Supplemental information

Supplemental tables

|--|

Gene name	EC Number	Enzyme	Oligo name	DNA sequence	
ST6GAL1	FC:24004	ST6Gal-I	Forward-HindIII	AAAAA AAGCTT ATGATTCACACCAACCTG	
	LO.2.4.99.1		Reverse-Xbal	AAAAA TCTAGA GCAGTGAATGGTCCG	
	EC:2 4 1 22	Colt I	Forward-HindIII	AAAAA AAGCTT ATGAGGCTTCGGGAG	
B4GALT1	EG.2.4.1.22	GalT-I	Reverse-Xbal	AAAAA TCTAGA CTTGCTGGTGTCCC	
110171	EC:2 4 1 101	GlcNAcT-I	Forward-BamHI	AAAAA GGATCC ATGCTGAAGAAGCAGTCTG	
MGATT	LO.2.4.1.101		Reverse-Xbal	AAAAA TCTAGA ATTCCAGCTAGGATCATAGC	
MGAT2	EC:2.4.1.143	GlcNAcT-II	Forward- <i>Eco</i> RI	AAAAA GAATTC CATGAGGTTCCGCATCTAC	
MOATZ			Reverse-Xbal	AAAAA TCTAGA CTGTGATTTCCACTGCAGTC	
ST3CAL3	EC:2.4.99.6	ST3Gal-III	Forward-HindIII	AAAAA AAGCTT ATGGACTCTTGGTATTTGTG	
STUCKED			Reverse-Xbal	AAAAA TCTAGA GATGCCACTGCTTAGATCAG	
	EC:2.4.1.41		Forward-BamHI	AAAAA GGATCC ATGAGGCTCCTCCGCAGACG	
GALINTO		ppGaINAc1-6	Reverse-Xhol	AAAAA CTCGAG GACAAAGAGCCACAACTGATGGGGG	
GCNT1	EC:2.4.1.102	C2GNT-1	Forward-BamHI	AAAAA GGATCC ATGGCTTTTCCCTGCCGCAGGTCCC	
			Reverse-Xbal	AAAAA CTCGAG GGAGACCCGGTGTCCCCGG	
GCNT3	EC:2.4.1.102	C2GNT-3	Forward-EcoRI	ATTA GAATTC ATGGGTCAATTGAAGAGACTCTGC	
			Reverse-Xhol	ATTA CTCGAG AAAGGTCAGTCCCATAGATTGCC	
GCNT4	EC:2.4.1.102	C2GNT-4	Forward- <i>Eco</i> RI	ATTA GAATTC ATGAAGATATTCAAAGGTTATTTTAAACATACCC	
			Reverse-Xhol	ATTA CTCGAG TGATGTGGTAGTGAGATTTCTATCC	
POONTO	EC:2.4.1.147	C3GNT-1	Forward-BamHI	AAAAA GGATCC ATGGCTTTTCCCTGCCGCAGGTCCC	
B3GN10			Reverse-Xhol	AAAAA CTCGAG GGAGACCCGGTGTCCCCGG	
B4GALT5	EC:2.4.1.38	GalT-V	Forward- <i>Eco</i> RI	ATTA GAATTC ATGCGCGCCCGC	
			Reverse-Xhol	ATTA CTCGAG GTACTCGTTCACCTGAGCCAGC	
SIAT4A	EC:2.4.99.4	ST3Gal-I	Forward-BamHI	AAAAA GGATCC ATGGTGACCCTGCGGAAGAG	
			Reverse-Xhol	AAAAA CTCGAG TCTCCCCTTGAAGATCCGGATTTTATTG	
ST6GALNAC1	EC:2.4.99.3	ST6GalNAc-I	Forward- <i>Bam</i> HI	AAAAA GGATCC ATGGGTCCTGCCTGTGGAGATGC	
			Reverse-Xhol	AAAAA CTCGAG GTTCTTGGCTTTGGCAGTTCCGGG	
0404174	EC:2.4.1.122	C1GalT-1	Forward-BamHI	AAAAA GGATCC ATGGCCTCTAAATCCTGGCTG	
C1GALT1			Reverse-Xhol	AAAAA CTCGAG AGGATTTCCTAACTTCACTTTTGTATCTTC	

Enzyme name as listed in KEGG (see Http://ww.genome.jp/kegg/pathway.html

Gene Name	Enzyme/Oligo name	DNA sequence		
	5' Xhol ST6GAL-I-cat	ATTA CTCGAG GGGCCAGGACCAGGC		
ST6GAL1	3' Xbal ST6Gal-I-cat	ATTA TCTAGA GCAGTGAATGGTCCGGAAG		
	5' HindIII ST6Gal-Itm	ATTA AAGCTT ATGATTCACACCAACCTGAAGAAAAAG		
	3' Xhol ST6Gal-Itm	ATTA CTCGAG GTTCATGCTTAGGTAATTCTTCCAGATC		
	5' Xhol ST3Gal-IIIcat	ATTA CTCGAG CGGGAGTTCGTGCCG		
ST2CAL 2	3' Xbal ST3Gal-IIIcat	ATTA TCTAGA GATGCCACTGCTTAGATCAGTG		
ST3GAL3	5' HindIII ST3Gal-IIItm	ATTA AAGCTT ATGGGACTCTTGGTATTTGTGC		
	3' Xhol ST3Gal-IIItm	ATTA CTCGAG CAGGAACATGGGTGCTGG		
	5' Xhol GalT-Icat	ATTA CTCGAG ACCACCGCACTGTCGC		
	3' Xbal GalT-Icat	ATTA TCTAGA GCTCGGTGTCCCGATG		
D4GALTT	5' HindIII GalT-Itm	ATTA AAGCTT ATGAGGCTTCGGGAGCC		
	3' Xhol GalT-Itm	ATTA CTCGAG GTGGGGCACTGGGACC		
	5' Xhol GlcNAcT-Icat	ATTA CTCGAG TGCCTGGACAAGCTGC		
MGAT1	3' Xbal GlcNAcT-Icat	ATTA TCTAGA ATTCCAGCTAGGATCATAGCC		
MOATT	5' HindIII GlcNAcT-Itm	ATTA AAGCTT ATGCTGAAGAAGCAGTCTGC		
	3' Xhol GlcNAcT-Itm	ATTA CTCGAG GCGAACAGTGC		
	5' Xhol GlcNAcT-Ilcat	ATTA CTCGAG GTGGTCCAGGTGCATAACC		
MGAT2	3' Xbal GlcNAcT-Ilcat	ATTA TCTAGA CTGCAGTCTTCTATAACTTTTACAGAGTTC		
MOATZ	5' HindIII GlcNAcT-IItm	ATTA AAGCTT ATGAGGTTCCGCATCTACAAAC		
	3' Xhol GlcNAcT-IItm	ATTA CTCGAG CAGCACCAGCTCCCG		
GalNT6	5' Xhol ppGalNT-6cat	ATTA CTCGAG CAGAAGAGCAAGTGGACCC		
	3' Xbal ppGalNT-6cat	ATTA TCTAGA GACAAAGAGCCACAACTGATG		
	5' HindIII ppGaINT-6tm	ATTA AAGCTT ATGAGGCTCCTCCGCAG		
	3' Xhol ppGalNT-6tm	ATTA CTCGAG AAATGCTTTTCCATCTGCC		
C1GALT1	5' Xhol C1GalT-1cat	ATTA CTCGAG ATGAGTTCAGAAGAAAATAAAGACTTC		
	3' Xbal C1GalT-1cat	ATTA TCTAGA AGGATTTCCTAACTTCACTTTTGTATC		
	5' HindIII C1GalT-1tm	ATTA AAGCTT ATGGCCTCTAAATCCTGGC		
	3' Xhol C1GalT-1tm	ATTA CTCGAG AAACAACACTTTGTTACAACGC		
	5' Xhol C2GCNT-1cat	ATTA CTCGAG TTTCCAATAGCATATTCTATAGTGGTTC		
GCNT1	3' Xbal C2GCNT-1cat	ATTA TCTAGA GTGTTTTAATGTCTCCAAAGCTTTG		
GCNT	5' BamHI C2GCNT-1tm	ATTA GGATCC ATGCTGAGGACGTTGCTG		
	3' Xhol C2GCNT-1tm	ATTA CTCGAG CTCCGCCTCTTCTTTACTAAGG		

Table S2. DNA primers used for PCR amplification in domain swapping experiments

Cat: primers corresponding to the sequence of amino acids starting from 121

Tm: primers corresponding to the 120 first amino acids of the corresponding protein

		N-glycosyltransferases							
		GIcNAcT-I	GICNAcT-II	GalT-I	ST6Gal-I	ST3Gal-III			
	ppGalNAcT-6	4,52% ± 2,63	2,23% ± 0.24	3,58% ± 1,64	3,02% ± 1,72	3,12% ± 1,86			
O-glycosyltransferases	C1GalT-1	1,40% ± 1,32	4,02% ± 1,99	0,92% ± 0,42	1,98% ± 0,68	1,72% ± 0,23			
	C2GNT-1	3,02% ± 0,90	3,84% ± 1,32	2,29% ± 2,12	4,28% ± 2,39	2,13% ± 1,05			
	C2GNT-3	0,81% ± 0,28	0,84% ± 0,32	0,67% ± 0,56	1,23% ± 1,12	1,45% ± 0,39			
	C2GNT-4	2,35% ± 0,87	4,73% ± 3,52	1,24% ± 0,21	4,01% ± 2,45	3,75% ± 1,29			
	ST3Gal-I	1,32% ± 0,67	3,33% ± 2,38	4,32% ± 0,28	2,32% ± 1,16	2,54% ± 1,53			
	ST6GalNAc-I	2,80% ± 0,88	3,27% ± 0,89	0,92% ± 0,43	3,89% ± 2,57	2,12% ± 0,75			
	C3GNT-1	1,20% ± 0,28	0,47% ± 0,31	1,17% ± 0,17	0,61% ± 0,55	3,67% ± 1,62			
	GalT-V	1,73% ± 1,12	2,53% ± 1,04	6,12% ± 4,17	3,00% ± 1,67	3,23% ± 1,35			

 Table S3.
 Heteromeric interactions between O- and N-Glycosyltransferases

Supplemental figures

Figure S1. Validation of FRET settings for the flow cytometric quantification. Validation of the gates were performed according to Banning et al. and Thyrock et al. (14, 15). Briefly, COS7 cells were transfected with either mCer or mVen encoding plasmids, detached, and analyzed by flow cytometry using appropriate filter sets for mCer (405 nm excitation, 425-475 nm emission) or mVen (488 nm excitation, 515-540 nm emission). (**A**). The gates RN1 and RN3 were set to remove autofluorescence and cross-over between the channels; CFP in the YFP channel (left) and YFP in the CFP channel (right), **B**) Cells expressing both mCer and mVen were selected using the RN2 and RN4 gates. **C**) FRET+ gate was determined by using the cytoplasmic mCer and mVen constructs (negative controls, blue dots), and their fusion protein (mCer-mVen) as a positive control (red dots, right). The fusion protein was prepared by PCR cloning of mVen in frame with mCer using *Hind*III and *Bam*HI restriction cleavage sites. This created a 33 amino acid long helical linker region (ADPLVTAASVLEFCRYPSHWRPLEHASRRSIAT) between the two fluorescent proteins. FRET signals are plotted as the ratio between mVen and mCer intensities after excitation with the 405 nm laser only (405ex, 515-540em). In each measurement, 2-5 x10³ cells expressing both mCer and mVen were counted.

Fluorescence intensity

Figure S2. Cell surface sialic acid content in live cells. COS7 cells transfected with the plasmids that encode the indicated glycosyltransferase constructs were prepared either for fluorescence microscopy or quantification of FITC-fluorescence intensity by flow cytometry. Staining of cell surface sialic acids was performed using aminooxy-biotin and FITC-conjugated streptavidin (20). Sialidase A treatment was used to verify the specificity of the staining. RN1 gate denotes autofluorescence and RN2 gate FITC-positive cells.

Figure S3. Preliminary screening of the interaction domains of ST3Gal-III and ST6Gal-I homomers. We selected these enzymes for the preliminary screening of their homomeric interaction domains because the earlier data (shown in Fig. 1) showed that these enzymes do not interact with each other. To identify the homomeric interaction domains we constructed chimeric enzymes by linking the TMDS of ST3Gal-III with the catalytic domain (cat) of ST6Gal-I, and vice versa. FRET measurements between the full length and the chimeric constructs showed that ST6Gal-I interacts only via its TMDS (the first two bars), whereas ST3Gal-III interacts only via its catalytic domain (the third and fourth bars). Cross-testing of the chimeric constructs validated these results, as the combined interacting domains gave the highest signal (the fifth bar), whereas the non-interacting domains of these two proteins gave no signal (the last two bars). The non-interacting domains of these enzymes (ST6Gal-Icat and ST3Gal-IIITMDS were used for the screening of interaction domains in other N- and O-glycosyltransferases.

Figure S4. Localization of the N-glycosyltransferase FRET constructs in COS7 cells. Cells were transfected with the indicated plasmids, grown overnight, and fixed prior to staining cells with the monoclonal Golgi marker (GM130) antibody. Stained cells were visualized using appropriate filter set for mVen, mCer and Alexa Fluor 594-conjugated anti-mouse antibodies (for GM130). Both mCer and mVen fusion proteins co-localized with the Golgi marker. Scale bar 10 μ m.

Figure S5. Localization of the O-glycosyltransferase FRET constructs in COS7 cells. Cells were transfected with the indicated plasmids, grown overnight, and fixed prior to staining with the monoclonal Golgi marker (GM130) antibody. Stained cells were visualized using appropriate filter set for mVen, mCer and Alexa Fluor 594-conjugated anti-mouse antibodies (for GM130). Both mCer and mVen fusion proteins co-localized with the Golgi marker. Scale bar 10 μ m.

Figure S6. Immunoblot analyses of enzyme protein levels in the transfected cells. Cells were transfected with GalT-I-HA and ST6Gal-I-FLAG encoding plasmids either alone or together. After 24 h cells were solubilized in SDS sample buffer, subjected to SDS-PAGE and transferred to nitrocellulose sheet before immunoblotting with the anti-HA and FLAG antibodies. Quantification of the protein bands was done using ImageJ 1.43 software. α -tubulin staining was used for normalization of the protein levels. Note that the protein levels rather decrease slightly than increase upon co-expression of the two constructs.

Figure S7. pH sensitivity of the homomeric O-glycosyltransferases. Cells were single transfected with the indicated enzyme constructs and treated or not with 40 μ M CQ for 4 h or overnight. 24 h after transfection, FRET+ cells were quantified by flow cytometry as described in Fig. 1. All the results are presented as percentages of nontreated COS7 cells (mean \pm SD, n = 3).

Figure S8. Localization of the N- and O-glycosyltransferase FRET constructs in cancer cell lines. Cells were transfected with the indicated plasmids, grown overnight, and fixed prior to staining cells with the monoclonal Golgi marker (GM130) antibody. Stained cells were visualized using appropriate filter set for mCer, mVen and Alexa Fluor 594-conjugated anti-mouse antibodies. Scale bar 10 µm.

Figure S9. Relative CFP and YFP intensities of the co-expressed FRET constructs in different cell lines. **A)** GalT-I-mCer and ST3Gal-III-mVen. **B)** ppGalNAcT-6-mVen and C1GalT-I-mCer. Cells were transfected with the indicated enzyme constructs and analyzed by flow cytometry. Mean fluorescence intensity values (mean-x) for mCer and mVen were recorded in triplicate and presented as percentages of the intensities obtained with COS7 cells (mean \pm SD).