Supplemental Material to:

Stepwise adaptations to low temperatures as revealed by multiple mutants of a psychrophilic α-amylase from an Antarctic bacterium

Alexandre Cipolla[‡], Salvino D'Amico[‡], Roya Barumandzadeh[§],

André Matagne[§] and Georges Feller^{‡1}

From the [‡]Laboratory of Biochemistry and the [§]Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, University of Liège, B-4000 Liège-Sart Tilman, Belgium

Contents

Supplemental Fig. S1:Sequence alignment of α-amylasesSupplemental Fig. S2:Stern-Volmer plots of fluorescence quenchingSupplemental Fig. S3:Unfolding reversibility in DSCSupplemental Table S1:Thermodynamic parameters from DSCSupplemental Fig. S4:Stability curvesSupplemental Fig. S5:Stability of α-amylase-acarbose complexesSupplemental Table S2:Stability parameters of acarbose complexes

АНА	TPTTFVHLFEWNWQDVAQECEQYLGPKGYAAVQVSPPNEHITGSQW <mark>W</mark> T	48
Mut5	TPTTFVHLFEWNWQDVAQECEQYLGPKGYAAVQVSPPNEHITGSQW <mark>W</mark> T	48
Mut5CC	TPTTFVHLFEWNWODVAOECEOYLGPKGYAAVOVSPPNEHITGSOWWT	48
PPA	QYAPQTQSGRTSIVHLFEWRWVDIALECERYLGPKGFGGVQVSPPNENIVVTNPSRPW <mark>W</mark> E	60
АНА	R <mark>YQ</mark> PVSYEL <mark>Q</mark> SRGGNRAQFIDMVNRCSAAGVDIYV <mark>D</mark> TLI <mark>NH</mark> MAAGSGTGT- <mark>A</mark> GNSFG	104
Mut5	R <mark>YQ</mark> PVSYEL <mark>O</mark> SRGGNRAQFIDMVNRCSAAGVDIYV <mark>D</mark> TLI <mark>NH</mark> MAAGSGTGT- <mark>A</mark> GNSFG	104
Mut5CC	R <mark>YQ</mark> PVSYEL <mark>C</mark> SRGGNRAQFIDMVNRCSAAGVDIYV <mark>D</mark> TLI <mark>NH</mark> MAAGSGTGT- <mark>C</mark> GNSFG	104
PPA	R <mark>YQ</mark> PVSYKL <mark>C</mark> TRSGNENEFRDMVTRCNNVGVRIYV <mark>D</mark> AVI <mark>NH</mark> MCGSGAAAGTGTT <mark>O</mark> G-SYC	119
АНА	NKSFPIYSPQDFHES-CTINNSDYGNDRYRVQNCEL <mark>V</mark> G <mark>L</mark> ADLDTAS <mark>N</mark> YVQNTI	156
Mut5	NKSFPIYSPQDFHES-CTINNSDYGNDRYRVQNCEL <mark>V</mark> GLADLDTAS <mark>D</mark> YVQNTI	156
Mut5CC	NKSFPIYSPQDFHES-CTINNSDYGNDRYRVQNCEL <mark>V</mark> GLADLDTAS <mark>D</mark> YVQNTI	156
PPA	NPGNREFPAVPYSAWDFNDGKCKTASGGIESYNDPYQVRDCQL <mark>V</mark> G <mark>L</mark> LDLALEK <mark>D</mark> YVRSMI	179
АНА	AAYINDL <mark>Q</mark> AIGVKGF <mark>RFDA</mark> S <mark>KH</mark> VAASDIQSLMAKVNGS-P <mark>V</mark> VFQ <mark>E</mark> VIDQ <mark>G</mark> G	206
Mut5	AAYINDL <mark>I</mark> AIGVKGF <mark>RFDASKH</mark> VAASDIQSLMAKVNGS-P F VFQEVIDQ <mark>G</mark> G	206
Mut5CC	AAYINDLTAIGVKGFRFDASKHVAASDIQSLMAKVNGS-PFVFQEVIDQGG	206
PPA	ADYLNKL <mark>I</mark> DIGVAGF <mark>RIDA</mark> SKHMWPGDIKAVLDKLHNLNTNWFPAGSRP <mark>H</mark> IFQ <mark>E</mark> VIDL <mark>G</mark> G	239
АНА	<mark>E</mark> AVGASEYLSTGLVTEFKYSTELGN <mark>T</mark> FRNGSLAWLSNFGEGWGFMPSSSAVVFVD <mark>NH</mark>	263
Mut5	<mark>E</mark> AVGASEYLSTGLVTEFKYSTELGN <mark>V</mark> FRNGSLAWLSNFGEGWGFMPSSSAVVFVD <mark>NH</mark>	263
Mut5CC	<mark>E</mark> AVGASEYLSTGLVTEFKYSTELGN <mark>V</mark> FRNGSLAWLSNFGEGWGFMPSSSAVVFVD <mark>NH</mark>	263
PPA	<mark>E</mark> AIQSSEYFGNGRVTEFKYGAKLGT <mark>W</mark> VRKWSGEKMSYLKNWGEGWGFMPSDRALVFVD <mark>NH</mark>	299
АНА	DNQR <mark>GHG</mark> GAGN-VI-TFEDGRLYDLANVFMLAYPYGYP <mark>Y</mark> VMSSYDFHGDTDA	313
Mut5	DNQR <mark>GHG</mark> GAGN-VI-TFEDGRLYDLANVFMLAYPYGYP <mark>R</mark> VMSSYDFHGDTDA	313
Mut5CC	DNQR <mark>GHG</mark> GAGN-VI-TFEDGRLYDLANVFMLAYPYGYP <mark>R</mark> VMSSYDFHGDTDA	313
PPA	DNQR <mark>GHG</mark> - <mark>A</mark> GGASILTFWDARLYKVAVGFMLAHPYGFT <mark>A</mark> VMSSYRWARNFVNGQDVNDWI	358
АНА	GGPNVPVHNNGNLECFASNWKCEHRWSYIAGGVDFRNNTADNWAVTNWWDNTNNQ	368
Mut5	GGPNVPVHNNGNLECFASNWKCEHRWSYIAGGVDFRNNTADNWAVTNWWDNTNNQ	368
Mut5CC	GGPNVPVHNNGNLECFASNWKCEHRWSYIAGGVDFRNNTADNWAVTNWWDNTNNQ	368
PPA	GPPNNNGVIKEVTINADTTC-GNDWVCEHRWRQIRNMVWFRN-VVDGQPFANWWANGSNQ	416
АНА	ISFGRGSSGHMAINKEDSTLTATVQTDMASGQYCNVLKGELSADAKSCSGEVITVNSDGT	428
Mut5	ISFGRGSSGHMAINKEDSTLTATVQTDMASGQYCNVLKGELSADAKSCSGEVITVNSDGT	428
Mut5CC	ISFGRGSSGHMAINKEDSTLTATVQTDMASGQYCNVLKGELSADAKSCSGEVITVNSDGT	428
PPA	VAFGRGNRGFIVFNNDDWQLSSTLQTGLPGGTYCDVISGDKVGNSCTGIKVYVSSDGT	474
АНА	INLNIGAWD-AMAIHKNAKLNTSSAS 453	
Mut5	INLNIGAWD-AMAIHKNAKLNTSSAS 453	
Mut5CC	INLNIGAWD-AMAIHKNAKLNTSSAS 453	
PPA	AOFSISNSAEDPFIAIHAESKL 496	

Supplemental Figure S1: Sequence alignment of the psychrophilic AHA, its multiple mutants Mut5 and Mut5CC, and of the mesophilic PPA. The mutations engineered in Mut5 and in Mut5CC are shown in red. The 24 conserved residues forming the active site cleft are shown in blue.

Supplemental Figure S2: Stern-Volmer plots of fluorescence quenching by acrylamide. The quenching constant K_{SV} values corresponding to the plot slope are 11.7, 12.1 and 13.0 M^{-1} at 4°C and 21.3, 20.7 and 20.4 M^{-1} at 30°C for AHA, Mut5 and Mut5CC, respectively.

Supplemental Figure S3: Unfolding reversibility of the mutants in the presence of a nondetergent sulfobetaine. Thermograms were recorded in 30 mM Mops, 50 mM NaCl, 1 mM Ca Cl₂, 1 M 3-(1-pyridinio)-1-propanesulfonate, pH 7.2 at a scan-rate of 60 K h⁻¹. Red traces: first up-scans interrupted after completion of the unfolding transition. Black traces: second up-scans performed after sample cooling. Raw data have been displaced along the Y axis for clarity.

Supplemental TABLE S1

	™ °C	∆H _{cal} kcal mol¹	∆H _{eff} kcal mol⁻¹	∆H _{cal} / ∆H _{eff}	Reversibility %
AHA	44.0	214	203	1.05	>99
Mut5	49.7	233	204	1.14 ¹	>98
Mut5CC	52.2	280	270	1.04	>98
PPA ²	65.6	319	3	3	none

Thermodynamic parameters of unfolding derived from reversible DSC endotherms

¹ despite a ratio close to 1, unfolding deviates from a two-state model as a result of an asymmetric transition

² data from (44)

³ not applicable, biphasic transition

Supplemental Figure S4: Stability curves calculated from DSC data. The Gibbs free energy of unfolding was calculated as described (22) by the relation:

 $\Delta G(T) = \Delta H_{cal}(1-T/T_m) + \Delta Cp(T-T_m) - T\Delta Cp \ln (T/T_m)$

using ΔCp = 8.47 kcal mol⁻¹ K⁻¹ as determined experimentally for AHA (44). Dashed, estimation of PPA stability from its irreversible unfolding parameters.

Supplemental Figure S5: Stability of α **-amylase-acarbose complexes.** DSC endotherms of α -amylases in the free state (black lines) and in complex with the transition state analog acarbose (red lines). T_{max} corresponds to the top of the transition and ΔH_{cal} to the surface below the transition (Table S2). Baseline subtracted data have been normalized for protein concentration.

Supplemental TABLE S2

	Free	Free enzyme		Enzyme-acarbose complex		$\Delta T_{max} \Delta \Delta H_{cal}$	
	T_{max} °C	ΔH_{cal} kcal mo $arGamma^1$	$\overline{T_{max}}_{\circ C}$	ΔH_{cal} kcal mo Γ^1	°C	kcal mol ¹	
AHA	44.0	214	60.6	329	16.6	115	
Mut5	49.4	229	58.4	282	9.0	53	
Mut5CC	51.8	277	60.1	293	8.3	16	
PPA ^a	65.6	295	81.9	306	16.3	11	

Microcalorimetric parameters of thermal unfolding for α -amylases in the free state and in complex with the pseudosaccharide inhibitor acarbose.

^a data from (22)