentrations on GKs (6). The late 
sodium maximal conductance value was changed to reflect the data collected by (7).  These data 
show the differing persistent sodium current in the different types of cardiac myocytes. We 
collected slow inactivation recovery time constants at -150 mV and -130 mV and time constants 
of slow inactivation onset at 0 mV and 20 mV. To incorporate a range of time constants that 
would coincide with the voltages of a ventricular action potential, as was done for the kinetics of 
fast inactivation, the slow inactivation time constants that we collected were normalized to those 
collected by Richmond et al. (1998). This allowed us to generate a range of time constants 
applicable to the spectrum of voltages in a ventricular action potential (8). The new time 
constants were then fitted with two exponential equations and incorporated into the model (8). 
Finally, our (1) steady-state conductance and inactivation curves, (2) fast and slow inactivation 
time constants of both recovery and onset, and (3) normalized late sodium currents were 
incorporated into the model to reflect the different sodium current properties at pH 7.4 versus pH 
6.0. The model was run for epicardial, mid-myocardial, and endocardial ventricular 
cardiomyocytes at 1 Hz (Fig. 6). Time constants for onset and recovery of fast inactivation and 
slow inactivation were also adjusted to be consistent with our experimentally-derived 
measurements of these parameters. Tables S1, S2, and S3 outline the specific values of the 
parameters used in the model.	  

Table	  S1:	  Modeling	  parameters	  of	  steady-‐state	  activation	  and	  fast	  inactivation	  
 

V½ z 

 
pH 7.4 pH 6.0 pH 7.4 pH 6.0 

Proton Block 

Scaling Factor 

@ pH 6.0 

Activation -35.49 -35.49 3.35 3.35 0.62 

Fast inactivation -77.16 -73.23 -4.75 -4.46  

	  



Table	  S2:	  Modeling	  parameters	  of	  steady-‐state	  slow	  inactivation 

V½ z 

pH 7.4 pH 6.0 pH 7.4 pH 6.0 

Maximal probability 

of SI pH 7.4 

Maximal probability 

of SI, pH 6.0 

-82.66 -83.09 -3.63 -3.13 0.52 0.53 

 
Steady-state values of the fits from Table S1 and Table S2 were derived using: 
Eq. S3:  f(x) = 1/(1+exp(-ze0(Vm-V1/2)kT)), 
Eq. S4:  f(x) = (I1-I2)/(1 + exp(-ze0(Vm-V1/2)kT)) + I2 
	  

Table	  S3:	  Maximal	  conductance	  of	  late	  sodium	  current	  

 Epicardial Endocardial Mid-Myocardial 

pH 7.4 0.0565 0.0650 0.1910 

pH 6.0 0.0853 0.0982 0.2884 

 
 



Supplementary Figures 
Figure S1 

 
 
 

 
 
Figure S1.  
pH modulation of NaV1.5–β1 subunit. (A) Normalized conductance and steady-state fast 
inactivation curves recorded from NaV1.5 expressed without the β1 subunit at pH 7.4 (squares) 
and pH 6.0 (circles). (B) Open-state fast inactivation kinetics of NaV1.5 recorded at pH 7.4 
(squares) and pH 6.0 (circles).  Time constants are plotted as a function of test potential. (C) 
Use-dependent inactivation of NaV1.5 recorded at pH 7.4 (squares) and pH 6.0 (circles).  All 
effects were slightly smaller than, but not statistically different from, those observed in 
NaV1.5+β1.  
 



Figure S2 
 

 
 
Figure S2. Modeling recapitulates experimental data. (A and B) Conductance and steady-state 
fast inactivation curves in NaV1.5+β1 recorded at pH 7.4 (squares) and pH 6.0 (circles). Fit lines 
represent modeling data at each respective pH. (C) Modeled epicardial, mid-myocardial, and 
epicardial human ventricular action potentials incorporating NaV1.5+β1 data recorded at pH 7.4 
(blue) and pH 6.0 (red). pH 6.0 data preferentially prolonged mid-myocardial action potentials 
over epicardial and endocardial action potentials. 
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