Characterization of a Novel β-L-Arabinofuranosidase in *Bifidobacterium longum*: FUNCTIONAL ELUCIDATION OF A DUF1680 FAMILY MEMBER

Kiyotaka Fujita¹, Yukari Takashi, Eriko Obuchi, Kanefumi Kitahara and Toshihiko Suganuma

From the Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan.
Running head: Characterization of a novel β-L-arabinofuranosidase.
¹To whom correspondence should be addressed. Tel./Fax: 81-99-285-8639; E-mail:

kfujita@ms.kagoshima-u.ac.jp.

SUPPLEMENTARY FIGURE LEGENDS

Supplementary FIG. S1. Chemical structures of the β -L-arabinooligosaccharides used in this study. The *arrows* indicate the cleavage sites for HypBA1.

Supplementary FIG. S2. SDS-PAGE analysis of recombinant HypBA1. Purified HypBA1 was electrophoresed on a 10% polyacrylamide gel and stained with Coomassie Brilliant Blue R-250. Lane 2, purified HypBA1; lane 1 and 3, molecular size markers. The *arrow* indicates the band that corresponds to HypBA1.

Supplementary FIG. S3. TLC analysis of HypBA1 reactions in the presence of reducing

agents. *Cis*-Ara₃-Hyp-DNS was incubated with the recombinant enzyme in the absence (lane 2) or presence of β -mercaptoethanol (lane 3), dithiothreitol (lane 4), or TCEP (lane 5) at 37°C for 16 h. Lane 1, *cis*-Ara₃-Hyp-DNS.

Supplementary FIG. S4. Effects of pH and temperature on the activity of HypBA1. A, pH dependence of HypBA1 activity in various buffers at 37°C for 10 min. Enzyme activities were expressed as the percentage of activity in sodium acetate buffer at pH 4.5. B, Temperature dependence of HypBA1 activity for 10 min. Enzyme activities were expressed as the percentage of the activity at 35°C. Buffers: sodium acetate (closed square), MES (open circle), sodium phosphate (closed circle).

Supplementary FIG. S5. Comparison of the reactivities of HypBA1 and HypBA2 with

glycoproteins. A, TLC analysis of the reaction products. Potato lectin (lane 2), extensin (lane 3), and Ara₃-Hyp (lane 4) were incubated with HypBA2-C Δ 486 (lane b) or HypBA1 (lane c) at 37°C for 16 h. Lane a, control without enzyme; lane 1, L-arabinose standard. B, HPAEC-PAD analysis of the reaction products. Potato lectin was reacted without enzyme (2a), with HypBA2-C Δ 486 (2b), or with HypBA1 (2c). Extensin was reacted without enzyme (3a), with HypBA2-C Δ 486 (3b) or with HypBA1 (3c).

Supplementary FIG. S6. Chemical structure and ¹H- and ¹³C-NMR spectra of Ara-Me.

The asterisks indicate peaks from impurity or sideband signals. The chemical shifts are listed in supplemental Table S3.

Supplementary FIG. S7. Phylogenetic relationships between HypBA1 homologs in

Bifidobacterium strains. The black boxes indicate the DUF1680 conserved region (middle). The lengths of the sequences are shown on the right side of each schematic sequence. The organisms, locus tag, and GenBank accession numbers are as follows: BLL, B. longum subsp. longum JCM 1217, 1 (BLLJ_0211, BAJ65881), 2 (BLLJ_1826, BAJ67491), 3 (BLLJ_1848, BAJ67512), 4 (BLLJ_0089, BAJ65759); BL, B. longum NCC2705, 1 (BL0422, AAN24259), 2 (BL0174, AAN24029); BI, B. longum subsp. infantis 157F, 1 (BLIF 0192, BAJ70339), 2 (BLIF_1895, BAJ72029); BP, B. pseudocatenulatum DSM 20438, 1 (BIFPSEUDO_02879, EEG71985), 2 (BIFPSEUDO_02839, EEG71945); BC, B. catenulatum DSM 16992, 1 (BIFCAT_02005, EEB20621), 2 (BIFCAT_00247, EEB22303), 3 (BIFCAT_01782, EEB20699); BD, B. dentium ATCC 27678, 1 (BIFDEN_01462, EDT45627), 2 (BIFDEN_00978, EDT45157); BAd, B. adolescentis ATCC 15703 (BAD_1529, BAF40310); BAn, B. animalis subsp. lactis AD011 (BLA 1513, ACL29795); BB, B. breve DSM 20213 (BIFBRE_03130, EFE89858). The protein characterized in this study is enclosed in the box. The phylogenetic tree was constructed with the neighbor-joining method using MEGA5 software (left). Comparison of the gene clusters containing GH127, GH121 and GH43 members in *Bifidobacterium* strains (right).

Supplementary FIG. S8. Multiple sequence alignment of HypBA1 and its homologs. The homologous proteins are shown in supplemental Fig. S7. The alignment was created with MUSCLE and BoxShade 3.21. Identical residues and conservative substitutions are highlighted

in black and dark gray, respectively. Asterisks indicate the residues selected for site-directed mutagenesis. The protein characterized in this study is enclosed in the box.

Supplementary FIG. S9. Schematic β -L-arabinooligosaccharides metabolic pathway in *B. longum.* The domain organizations of β -L-arabinooligosaccharides degradation enzymes and the predicted sugar transporters are shown in the upper panel. The gene cluster containing β -L-arabinooligosaccharides degradation enzymes is shown in the lower panel. The annotated gene products are as follows: LacI-type transcriptional regulator (BLLJ_0207) in *black*; putative ABC-type sugar transport system (BLLJ_0208–BLLJ_0210) in *yellow*; HypBA1 (BLLJ_0211) in *green*; HypBA2 (BLLJ_0212) in *red*; and putative GH43 α -L-arabinofuranosidase (BLLJ_0213) in *blue*.

Name	Sequence of oligonucleotide primers
E322A_Forward_Primer	5'-ACCCACGTGGGCG <u>C</u> GTCGTTCACCTACG-3'
E322A_Reverse_Primer	5'-CGTAGGTGAACGAC <u>G</u> CGCCCACGTGGGT -3'
E338A_Forward_Primer	5'-CACGATGTACGGTGCGACCTGTGCTTCCG-3'
E338A_Reverse_Primer	5'-GAAGCACAGGTCGCACCGTACATCGTGTCG-3'
E366A_Forward_Primer	5'-CCGACGTGCTGG <u>C</u> GAAGGAACTGTTCAACG-3'
E366A_Reverse_Primer	5'-CGTTGAACAGTTCCTTCGCCAGCACGTCG-3'

Table S1. The primers used for site-directed mutagenesis.

The positions of the mutated sequences are underlined.

Table S2. Substrate specificity of HypBA1.

Substrates	Activity
β-Ara ₂	$+^a$
Ara ₄ -Hyp	ND^b
Ara ₃ -Hyp	+
Ara ₂ -Hyp	+
Ara-Hyp	+
Ara ₂ -Me	+
Ara-Me	+
Extensin	ND
Potato lectin	ND
$pNP-\alpha$ -L-arabinofuranoside	ND
<i>p</i> NP-α-L-arabinopyranoside	ND
<i>p</i> NP-β-L-arabinopyranoside	ND
$pNP-\alpha$ -D-xylopyranoside	ND
<i>p</i> NP-β-D-xylopyranoside	ND
$pNP-\alpha$ -D-galactopyranoside	ND
<i>p</i> NP-β-D-galactopyranoside	ND
$pNP-\alpha$ -D-glucopyranoside	ND
<i>p</i> NP-β-D-glucopyranoside	ND

^{*a*} Cleavage of substrate was detected. ^{*b*} Cleavage of substrate was not detected.

	1	2	3	4	4	Me	
$^{1}\mathrm{H}\left(\delta\right)$	4.74	3.99	3.85	3.73	3.61	3.46	3.26
$J(\mathrm{Hz})$	4.8	8.2, 4.8	7.5	7.1, 3.1	12.2, 3.4	12.2, 7.5	-
$^{13}C(\delta)$	102.72	76.86	75.03	82.54	63	.65	55.65

Table S3. Assignments of signals in ¹H and ¹³C NMR spectra of methyl β -L-arabinofuranoside.

Table S4. Growth capacity of *Bifidobacterium* strains on carbohydrates.

Carbon source	B. longum JCM 1217	B. adolescentis JCM 1275
Glucose	++	++
L-Arabinose	++	_
β-Ara ₂	++	_

Judgment of bacterial growth: −,∠pH <0.5; ±, 0.5≤∠pH<1.0; +, 1.0≤∠pH<1.5; ++, 1.5≤∠ pH. ∠pH=(test pH)-(control pH)

`сн₃

H₃C

Ara-Me

β-Ara₂

Ara₂-Me

Figure S6

BL1	242	NIFHDLGEYKPT <u>YFQ</u> AAEPVRDQQTAD <mark>GHAVR</mark> VGYLCTGVAHVGRL
BI1	242	NIFHDLGFYKPTYFQAAEPVRDQQTADGHAVRVGYLCTGVAHVGRL
$\mathtt{BLL1}$	242	NIFHDLGFYKPTYFQAAEPVRDQQTADGHAVRVGYLCTGVAHVGRL
BB	214	NIFPDLGFYKPTYFQAAEPVRDQQTADGHAVRVGYLCTGVAHVGRL
BD1	242	YIFRDLGFYKPEYFQAAEPIRNQQDANGHAVRVVYLCTGMAHVGRL
BP1	242	YIFRDLGFYKPTYFQAAQPVREQQTADGHAVRVAYLCTGIAHVARI
BC1	242	YIFRDLGFYKPTYFQAAQPVREQQTADGHAVRVAYLCTGIAHVARI
BAn	250	GLPAIFPAMETWSHEYTLTARPIRDQQTAVGHAVRVAYLLAGVMQVGRL
BC3	250	FYTDLHM-PLKYFVQDEPILDKOHAEGHAVRLLYLAAAVSKVGRL
BD2	271	DGRNYEPREQNYAYYQADKPVTEQTEALGHAVRAAYFYSGVADVARI
BC2	277	DGRNYEPREQNYTYYQADKPVTEQTEALGHAVRAAYFYSGVADVARI
BAd	270	DGRNYAPREQNYAYYQADKPITEQTEALGHAVRAAYFYAGAADVARL
BI2	269	ADANYKPNTDPSRYAYHQANKPVTEQDEAVGHAVRAGYFYSGLADVARL
BL2	269	ADANYKPNTDPNRYAYHQANKPVTEQDEAVGHAVRAGYFYSGLADVARL
BLL2	269	ADANYKPNTDPNRYAYHQANKPVTEQDEAVGHAVRAGYFYSGLADVARL
BP2	233	ERYHVMADR-FKDHAIFDPLAQCEDVLTGMHANTQIPKVLGWERLGAI
BLL4	337	RSEFIKASAFFDTDKLIDNCGAGVDILNNLHANQHIPQFVGYAKDAAMGDADI
BLL3	598	KQTVITAAHLEDETALEOKLANCODPLNGLHANTTIPKLTGAMORYVAYTEDEDLYNS-I

			^E3ZZ
BL1	288	LGDQGLIDTAKRFWKNIVTRRMYVTGAIGSTHV	-GESFTYDYDLPNDTM
BI1	288	LGDQGLIDTAKRFWKNIVTRRMYVTGAIGSTHV	-GESFTYDYDLPNDTM
$\mathtt{BLL1}$	288	LGDQGLIDTAKRFWKNIVTRRMYVTGAIGSTHV	-GESFTYDYDLPNDTM
BB	260	LGDQGLIDTAKRFWKNIVTRRMYVTGAIGSTHV	-GESFTYDYDLPNDTM
BD1	288	TGDRGLLDAVHRMWNSIVGKRMYVTGAVGSTHV	-GE <mark>S</mark> FTYDYDLPNDTM
BP1	288	TGDQGLLDAAHRFWNNIVSKRMYVTGAIGSTHV	-GESFTYDYDLPNDTM
BC1	288	TGDQG <mark>LLDAA</mark> HR <mark>FWNNIV</mark> SKRMYVTGAIGSTHV	-GE <mark>S</mark> FTYDYDLPNDTM
BAn	299	TNDEGLLRTGERLWNNIVHKRMYITGGIGSTHV	- <mark>GE</mark> AFTYDYDLPNDTM
BC3	294	LNDQKMLDTAERLWTNIVKHRMYITGAVGSCQV	-GESESEDDLPNDLV
BD2	318	TGEATILESCETLWRNIVDRKLYITGGIGATHM	-GEAFSFDYDLPNDTA
BC2	324	TGEAAILLESCETLWRNIVDRKLYITGGIGATHM	- <mark>GE</mark> AFSFDYDLPNDTA
BAd	317	TGDSDLLASCERLWRNIVDRKIYITGGIGATHM	- <mark>GE</mark> AFSFDYDLPNDTA
BI2	318	ADDQDLADAAERLWRNIVDKKLYVTGGIGGTVD	- <mark>GE</mark> AFSY <mark>NYDLPN</mark> DSA
BL2	318	ADDQDLADAAERLWRNIVDKKLYVTGGIGGTVD	- <mark>GE</mark> AFSY <mark>NYDLPN</mark> DSA
BLL2	318	ADDQDLADAAERLWRNIVDKKLYVTGGIGGTVD	-GEAFSYNYDLPNDSA
BP2	280	CNDEQADAATNTFWDSVVHHRSVSIGAHSV	-S <mark>E</mark> HFHPTDDFSSMIESR
BLL4	390	DADARARYLKAVEGYWGMIVPGRMYAHGGTGE	-GEMWGPAHTVAGDI-
BT.T.3	657	SADERGKITSI.YUKAAONFEDIWKDHTYYNGCNSOSEHFHY	

					*E3	338										*	E3	66							
BL1	336	YG			ETC	AS	VAM	SM	FAÇ	QQ	1LD	LEI	PKG	EΥ	AD	/LF	KE	LFI	IG S	IA	GI	SILD	GK	QY	YVN
BI1	336	YG			ЕТС	AS	VAM	SM	БАÇ	QQ	1LD	LEI	PKG	EΥ	AD	/LE	KE	LFI	1GS	IA	GI	SILD	GK	QYY	YVN
BLL1	336	YG			ETC	CAS	VAM	SM	Б/AQ	Q	1LD	LEI	PKG	EY	AD	/LE	KE	LFI	IG S	IA	GI	SILIC	GK	QYI	YVN
BB	308	YG			ETC	CAS	VAM	SM	Б/AQ	Q	1LD	LEI	PKG	EY	AD	/LE	кĸ	LFI	IG S	IA	GI	SILIC	GK	QYI	YVN
BD1	336	YG			ЕТС	AS	∕GM	SM	LS	Q	ΠL	LEI	PKG	EΥ	AD	/LE	RE	LFI	IC <mark>A</mark>	IA	GI	SILD	GK	QYY	YVN
BP1	336	YG			ETC	CAS	VAM	SM	FAF	Q	ΠL	LEI	2NG	EΥ	AD	/LE	RE	LFI	IG A	IA	GI	SLID	GK	QYY	YVN
BC1	336	YG			ETC	CAS	VAM	SM	FAF	Q	ΠL	LEI	2NG	EΥ	AD	/LE	RE	LFI	IG A	IA	GI	SLLD	GK	QYY	YVN
BAn	347	YG			-ESC	CAS	∕GM	CF	VAR	QV	IL E	HDI	RG	EY	AD	/LE	KE	LFI	IG A	IA	GI	AIID	GK	HFI	FYVN
BC3	342	YG			ETC	CAS	VAM	\mathbf{LF}	YGK	SI	ME	TK	RG	sv	AD	7ME	KE	LFI	ΙGV	IS	GV	2 III D)GT	RYI	FYVN
BD2	366	Ϋ́S·			-ESC	A <mark>A</mark>	IAL	AF	FAF	RM	ΠE	ΙQ	2KS	EΥ	AD	лме	SA	LYI	TΤ	LA	GM	AID	GK	SFI	FYVN
BC2	372	¥s∙			ESC	AA	IAI	AF	FAF	RRM	IL E	ΙQ	2KS	EY.	AD	ЛШЕ	SA	LYI	TΤ	LA	GΜ	ALID	GK	SFI	FYVN
BAd	365	¥s∙			ESC	AA	IAI	AF	FAF	RRM	IL E	ΙQ	2KS	EY.	AD	ЛШЕ	SA	LYI	TΤ	LA	GΜ	ALID	GK	SFI	FYVN
BI2	366	¥S∙			ETC	AA.	ISI	AF	FAF	RR	IL D	I AI	?KA	EY.	AD	лме	SA	LYI	JΤT	LA	GM	AID	GK	SFI	FYVN
BL2	366	¥s∙			ETC	AA	ISI	AF	FAF	RRM	IL D	ΠAI	2KA	EY.	AD	ЛШЕ	SA	LYI	TΤ	LA	GΜ	ALID	GK	SFI	FYVN
BLL2	366	¥s∙			ETC	AA	ISI	AF	FAF	RRM	IL D	ΠAI	2KA	EY.	AD	ЛШЕ	SA	LYI	TΤ	LA	GΜ	ALID	GK	SFI	FYVN
BP2	327	EG		I	ETC	NS	YN	SK	LĄF	RI	WL	RSC	SS₽	DY	INI	•Y	RV	LDI	HL	I S'	r II)	NPK	ζQΡ	GE	V <mark>Y</mark> FT
BLL4	436	-G	KRN-	- Z	NE SC	AA:	YNŲ	LK	VĄĘ	ΥT	FF	пος	<u>)</u> KP	ΑY	MD	۲Y	RТ	IIJ	ΗI	LG	eĸ:	SR	LD	sG	r <mark>a</mark> lt
BLL3	714	GG	YRNE	STV	летс	NE	YNŲ	LK:	LAF	II	FQ	VTF	xDS	KΥ	SDY	Y	₿IT	FI	JAI	VA	SQI	NP	ТG	MT:	r <mark>y</mark> fQ

Fig. S8a

BL1	389	ALETTPDGLD-NPDRHHVLSHRVDWFGCACCPANIARLIASVDRYIYTER
BI1	389	ALETTPDGLD-NPDRHHVLSHRVDWFGCACCPANIARLIASVDRYIYTER
$\mathtt{BLL1}$	389	ALETTPDGLD-NPDRHHVLSHRVDWFGCACCPANIARLIASVDRYIYTER
BB	361	ALETTPDGLA-NPDRHHVLSHRVDWFGCACCPTNIAQLIASVDRYIYTER
BD1	389	ALESTPDGLD-NPDRHHVLSHRVDWFGCACCPANIARLIASVDRYMYTER
BP1	389	ALETSPDGLD-NPDRHHVLSHRVDWFGCACCPANVARLIASVDRYVYTER
BC1	389	ALETSPDGSD-NPDRHHVLSHRVDWFGCACCPANVARLIASVDRYVYTER
BAn	400	PLEADVQATENNPDRRHVLLERAQWFGCACCPSNIARLIASVDRYLYTVR
BC3	395	PLEADPAASKGNPTKAHILTRRAGWFDCACCPANLGRLITSLDQYLYTVS
BD2	419	PLEVVPEACHRDERKFHVKPVRQKWFGCACCPPNIARMVESVQQYAYTVA
BC2	425	PLEVVPEACHRDERKFHVKPVRQKWFGCACCPPNIARMVESVQQYAYTVA
BAd	418	PLEVVPEACHRDERKAHVKPVRQKWFGCACCPPNIARIVEDVQQYAYTIG
BI2	419	PLEVNPYACHKDSRLRHVKPVRQKWFGCACCPPNIARIVESVQEYAYTVA
BL2	419	PLEVNPYACHKDSRLRHVKPVRQKWFGCACCPPNIARIVESVQEYAYTVA
BLL2	419	PLEVNPYACHKDSRLRHVKPVRQKWFGCACCPPNIARIVESVQEYAYTVA
BP2	381	PMRSQHYRAYSTPQECFWCCVGSGLENHARYGRLIYALQRPAAQ
BLL4	492	PGNCYMYPVNPATQKEYGDGNIGTCCGGTALESHSKYQDSIYFHS
BLL3	774	PMKAGYPKVFGITGTDYDADWFCGAIGEYWCCOCTGIENFAKINDSFYF

BL1	438	DG	GKTV	LSHQ	FIAN	KADE	-ASGI	TVEQ	RS	
BI1	438	DG	GKIV	LS <mark>HQ</mark>	FIAN-	K <mark>AD</mark> E	-ASGI	TVEQ	RS	
BLL1	438	DG	GKTV	LS <mark>HQ</mark>	FIAN-	T <mark>ae</mark> e	-ASGI	TVEQ	RS	
BB	410	DG	GKTV	LS <mark>HQ</mark>	FITN-	K <mark>ae</mark> e	-ASGI	TVEQ	RS	
BD1	438	DG	GKTV	LS <mark>HQ</mark>	FIAN	E <mark>A</mark> TE	-DSGI	YVVQ1	RS	
BP1	438	DG	GRTV	LA <mark>HQ</mark>	FIAN-	Q <mark>A</mark> SE	-D <mark>SG</mark> I	HVEQ	RS	
BC1	438	DG	GRTV	LA <mark>HQ</mark>	FIAN-	Q <mark>A</mark> SE	-D <mark>SG</mark> I	HVEQ	RS	
BAn	450	BDI	ERMI.	aa <mark>hq</mark>	FIAN-	DARE	-FDD	∕RVKQI	ES	
BC3	445	N <mark>D</mark> 0	GKTV	Y <mark>A</mark> HQ	FVAN-	KT 🛛	-ED <mark>G</mark> E	TIEQ	TQAGD	i
BD2	469		ASTL	YVH	YMG <mark>G</mark> (7VS <mark>A</mark> KI	.GGS <mark>D</mark> ∖	SLEV	RA	
BC2	475	DD/	ASTL	YVHL	YMG <mark>G</mark> (∕VS <mark>A</mark> KI	¦GGS <mark>D</mark> ∖	SLEV	RA	
BAd	468	DDS	SSIL	YVHL	YMG <mark>G(</mark>	SVH <mark>A</mark> RI	SGTD∖	RLDVI	MS	
BI2	469	[₽] D(GGTL	FT <u>H</u> L	YMG <mark>G</mark> (/AK <mark>A</mark> EI	'NGTAV	ELDV	TA	
BL2	469	□	GGIL	FT <u></u> L	YMG <mark>G</mark> (/AK <mark>A</mark> EI	NGTAN	ELDV	ТA	
BLL2	469	□BD0	GGIL	FT <mark>H</mark> L	YMG <mark>G</mark>	/AK <mark>A</mark> EI	NGTAV	ELDV	TA	
BP2	425	DSADSAAAGFASSAAETGNTVSNNAEAE2	ATRL	LVNL	YIDS-	TFDC	PEQ <mark>G</mark> I	RITQ	RAARI	
BLL4	537	T	NKEL	YVNL	FTAS-	TLDW	TDTGI	KLAQI	EI	
BLL3	823	$ \mathbf{T}\mathbf{D}$	ENNV	YVNM	BWSS-	TYTD	TRHN	TITO	тА	

BL1	466	DFPWDSHVEYTVSLPASAADSSVRFGLRIPGW-	SLGS	-YTLTVNGKPAVG
BI1	466	DFPWDSHVEYTVSLPASAADSSVRFGLRIPGW-	S <mark>LG</mark> S	-YTLTVN <mark>G</mark> KPAVG
$\mathtt{BLL1}$	466	NFPWDGHVEYTVSLPASATDSSVRFGLRIPGW-	SRGS	-YTLTVN <mark>G</mark> KPAVG
BB	438	DFPWNGHVEYTVSLPASATDSSVRFGLRIPGW-	S <mark>LG</mark> S	-YALTV <mark>NG</mark> KSAVA
BD1	466	DMPWSCHVEFEVNLAEGAQPVRFGVRIPSW-	SANA	-YALAVDGEPCEK
BP1	466	DFPWNGHIEYMVELPAEAAD-SVRFGVRIPTW-	SADS	-YALTCD <mark>G</mark> VAVKT
BC1	466	DFPWNGHIEYMVELPAEAAD-SVRFGVRIPTW-	SADS	- <mark>YALT</mark> CD <mark>G</mark> VAVKT
BAn	478	DFPREGVVRFTVDVPEGADPVIFKVRIPSW-	SPE	-YRLTVDGVDVTG
BC3	476	EYPWSCDITFHVSNPNGLDKKVAVRIPQW-	<mark>S</mark> KD	-YTLEVNGEAVEL
BD2	500	GMPWNGAGAITVTLPSSDEGQVPEPFALALRLPAW-	AG <mark>G</mark> ESAA	-DSIHAAGEKDSR
BC2	506	GMPWNGAGAITVTLPSSDEGQVPESFALALRLPAW-	AG <mark>G</mark> ESAA	-DSIHAT <mark>G</mark> EKDSR
BAd	499	DMPWSCKGSVAVGFDAGDSASDASKDAVFTIALRLPAW-		-DAVTVRGRDDIS
BI2	500	NLPWYCDGKAVVRLGNDAAGASAQAPARFTLAFRLPGW-	VGEESAA	AAAITAT <mark>G</mark> EPESG
BL2	500	NLPWQCDGKAVVRLGGDAAGTSAQAPARFTLAFRLPGW-	VGDESAA	AAAITAT <mark>G</mark> ESESG
BLL2	500	NLPWQCDGKAVVRLGGDAAGTSAQAPARFTLAFRLPGW-	VGDESAA	AAAITAT <mark>G</mark> ESESG
BP2	483	EDGVDYTVTFTLESTAEHVPDTPGGLRETTLFLRRPWWA	AEHYGVMEA	TCAVCTLDPARTN
BLL4	566	NYPEEETSTISITAAPKSAVTERIRIPAW-	sk <mark>c</mark>	-AKIEVNGKAIDG
BLL3	852	NVPKTEDVTFEVSGTGSANLKLRVPDWA	IING	-VKI VVDGTEOAL

Fig. S8b

