# **Supporting Online Material for**

# Behavior-Specific Changes in Transcriptional Modules Lead to Distinct and Predictable Neurogenomic States

Sriram Chandrasekaran, Seth A. Ament, James A. Eddy, Sandra Rodriguez-Zas, Bruce R. Schatz, Nathan D. Price, and Gene E. Robinson

This file contains Materials and Methods, Supplementary Tables S1-S12 and Supplementary Figures S1-S12. Supplementary Table S11 is available online at <a href="http://www.igb.uiuc.edu/labs/price/downloads/">www.igb.uiuc.edu/labs/price/downloads/</a>

#### Contents

| BeeSpace project                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------|
| Sample processing and microarrays                                                                                                   |
| Differentially expressed genes                                                                                                      |
| Data normalization for network inference                                                                                            |
| Approach overview                                                                                                                   |
| Enrichment analysis                                                                                                                 |
| Gene Ontology                                                                                                                       |
| KEGG                                                                                                                                |
| <i>cis</i> -regulatory motifs                                                                                                       |
| Distribution of global and broadly acting vs. behavior-specific TFs                                                                 |
| Differential rank conservation (DIRAC) analysis of the network                                                                      |
| References                                                                                                                          |
| Table S1. Honey bee behavioral states and behavioral comparisons used for gene expression profiling and reconstruction of brain TRN |
| Table S2. Model Summary Statistics    17                                                                                            |
| Table S3. Global analysis of bee brain gene expression and social behavior – Controls and      Statistical Significance      18     |
| Table S4. Enriched biological processes in the bee brain TRN    19                                                                  |

| Table S5. Annotation of TF-target modules in the bee brain TRN                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table S6. Network hubs influence many different behavioral states                                                                                               |
| Table S7. Associations between TFs and behavioral comparisons                                                                                                   |
| Table S8. Measures of network dynamics and regulation for the 27 behavioral comparisons. 51                                                                     |
| Table S9. The hormonally-related TF Ultraspiracle binds genomic regions near foraging- and maturation-related TFs         52                                    |
| Table S10. Mushroom body or optic-lobe specific gene expression does not predict TRN membership or accurate modeling of mushroom body gene expression.       53 |
| Table S12. ArrayExpress Accession IDs and microarray count for each of the experiments 55                                                                       |
| Fig. S1. Global analysis of bee brain gene expression and social behavior – Controls and Statistical Significance                                               |
| Fig. S2. Performance of the bee brain TRN in 10-fold cross validation                                                                                           |
| Fig. S3. Performance of the bee brain TRN in leave-one-state-out cross validation                                                                               |
| Fig S4. TF expression permutation across phenotypes for estimating background correlation 62                                                                    |
| Fig. S5. Distribution of targets regulated by individual TFs                                                                                                    |
| Fig. S6. A small number of network hubs regulate most genes in the network                                                                                      |
| Fig. S7. Within-state consistency in the relative expression of target genes within each module                                                                 |
| Fig. S8. Between-state reordering of relative gene expression increases with module size 66                                                                     |
| Fig. S9. Factors that influence behavior over long vs. short timescales influence network states differently                                                    |
| Fig. S10. Performance of the whole brain TRN in modeling mushroom body gene expression                                                                          |
| Fig. S11. Modules enriched for mushroom body- or optic lobe-specific expression                                                                                 |
| Fig. S12. Comparison with <i>Drosophila</i> Transcriptional Regulatory Network                                                                                  |

# **Materials and Methods**

#### **BeeSpace project**

The experiments upon which this study is based arose from the BeeSpace Project (www.beespace.uiuc.edu/), an initiative funded by the US National Science Foundation Frontiers in Biological Research Program to study hereditary and environmental influences on brain gene

expression and social behavior by conducting large-scale genomic analysis and developing new informatics tools. This paper represents a meta-analysis of the large number of studies conducted under the auspices of this initiative; detailed analyses of some experiments have been published previously (1-3) or will be described in forthcoming publications. Each experiment was replicated with ca. 10-20 bees per group for a total of 853 bees and 1305 microarrays. See Supplementary Table 1 legend for a summary of the number of bees, experiments and microarrays that comprised the BeeSpace Project.

#### Sample processing and microarrays

We used microarrays to profile gene expression in the whole brains of individual bees. We used a 70-mer oligo spotted microarray, with probes designed based on gene predictions from the honey bee genome sequencing project; the microarray has been characterized and described previously (2).

Each study was replicated with ca. 10-20 bees per group for a total of 853 bees and 1305 microarrays across all of the experiments. Each experiment was implemented as a separate loop design involving 30-200 microarrays. Sample processing and microarray procedures for all experiments were performed at the Institute for Genomic Biology at the University of Illinois and were performed as previously described<sup>2</sup>. Briefly, partially lyophilized, frozen brains were dissected out of head capsules. RNA extracted from individual brains (Qiagen, RNeasy) was subjected to one round of linear amplification and labeled with fluorescent dye (Cy3 or Cy5;) using the Amino-Allyl Message AmpII kit (Ambion) or the Message AmpII kit in combination with a Universal Labeling System (Kreatech). Labeled aRNA was hybridized to a custom, oligonucleotide microarray containing 28,800 oligos, including 13,440 duplicately spotted experimental probes, primarily based on gene models from the Honey bee Genome Sequencing Project<sup>6</sup>. Slides were scanned with an Axon 4000B scanner, and images were analyzed with GENEPIX software (Agilent Technologies).

#### **Differentially expressed genes**

Statistical analyses to identify differentially expressed genes (DEGs) were performed separately for each experiment using consistent and standard methods, as in (2). Genes abundantly expressed in hypopharyngeal glands (a potential source of tissue contamination in brain samples) were filtered prior to analysis. A Loess transformation was performed using the software program *Beehive* (http://stagbeetle.animal.uiuc.edu/Beehive) to normalize expression intensities. A linear mixed-effects model implemented by using restricted maximum likelihood was used to describe the normalized log2 transformed gene intensities values, including the effects of experimental variables, dye, bee, and microarray. Effects were evaluated with an F-test statistic

and the P-values were adjusted for multiple hypothesis testing by using a FDR criterion. The resulting lists of DEGs below a given cutoff (usually FDR < 0.05) were used to characterize each of the TF-target modules.

We used a different method to characterize the strongest DEGs in our analysis of genes that were or were not accurately modeled in the Transcriptional Regulatory Network (TRN). For this analysis, we used Mann-Whitney rank-sum tests to characterize differentially expressed genes (P < 0.05) in each of the 48 states. **This initial test showed that every gene in the dataset was differentially expressed in at least one state**. We therefore focused on the 100 genes with the lowest P-values in each state, resulting in a list of 2770 genes. As described in the main text, the 2176 genes in the TRN were strongly enriched for this gene set. Similar P-values for enrichment were obtained using the top 50 or 200 genes in each state, and also when we used the genes with the largest fold changes instead of those with the lowest P-values. The same list of strong DEGs was also used for Gene Ontology enrichment analysis to characterize strong DEGs that were or were not accurately modeled in the TRN.

#### Data normalization for network inference

We performed additional normalization and filtering to generate a uniform dataset for network analyses. Expression profiles for individual bees were generated using a linear mixed-effects model with the effects of dye, bee, and microarray (but excluding biological variables). Microarray data from various studies were assembled into one dataset and then quantile normalized. Genes with more than 10% missing values were removed, as were individual bees for which there were more than 30% missing values or those that were not performed on whole brain tissue. These filters resulted in a final data set of 9544 probes and 631 experiments (bees) for network inference.

#### **Approach overview**

There are several advantages of our approach for network inference over using ARACNE or LARS alone. First, whereas ARACNE gives only the topology of the network, this combination outputs both the topology and also whether each interaction is activating or inhibitory. Second, we can estimate the percentage of the variance in a target gene's expression that is explained by each TF, and predict the expression of a target gene in new conditions. Third, by performing variable reduction and removing indirect interactions in ARACNE, we avoid problems faced by LARS with large numbers of interactions and highly correlated variables (4). Information-theoretic approaches are comparatively effective for studying large networks where putative gene-gene interactions are learned from a relatively small amount of expression data (5). Furthermore, our approach gives a quantitative predictive model for regulation for individual genes, which most network inference algorithms based on mutual information do not provide. A

similar network inference tool, the Inferelator (6) also provides a quantitative model of the regulatory network, but it has been used to model groups of genes (biclusters) rather than individual genes. Generally, coexpression networks tend to identify entire subpathways rather than individual interactions (7). Comparison with Bayesian and relevance networks is discussed elsewhere (8).

#### **Enrichment analysis**

All enrichment analyses were performed with hypergeometric tests. We calculated a P-value for each test by summing over probabilities for all values of overlap (>= l, the length of the overlap). We corrected for multiple hypothesis testing by using a Monte-Carlo simulation approach to estimate the False Discovery Rate (FDR) for each test. For each gene list, we took 1000 random samples of the same size as the original gene list and estimated the fraction of enrichments that were of similar or greater significance than the original P-value. This approach was applied to study enrichment for Biological Processes annotated in Gene Ontology (GO), pathways annotated by the Kyoto Encyclopedia of Genes and Genomes (KEGG), *cis*-regulatory DNA sequences within promoter regions, and differentially expressed genes in each of the 27 behavior-related comparisons (Table S1). We also used enrichment analyses to characterize the dominant biological themes represented by the genes accurately modeled in the TRN (compared to differentially expressed genes that were not accurately modeled) and to functionally characterize each of the TF-target modules within the TRN. Specific methods for each of these analyses are described below.

#### **Gene Ontology**

We used *Drosophila melanogaster* orthologs of honey bee genes (1) and version 1.1283, downloaded on 03/06/2010.

#### KEGG

We used KEGG annotations of honey bee genes publicly available on the KEGG website (www.genome.jp/kegg)

#### cis-regulatory motifs

*cis*-regulatory motif module predictions were generously provided by Professor Saurabh Sinha (University of Illinois at Urbana-Champaign). A motif module is defined as the set of genes that have a significant presence of the motif in their promoters; it was determined as described in (1). Every 500 bp segment in the 5 Kbp region upstream of a gene was scanned for a motif's

presence using the SWAN program, which produces a likelihood ratio statistic that captures the presence of one or more strong or weak matches to the motif in the segment. This score was then converted to an empirical P-value by comparing it to scores obtained from all segments of similar G/C content as the original segment. An empirical P-value of  $\leq 0.01$  for any segment in a gene's 5 KBp upstream region was used to designate that gene as belonging to the motif module.

#### Distribution of global and broadly acting vs. behavior-specific TFs

The statistical significance of the distribution of P-values for each of the three behavioral categories was estimated using random sampling. We shuffled the P-values for enrichment in the network to generate a background distribution for global regulators and the three sub-categories: aggression, foraging, and maturation. We then estimated p-values using t-test comparison with the background random distribution. We obtained a P-value < 2E-6 for global regulators, 2E-8 for maturation and ~0.3 for both aggression and foraging; the overall P-value for the distribution of enrichments in the entire table (Table S7) was < 2E-10.

#### Differential rank conservation (DIRAC) analysis of the network

Differential Rank Conservation (DIRAC) (9) was used to investigate changes in relative gene expression within each module, either across individual bees within states, or between states. Specifically, DIRAC quantifies and assesses expression consistency in the context of the rankings of target genes within a selected module: for each microarray, the expression values of the module genes are ordered from highest expression (ranked first) to lowest expression (ranked last). For any state or comparison in which genes of a particular module were not expressed, this module was omitted from DIRAC calculations.

We first used DIRAC to characterize the consistency of rank ordering within each module for the individual bees within each of the 48 states, as detailed in (9). A network is considered tightly regulated within a state if the relative expression of module genes is mostly consistent across individuals; a network is considered loosely regulated if the relative expression of genes is greatly varied between individuals of a state. Consistency of relative expression for a module in a selected state can range between 0.5 (relative expression of module genes is completely different in each individual) and 1.0 (relative expression of modules genes is identical in all individuals); the average consistency of all network modules across all states was 0.89±0.06, indicating that modules are tightly regulated in general within states (Figs. S7, S8).

We next used DIRAC to detect changes in relative expression of genes between states for each module. DIRAC identifies variably expressed or 'shuffled' modules that, for each comparison, enable statistically significant classification of expression profiles between states (9). We

estimated P-value and FDR for classification accuracies by repeatedly performing calculations for each comparison with 10,000 sets of randomly permuted individuals.

### References

- 1. Alaux C, *et al.* (2009) Honey bee aggression supports a link between gene regulation and behavioral evolution. *Proc Natl Acad Sci U S A* 106(36):15400-15405.
- 2. Alaux C, *et al.* (2009) Regulation of brain gene expression in honey bees by brood pheromone. *Genes Brain Behav* 8(3):309-319.
- 3. Alaux C, *et al.* (2009) Modulatory communication signal performance is associated with a distinct neurogenomic state in honey bees. *PLoS One* 4(8):e6694.
- 4. Efron B (2002) *Least angle regression* (Stanford University, Department of Biostatistics, Stanford, Calif.) p 41 p.
- 5. Camacho DM & Collins JJ (2009) Systems biology strikes gold. *Cell* 137(1):24-26.
- 6. Bonneau R, *et al.* (2006) The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. *Genome Biol* 7(5):R36.
- 7. Basso K, *et al.* (2005) Reverse engineering of regulatory networks in human B cells. *Nat Genet* 37(4):382-390.
- 8. Margolin AA, *et al.* (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. *BMC Bioinformatics* 7 Suppl 1:S7.
- 9. Eddy JA, Hood L, Price ND, & Geman D (2010) Identifying tightly regulated and variably expressed networks by Differential Rank Conservation (DIRAC). *PLoS Comput Biol* 6(5):e1000792.
- 10. Giray T, *et al.* (2000) Genetic variation in worker temporal polyethism and colony defensiveness in the honey bee, Apis mellifera. *Behavioral Ecology* 11(1):44.
- 11. Giray T, Huang ZY, Guzmán-Novoa E, & Robinsons G (1999) Physiological correlates of genetic variation for rate of behavioral development in the honeybee, Apis mellifera. *Behavioral Ecology and Sociobiology* 47(1):17-28.
- 12. Pankiw T & Page RE (2001) Genotype and colony environment affect honeybee (Apis mellifera L.) development and foraging behavior. *Behavioral Ecology and Sociobiology* 51(1):87-94.
- 13. Robinson GE (2002) Genomics and integrative analyses of division of labor in honeybee colonies. *The American Naturalist* 160(S6):S160-S172.
- 14. Ament SA, Wang Y, & Robinson GE (2010) Nutritional regulation of division of labor in honey bees: toward a systems biology perspective. *Wiley Interdisciplinary Reviews: Systems Biology and Medicine* 2(5):566-576.
- 15. Nelson CM, Ihle KE, Fondrk MK, Page RE, & Amdam GV (2007) The gene vitellogenin has multiple coordinating effects on social organization. *PLoS Biol* 5(3):e62.
- 16. Seeley TD (1995) *The wisdom of the hive: the social physiology of honey bee colonies* (Belknap Pr).

- 17. Naeger NL, *et al.* (2011) Neurogenomic signatures of spatiotemporal memories in timetrained forager honey bees. *Journal of Experimental Biology* 214(6):979.
- 18. Farris SM, Robinson GE, & Fahrbach SE (2001) Experience-and age-related outgrowth of intrinsic neurons in the mushroom bodies of the adult worker honeybee. *The Journal of Neuroscience* 21(16):6395.
- 19. Dukas R & Visscher PK (1994) Lifetime learning by foraging honey bees. *Animal behaviour*.
- 20. Sen Sarma M, *et al.* (2010) Distance responsive genes found in dancing honey bees. *Genes, Brain and Behavior.*
- 21. Roy S, *et al.* (2010) Identification of functional elements and regulatory circuits by Drosophila modENCODE. *Science* 330(6012):1787-1797.
- 22. Gallo SM, *et al.* (2011) REDfly v3.0: toward a comprehensive database of transcriptional regulatory elements in Drosophila. *Nucleic acids research* 39(Database issue):D118-123.
- 23. Murali T, *et al.* (2011) DroID 2011: a comprehensive, integrated resource for protein, transcription factor, RNA and gene interactions for Drosophila. *Nucleic acids research* 39(Database issue):D736-743.

#### **Supplementary Tables**

# Table S1. Honey bee behavioral states and behavioral comparisons used for gene expression profiling and reconstruction of brain TRN

The TRN is based on the results of a set of experiments that used microarrays to profile gene expression in the whole brains of individual bees in experiments that analyzed 48 distinct behavioral states (1<sup>st</sup> column) and 27 direct comparisons between states, with ca. 10-20 bees/state. The behavioral states fall into three ecologically important categories: aggression, maturation, and foraging. For each of these three categories, some comparisons assessed hereditary differences (between sub-species or strains) and/or environmentally induced changes in behavior. TRN inference was performed using gene expression data from the 48 behavioral states, and TRN dynamics and regulation were studied with the results from the 27 comparisons. Twenty-four out of the 27 comparisons involved states used in TRN inference. We excluded two (26: Foraging Experience and 27: Distance Perception) because they involved measurements of gene expression in sub-regions of the brain, rather than the whole brain (comparison 26 was used in a subsequent test to determine the performance of the whole brain TRN model on brain region data). We excluded Comparison 16 (Queen Mandibular Pheromone) from TRN inference because of a high rate of 'missing' (poorly hybridizing) probes on the arrays for this study. Comparison 28, which involved States 45-48 (related to comparisons of drones vs. workers) were used only during TRN inference but were excluded from subsequent analyses because they relate less directly to worker bee behavior. For each comparison, we provide the following information: a description of the states and their relevance to social behavior; the total number of differentially expressed genes (DEGs; ANOVA, False Discovery Rate [FDR] < 0.05 across all probes on the microarray unless otherwise noted); the number of DEGs that were accurately modeled as targets in the TRN; the number of transcription factors (TFs) that were predicted to regulate these target genes (the TFs themselves were not necessarily differentially expressed); the total number of TF-target interactions involving DEGs in each experiment; 'Major Regulators' are TFs whose targets were significantly enriched for DEGs in each comparison; they were named according to the symbol of the orthologous Drosophila TF. In addition, for each state/comparison we list citations for those experiments that are already published or the names of lead contributors for those that have not yet been published.

## AGGRESSION

| Comparison<br>(States)   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | #DEGs<br>(Total) | TRN<br>Target | TRN<br>TFs | Inter-<br>actions | Major Regulators                                                                                         | Citation/<br>Contributors |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|------------|-------------------|----------------------------------------------------------------------------------------------------------|---------------------------|
| Hereditary infl          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |               |            |                   |                                                                                                          |                           |
| <b>1</b><br>(States 1-4) | Africanized (AHB) vs. European (EHB)<br>Honey bee Guards: Individual Genotype                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 250              | 29            | 43         | 86                |                                                                                                          | (1)                       |
|                          | Bees in colonies of Africanized sub-species<br>are more aggressive than bees in colonies of<br>European sub-species due to a combination of<br>individual genetics and colony-level<br>environmental factors. AHB and EHB<br>individuals were co-fostered in AHB and EHB<br>colonies. Guards are bees at the hive entrance<br>that alert colony members to a potential<br>intruder by releasing alarm pheromone.<br>Comparison 1 identified genes that differed<br>according to a guard's individual genotype,<br>independent of colony genotype. |                  |               |            |                   |                                                                                                          |                           |
| 2                        | AHB vs EHB Soldiers: Individual Genotype                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 545              | 72            | 92         | 224               | dl, lilli                                                                                                | (1)                       |
| (States 5-8)             | As above, but soldiers: bees that respond aggressively to intruders, seeking them out to sting.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |               |            |                   |                                                                                                          |                           |
| Environmental            | influences (long-term)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |               |            |                   |                                                                                                          |                           |
| 3                        | AHB vs EHB Guards: Colony Genotype                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 502              | 62            | 80         | 196               | CG34422                                                                                                  | (1)                       |
| (States 1-4)             | Effects of colony genotype on gene expression<br>in guards, independent of individual genotype<br>(cross-fostering design).                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |               |            |                   |                                                                                                          |                           |
| 4                        | AHB vs EHB Soldiers: Colony Genotype                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 840              | 137           | 106        | 413               | YL-1, CG14711,                                                                                           | (1)                       |
| (States 5-8)             | Effects of colony genotype on gene expression<br>in soldiers, independent of individual<br>genotype (cross-fostering design).                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |               |            |                   | Pbp95,         CG34422,           CG9215,         CTCF,           Ets97D,         Su(var)2-           10 |                           |
| Environmental            | influences (short-term)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |               |            |                   |                                                                                                          |                           |
| 5                        | Alarm Pheromone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 442              | 80            | 94         | 252               | Deaf1, E2f2,                                                                                             | (1)                       |
| (States 9, 10)           | The chemical iso-pentyl acetate (IPA) acts as<br>alarm pheromone to induce aggressive<br>behavior. Caged, foraging-age bees were<br>exposed to alarm pheromone and compared to<br>a control condition.                                                                                                                                                                                                                                                                                                                                            |                  |               |            |                   | Ets97D, Mio,<br>Su(var)2-10, br,<br>kin17, pan                                                           |                           |

#### MATURATION

| Comparison<br>(States)       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DEGs<br>(Total) | TRN<br>Target | TRN<br>TFs | Inter-<br>actions | Major Regulators                                                                                                                                                    | Citation/<br>Contributors                                                           |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Hereditary infl              | uences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | <u> </u>      |            |                   |                                                                                                                                                                     |                                                                                     |
| <b>6</b><br>(States 11-14)   | AHB vs. EHB 4-day-old Adult Hive Bees:<br>Individual/Colony Genotype<br>AHB show faster maturation (initiate foraging<br>at a younger age) than EHB (10). Pre-<br>foraging-age bees (4-day-old and 14-day-old<br>adults) were collected from inside AHB and<br>EHB hives and gene expression was measured<br>in a 2x2 factorial with genotype and age.<br>Unlike the experiments with guards and<br>soldiers, the effects of colony and individual<br>genotype were considered as a single variable<br>in this experiment. Comparison 6 describes<br>genotypic differences in 4-day-old bees. | 3755            | 804           | 183        | 2566              | fd85E, blos1,<br>CG33695, Mtp,<br>CG9890, Camta,<br>Dp, Myb, Ssb-c31a,<br>Stat92E, aop, bs,<br>crp, fru, ftz-f1, lilli,<br>nej, onecut, pnt, rn,<br>sima, slp2, vnd | C. Alaux, S.L.<br>Rodriguez-Zas<br>& G.E.<br>Robinson                               |
| 7<br>(States 11-14)          | AHB vs. EHB 14-day-old Adult Hive Bees:<br>Individual/Colony Genotype<br>Genotypic effects in 14-day-olds from<br>experiment above.                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3922            | 834           | 184        | 2661              | fd85E, blos1,<br>CG33695, Mtp,<br>CG9890, Camta,<br>Dp, Myb, SoxN,<br>Ssb-c31a, Stat92E,<br>bs, crp, fru, ftz-f1,<br>lilli, nej, pnt, rn,<br>sima, vnd              | C. Alaux, S.L.<br>Rodriguez-Zas<br>& G.E.<br>Robinson                               |
| <b>8</b><br>(States 15-18)   | <ul> <li>A. mellifera ligustica vs. A. mellifera<br/>mellifera 10-day-old Adult Hive Bees:<br/>Individual/Colony Genotype</li> <li>Sub-species from Northern (A. mellifera<br/>mellifera) and Southern (A. mellifera<br/>ligustica) Europe differ in maturation;<br/>ligustica are faster (11). Pre-foraging-age bees<br/>(10-days old) from colonies of mellifera and<br/>ligustica were measured in a 2x2 factorial with<br/>genotype and age.</li> </ul>                                                                                                                                   | 3136            | 582           | 173        | 1827              | CG42748,<br>blos1,Ssb-c31a br,<br>dac, maf-S, tgo                                                                                                                   | C. Alaux, Y.<br>LeConte, S.L.<br>Rodriguez-Zas<br>& G.E.<br>Robinson                |
| <b>9</b><br>(States 15-18)   | <i>ligustica</i> vs. <i>mellifera</i> 15-day-old Adult Hive<br>Bees: Individual/Colony Genotype<br>Same as Experiment 8, but for 15-day-old<br>bees.                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3218            | 593           | 171        | 1868              | CG42748,<br>blos1,Ssb-c31a br,<br>dac, maf-S                                                                                                                        | C. Alaux, Y.<br>LeConte, S.L.<br>Rodriguez-Zas<br>& G.E.<br>Robinson                |
| <b>10</b><br>(States 19, 20) | High vs. Low Pollen Hoarding<br>Artificial selection on the amount of pollen<br>stored in the hive ('pollen hoarding') has led<br>to changes in a suite of individual behavioral<br>characteristics, including precocious<br>maturation in high-pollen hoarding line (12).<br>7-day-old hive bees from high- and low-<br>hoarding lines were compared.                                                                                                                                                                                                                                        | 460             | 103           | 103        | 332               | CG17912,<br>CG32532, crc                                                                                                                                            | A.L. Toth, R.E.<br>Page, G.V.<br>Amdam, S.L.<br>Rodriguez-Zas<br>& G.E.<br>Robinson |

| Environmental               | influences (long-term)                                                                                                                                                                                                                                                                                                                                                                                      |                    |     | •   | •    |                                                                                                                                                                                                                                                                    |                                                       |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 11<br>(States 21, 22)       | Young Nurses vs. Old Foragers (Typical colony)                                                                                                                                                                                                                                                                                                                                                              | 1394               | 231 | 129 | 727  | CG33695, Xbp1                                                                                                                                                                                                                                                      | (2)                                                   |
|                             | One-week-old bees were collected performing<br>brood care ('nursing'), the in-hive task<br>performed by most 1-2-week-old workers;<br>One-month-old bees were collected foraging<br>outside the hive for nectar or pollen.                                                                                                                                                                                  |                    |     |     |      |                                                                                                                                                                                                                                                                    |                                                       |
| 12<br>(States 23, 24)       | Young Nurses vs. Young Foragers (Single-<br>cohort colony)                                                                                                                                                                                                                                                                                                                                                  | 183                | 21  | 47  | 67   | kay                                                                                                                                                                                                                                                                | (2)                                                   |
| (2000 - 20) - 20            | The effects of behavior and age can be<br>separated by creating 'single-cohort' colonies<br>in which all bees are the same age but<br>nonetheless form a division of labor between<br>nurses and foragers. A 2x2 factorial design<br>was used, with behavior (nurse or forager) and<br>age (7- or 30-days-old). Comparison 12<br>contrasts age-matched 7-day-old bees at<br>different stages of maturation. |                    |     |     |      |                                                                                                                                                                                                                                                                    |                                                       |
| 13<br>(States 25, 26)       | Old Nurses vs. Old Foragers (Single-cohort colony)                                                                                                                                                                                                                                                                                                                                                          | 460                | 73  | 94  | 211  | CG14711, CG3815                                                                                                                                                                                                                                                    | (2)                                                   |
|                             | Same as Experiment 12 but with age-matched 30-day-old bees at different stages of maturation.                                                                                                                                                                                                                                                                                                               |                    |     |     |      |                                                                                                                                                                                                                                                                    |                                                       |
| <b>14</b><br>(States 11-14) | <b>4-day-old vs. 14-day-old Adult Hive Bees</b><br>A bee's age does not directly cause a shift<br>from hive work to foraging; older bees are just<br>more likely to make this transition (13). 14-<br>day-old vs. 4-day-old hive bees from AHB<br>and EHB were compared; genes with a<br>significant age x genotype interaction<br>excluded.                                                                | 2985               | 492 | 168 | 1508 | CG11294, MEP-1,<br>CG7786,<br>CG9139,CG9932,<br>D, E2f, Optix, al,<br>bab1, cg, oc, trh,<br>unpg                                                                                                                                                                   | C. Alaux, S.L.<br>Rodriguez-Zas<br>& G.E.<br>Robinson |
| 15                          | 10-day-old vs. 15-day-old Adult Hive Bees                                                                                                                                                                                                                                                                                                                                                                   | 691                | 130 | 118 | 430  | CG17912, CG3407,                                                                                                                                                                                                                                                   | C. Alaux, S.L.                                        |
| (States 15-18)              | 15-day-old bees vs. 10-day-old bees from <i>A. mellifera ligustica</i> and <i>A. mellifera mellifera</i> . Genes with a significant age x genotype interaction excluded.                                                                                                                                                                                                                                    |                    |     |     |      | CG7786, CrebB-<br>17A, dl                                                                                                                                                                                                                                          | Rodriguez-Zas<br>& G.E.<br>Robinson                   |
| Environmental               | influences (short-term)                                                                                                                                                                                                                                                                                                                                                                                     |                    |     |     |      |                                                                                                                                                                                                                                                                    |                                                       |
| 16<br>(States N.A.)         | <b>Queen Mandibular Pheromone</b><br>The pace of worker maturation is influenced<br>by the social environment, signaled in part by<br>the presence of pheromones. Queen<br>Mandibular Pheromone (QMP)—a chemical<br>blend produced by the queen—delays<br>maturation <sup>7</sup> . The response of caged bees<br>exposed chronically to QMP for 4 days was                                                 | 753 (FDR<br>< 0.2) | 209 | 126 | 604  | Bgb,         CG15715,           CG17912,         blos1,           CG32121,         Mtp,           CG9776,Dref,         Ets65A,           HLHm&bgr,         Jra,           MTA1-like,         Mio,           Oli,         gem,           l(2)k10201, pnt         pt | C. Alaux, S.L.<br>Rodriguez-Zas<br>& G.E.<br>Robinson |

|                      | compared to controls. Note: Bees from the QMP study were not included in the initial reconstruction of the TRN, but the gene list was used for subsequent analyses of TRN function.                                                                                                                                                                                                                         |      |     |     |      |                                                                                                                              |                                                                           |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|-----|------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| 17<br>(States 27-29) | <b>Rich vs. Poor Diet</b><br>Nutritional status is another factor that<br>influences maturation (14). Bees were caged<br>and fed either a rich diet (pollen, honey, and<br>sugar syrup) or a poor diet (sugar syrup only).<br>These bees also were compared to age-<br>matched controls reared in a colony.<br>Comparison 17 contrasts brain gene<br>expression in bees fed rich vs. poor diet.             | 372  | 66  | 81  | 187  | CG11085, Ets65A,<br>HLHm&bgr, aop,<br>cnc, fru, ftz-f1                                                                       | S.A. Ament,<br>M.M. Wheeler,<br>S.L. Rodriguez-<br>Zas & G.E.<br>Robinson |
| 18<br>(States 30-32) | <b>Vitellogenin RNAi</b><br>Titres of the yolk protein vitellogenin decrease<br>prior to the onset of foraging, and vg has<br>causal effects on maturation; vg dsRNA<br>treatment causes precocious foraging (15).<br>Bees were injected intra-abdominally with<br>vgdsRNA, saline buffer, or sham manipulated.<br>Comparison 18 contrasts brain gene<br>expression in vg RNAi vs. saline injected<br>bees. | 3138 | 690 | 178 | 2073 | Ada2b, CG12071,<br>MEP-1, CG32532,<br>Nf-YA, CG6854,<br>CG34422, Vps45,<br>Ets65A, HLH106,<br>NC2&bgr, adp, crc,<br>fru, nej | S.A. Ament,<br>M.M. Wheeler,<br>S.L. Rodriguez-<br>Zas & G.E.<br>Robinson |

## FORAGING

| Comparison<br>(States)       | Description                                                                                                                                                                                                                                                                                          | #DEGs<br>(Total) | TRN<br>Target | TRN<br>TFs | Inter-<br>actions | Major Regulators                         | Citation/<br>Contributors |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|------------|-------------------|------------------------------------------|---------------------------|
| (States)<br>Hereditary infl  | ·                                                                                                                                                                                                                                                                                                    | (10111)          | Turgei        | 115        | ucuons            | Major Regulators                         | Contributors              |
| <b>19</b><br>(States 33-36)  | AHB vs EHB Foragers: Individual<br>Genotype<br>See Comparisons 1 and 4 for experimental<br>details. Relative to EHB, AHB foragers have a<br>preference for pollen and lower sucrose<br>response thresholds during nectar foraging.<br>Comparison 19 describes the effects of<br>individual genotype. | 59               | 5             | 17         | 18                | Vps45                                    | (1)                       |
| Environmental                | influences (long-term)                                                                                                                                                                                                                                                                               |                  |               |            |                   |                                          | I                         |
| 20                           | AHB vs EHB Foragers: Colony Genotype                                                                                                                                                                                                                                                                 | 351              | 48            | 80         | 146               | crc                                      | (1)                       |
| (States 33-36)               | Same as Experiment 19 but this comparison describes the effects of colony genotype (cross-fostering design).                                                                                                                                                                                         |                  |               |            |                   |                                          |                           |
| Environmental                | influences (short-term)                                                                                                                                                                                                                                                                              |                  |               |            |                   | _                                        | _                         |
| <b>21</b><br>(States 37, 38) | Scout vs. Recruit<br>Individual foragers differ in how they find the                                                                                                                                                                                                                                 | 1126             | 226           | 138        | 681               | BtbVII, blos1, Mtp,<br>Ets65A, MBD-like, | 0.                        |

| 22<br>(States 39, 40) | flowers upon which they forage. Scout bees<br>seek out novel sites independently and assess<br>their quality. They then recruit other foragers<br>('recruits') to these sites (16) with the dance<br>language. Scouts were collected after foraging<br>at novel sites on multiple days; recruits were<br>collected that repeatedly foraged at a known<br>site but did not visit novel sites.<br><b>Vibration Signalers</b><br>Specialist foragers perform a stereotyped<br>vibratory signal that modulates the activity of                                                                                                                                                     | 763                 | 155 | 116 | 437  | bun, ey, mip120,<br>onecut, p53, pros,<br>vnd<br>Su(H), Xbp1, fru,<br>fiz-f1, gem, mbf1,<br>pnt, vnd                                                                                                                                                                                                          | & G.E.<br>Robinson<br>(3) |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|                       | other bees in the colony. Vibration signal<br>specialists were compared to age-matched<br>bees that did not perform this behavior.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |     |     |      |                                                                                                                                                                                                                                                                                                               |                           |
| 23<br>(States 41-44)  | <b>Time-trained: Spatiotemporal Memories</b><br>Foragers form spatiotemporal memories for<br>particular flowers and forage at those sites<br>only at the appropriate time of day. Different<br>groups of foragers from the same hive were<br>trained to forage either in the morning or the<br>afternoon. To determine the imprint of these<br>spatiotemporal memories on brain gene<br>expression, bees from both training groups<br>were collected in the morning and afternoon (a<br>2x2 factorial with training time and collection<br>time). Comparison 23 contrasts bees trained in<br>the morning to bees trained in the afternoon<br>(independent of collection time). | 229 (FDR<br>< 0.01) | 60  | 76  | 177  | CG15011, CG9776,<br>Lag1, NC2&bgr, dl,<br>exd, kay                                                                                                                                                                                                                                                            | (17)                      |
| 24<br>(States 41-44)  | <b>Time-trained: Morning vs. Afternoon</b><br>Same as Comparison 23, except this<br>comparison describes brain gene expression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 798 (FDR<br>< 0.01) | 146 | 116 | 453  | fru                                                                                                                                                                                                                                                                                                           | (17)                      |
| 25<br>(States 41-44)  | differences associated with collection time.<br><b>Time-trained: Anticipating vs. Inactive</b><br>Same as Comparison 23, except this<br>comparison contrasts bees based on their<br>activity level by comparing bees collected at<br>the time they had been trained to forage<br>('anticipating' because bees were collected<br>prior to their leaving the hive, but already<br>showing stereotyped anticipatory behavior) to<br>bees that were inactive at that time because<br>they had been trained to forage in other parts<br>of the day.                                                                                                                                 | 3439                | 804 | 184 | 2456 | A3-3, Alh, Bgb,<br>CG15011,<br>CG42748,<br>CG32121,<br>CG33695, Mtp, Dp,<br>Dsp1, Eip74EF,<br>Ets65A, Fer3,<br>HLHm&bgr, MTA1-<br>like, NC2&bgr,<br>SoxN, Ssb-c31a,<br>Xbp1, aop, ap,<br>bigmax, br, bun,<br>crc, dac, dl, exd,<br>fru, ftz-f1, gem, kay,<br>l(2)k10201, lilli,<br>mbf1, nej, pan, pnt,<br>sd | (17)                      |

|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I   | 1  |    | 1   | 1                                         |      |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|----|-----|-------------------------------------------|------|
| Environmental       | influences (brain sub-region data)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | 1  | 1  |     | 1                                         |      |
| 26<br>(States N.A.) | <b>Foraging Experience</b><br>Extensive foraging experience (> 1 week of foraging) causes an enlargement of the mushroom bodies a brain region involved in associative learning – and behavioral differences in how foragers learn and remember food sources (18, 19). Mushroom body gene expression was measured in bees with 4, 8, 12, or 16 days of foraging experience. The most extensive differences were found between bees with 8 vs. 12 days of foraging experience, corresponding to the period of mushroom body expansion, and these differences are measured in Comparison 26. Because this experiment measured gene expression only in one brain region                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 371 | 45 | 72 | 137 | CG9139, Deaf1,<br>Ets97D, Su(var)2-<br>10 |      |
| 27                  | <ul> <li>(corresponding to ca. 40% of the brain by volume), bees from this experiment were not included in the initial reconstruction of the TRN model but were used as a test set to determine the predictive ability of the TRN model for a sub-region of the brain. Foraging experience was considered a long-term difference in behavior.</li> <li>Distance Perception</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 52  | 8  | 0  | 0   |                                           | (20) |
| (States N.A.)       | Foraging honey bees remember the locations<br>of floral resources (distance and direction<br>relative to the hive) and communicate this<br>information socially to other workers via the<br>dance language. Distance-responsive genes<br>were identified in two regions of the bee brain,<br>the mushroom bodies and optic lobes. Bees<br>were trained to fly to a feeding station through<br>a narrow tunnel with interchangeable visual<br>patterns on the walls. Because bees measure<br>distance from optic flow, they can be tricked<br>into perceiving a long distance when flying<br>past a vertical striped pattern (generating high<br>amounts of image motion, similar to a visually<br>dense landscape), and a short distance when<br>flying past a horizontal striped pattern (similar<br>to a visually sparse landscape). Comparison<br>27 contrasts bees that had foraged at a<br>perceived long vs. short distance but had<br>otherwise identical experience. We used genes<br>for which there was a significant main effect<br>of distance perception, independent of brain<br>region. Distance perception is a short-term |     |    |    |     |                                           |      |

| difference in behavior. |  |  |  |
|-------------------------|--|--|--|

### ADDITIONAL STATES

| <b>28</b><br>(States 45-48) | <b>Drone vs. Worker</b><br>Drones (male bees) and worker bees (sterile females) both mature from hive-restricted behavior to flying outside the hive, but the two castes perform different behaviors (drones mate, workers forage). We compared one-day-old (in-hive) and 21-day-old (flying) drones and workers in a 2x2 factorial with caste and age. Bees from this experiment were included in TRN reconstruction but not for subsequent analyses | N.A. |  |  | A. Zayed,<br>Naeger,<br>Rodriguez-,<br>&<br>Robinson | <i>S.L.</i> |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|------------------------------------------------------|-------------|
|                             | analyses.                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |  |  |                                                      |             |

| rubie 52. Woder Summary Statistics                               |         |
|------------------------------------------------------------------|---------|
| Total Microarrays                                                | 1305    |
| Total Individual bees studied                                    | 853     |
| Individual bees used for Network Inference (NI)                  | 631*    |
| Individual bees used for Clustering                              | 751*    |
| Individual bees for mushroom body (MB) expt.                     | 120     |
| Total Bees used for NI, MB and generating gene lists             | 853*    |
| Total genes in the network                                       | 2176    |
| TFs in the data set                                              | 236     |
| TFs in the network                                               | 190     |
| Interactions in the network                                      | 6757    |
| Mean Indegree                                                    | 3       |
| Standard Deviation Indegree                                      | 1       |
| Mean Out degree                                                  | 35      |
| Standard Deviation Out degree                                    | 50      |
| P-value threshold for Mutual information                         | 1.00E-6 |
| DPI threshold                                                    | 0.1     |
| Total modules                                                    | 190     |
| Modules enriched for GO/Kegg                                     | 166     |
| Modules enriched for an upstream motif                           | 109     |
| Modules with enrichment for differentially expressed genes (DEG) | 108     |
| Total genes in the data set                                      | 9544    |
| Global regulators                                                | 4       |
| Correlation threshold                                            | 0.8     |
| Correlation Ten-fold CV (train & test)                           | 0.87    |
| Correlation background                                           | 0       |

#### **Table S2. Model Summary Statistics**

\* Some of the 853 bees were excluded for inferring the TRN if their expression profiles had many missing values, or if they were analyzed for brain region, rather than whole brain, expression, resulting in 631 bees being used for NI out of the 853 bees. For clustering, only data sets with many missing values were excluded, resulting in 751 bee profiles.

# Table S3. Global analysis of bee brain gene expression and social behavior – Controls and Statistical Significance

To check the robustness of these clusters with respect to changes in the transcriptome, we took random subsets of the transcriptome to see if the phenotype—expression relationship still holds true. We found that with as little as 10% of the genes, the phenotypes still grouped into clusters specific to Aggression (Genetic influence subcluster: AHB vs. EHB Guards (Indiv.); AHB vs. EHB Soldiers (Indiv.); lig vs. mel (10-d-old); lig vs. mel (15-d-old); AHB vs. EHB (4-d-old); AHB vs. EHB (14-d-old); AHB vs. EHB Forager (Indiv.). Environmental influence subcluster: AHB vs. EHB Guards (Colony); AHB vs. EHB Soldiers (Colony); AHB vs. EHB Forager (Colony)) and foraging (Morning vs. Afternoon; Training time; Anticipating vs. Inactive; Scout vs. Recruit; Vibratory Signal). Table below shows the fraction of times these clusters were present in among 100 random samples from a subset of the transcriptome. The fraction % for each subset is given at the top of the table. Since the maturation phenotype was spread across multiple clusters we weren't able to quantify it computationally.

| Additional controls are discussed in the Methods section and Figure S1. |  |
|-------------------------------------------------------------------------|--|
|                                                                         |  |

| Clusters                      | 10%  | 20%  | 30%  | 40% | 50%  | 60%  | 70%  | 80%  | 90%  | 100<br>% |
|-------------------------------|------|------|------|-----|------|------|------|------|------|----------|
| Aggression (Genetic)          | 0.86 | 0.95 | 0.99 | 1   | 1    | 1    | 1    | 1    | 1    | 1        |
| Aggression<br>(Environmental) | 0.98 | 1    | 1    | 1   | 1    | 1    | 1    | 1    | 1    | 1        |
| Foraging Behaviors            | 0.45 | 0.66 | 0.82 | 0.8 | 0.83 | 0.86 | 0.95 | 0.96 | 0.95 | 0.98     |

## Table S4. Enriched biological processes in the bee brain TRN

The following Gene Ontology biological processes were over-represented (FDR < 0.05) among differentially expressed genes in the TRN, compared to differentially expressed genes that were not accurately modeled. Categories related to neuronal functions are highlighted (manual annotation). The P-value for enrichment is shown for each category.

| GO category                            | P-value  | GO category                            | P-value  |
|----------------------------------------|----------|----------------------------------------|----------|
| very long-chain fatty acid metabolic   | 0        | structural constituent of cytoskeleton | 1.79E-06 |
| process                                |          | extracellular matrix structural        | 0.000102 |
| HIR complex                            | 0        | constituent                            |          |
| DNA strand annealing activity          | 0        | structural constituent of eye lens     | 2.26E-05 |
| neurotransmitter uptake                | 0        | structural constituent of chorion      | 2.26E-05 |
| sebaceous gland cell differentiation   | 0        | ion channel activity                   | 0        |
| immune response-regulating cell        | 0.000243 | intracellular cyclic nucleotide        | 0        |
| surface receptor signaling pathway     |          | activated cation channel activity      |          |
| mesodermal-endodermal cell             | 0        | calcium activated cation channel       | 0        |
| signaling                              |          | activity                               |          |
| endodermal-mesodermal cell             | 0        | voltage-gated ion channel activity     | 0        |
| signaling                              |          | voltage-gated potassium channel        | 3.31E-05 |
| cell-cell signaling involved in amphid | 0        | ······                                 |          |
| sensory organ development              |          | delayed rectifier K channel activity   | 0.000243 |
| single-stranded DNA binding            | 0        | open rectifier potassium channel       | 2.26E-05 |
| actin binding                          | 2.68E-08 | activity                               |          |
| actin monomer binding                  | 2.33E-06 |                                        | 0        |
| phosphoglycerate dehydrogenase         | 0        | potassium channel activity             | 0        |
| activity                               |          | Ach transmembrane transporter          | 0        |
| phosphorylase activity                 | 0        | activity                               | 0        |
| nicotinic acetylcholine-activated      | 0        | dopamine:sodium symporter activity     | 0        |
| cation-selective channel activity      |          | tropomyosin binding                    | 7.45E-05 |
| G-protein coupled receptor activity    | 0.000115 |                                        |          |
| calcitonin receptor activity           | 0.000269 | chaperonin-containing T-complex        | 0.000324 |
| guanyl-nucleotide exchange factor      | 0        | coated pit                             | 0        |
| adaptor activity                       |          | gap junction                           | 0        |
| GDP-dissociation inhibitor activity    | 0        | protein folding                        | 0.000326 |
| epidermal growth factor receptor       | 0        | de novo protein folding                | 0.000125 |
| binding                                |          | folic acid and derivative metabolic    | 0        |
| structural constituent of cell wall    | 0.000102 |                                        | 0        |

| process                                |          | high-affinity potassium ion import      | 3.39E-06 |
|----------------------------------------|----------|-----------------------------------------|----------|
| receptor-mediated endocytosis          | 2.26E-05 | ER body                                 | 0        |
| positive regulation of antifungal      | 0        | temperature compensation of the         | 0        |
| peptide biosynthetic process           |          | circadian clock                         |          |
| post-chaperonin tubulin folding        | 0.000259 | light-activated ion channel activity    | 0        |
| pathway                                |          | cell-cell signaling involved in         | 0        |
| male meiosis chromosome                | 0        | quorum sensing                          |          |
| segregation                            |          | amidinotransferase activity             | 0        |
| synaptic transmission                  | 1.17E-05 | ion transmembrane transporter           | 0        |
| neuromuscular synaptic transmission    | 0.000329 | activity                                |          |
| axon target recognition                | 9.93E-06 | calcium-activated potassium channel     | 0        |
| haltere development                    | 0        | activity                                |          |
| visceral mesoderm-endoderm             | 0        | outward rectifier potassium channel     | 0.000243 |
| interaction involved in midgut         |          | activity                                |          |
| development                            |          | ligand-gated ion channel activity       | 0        |
| ectoderm and mesoderm interaction      | 0        | polyspecific organic cation             | 0        |
| structural constituent of bone         | 2.26E-05 | transmembrane transporter activity      |          |
| N-methyltransferase activity           | 2.04E-06 | tubulin binding                         | 4.65E-06 |
| G-protein coupled amine receptor       | 8.25E-05 | acetylcholine transport                 | 0        |
| activity                               |          | mannosidase activity                    | 0        |
| structural constituent of muscle       | 1.61E-08 | determination of muscle attachment      | 0        |
| structural constituent of vitelline    | 2.26E-05 | site                                    |          |
| membrane                               |          | selenocysteine methyltransferase        | 0.00033  |
| gurken receptor binding                | 0        | 5                                       |          |
| female germline ring canal             | 0        | GDP-dissociation stimulator activity    | 0        |
| stabilization                          |          | apoptotic protease activator activity   | 0        |
| mechanically-gated ion channel         | 0        | long-chain-3-hydroxyacyl-CoA            | 0        |
| activity                               |          | dehydrogenase activity                  |          |
| taste receptor activity                | 4.24E-05 | transferase activity, transferring one- | 0.000118 |
| photoreceptor cell morphogenesis       | 0        | carbon groups                           |          |
| caspase activator activity             | 0        | transferase activity, transferring      | 0        |
| cyclic nucleotide metabolic process    | 0        | nitrogenous groups                      |          |
| folic acid and derivative biosynthetic | 0        | oximinotransaminase activity            | 0        |
| process                                |          | G-protein coupled acetylcholine         | 0        |
| microtubule-based flagellum            | 0        | receptor activity                       |          |
| guard cell differentiation             | 0        |                                         | 0        |
| root epidermal cell differentiation    | 0        | receptor mediated endocytosis of        | 0        |
| maintenance of meristem identity       | 0        | virus by host                           |          |
| potassium ion import                   | 3.39E-06 | cytokine-mediated signaling pathway     | 0.000243 |

| structural constituent of myelin      | 2.26E-05 | signaling pathway                    |          |
|---------------------------------------|----------|--------------------------------------|----------|
| sheath                                |          | asymmetric synapse                   | 0        |
| microneme                             | 0        | symmetric synapse                    | 0        |
| cerebellar Purkinje cell-granule cell | 0        | nucleomorph                          | 0        |
| precursor cell signaling involved in  |          | attachment organelle                 | 0        |
| regulation of granule cell precursor  |          | CAF-1 complex                        | 0        |
| cell proliferation                    |          | cell surface receptor linked signal  | 0.000243 |
| negative regulation of cell-cell      | 0        | transduction leading to integrin     |          |
| adhesion                              |          | activation                           |          |
| protein maturation by protein folding | 0.000259 | pyridoxine 5-phosphate synthase      | 0        |
| voltage-gated cation channel activity | 1.34E-05 | activity                             |          |
| CD40 signaling pathway                | 0.000243 | Arp2/3 complex-mediated actin        | 0        |
| actin filament-based movement         | 0        | nucleation                           |          |
| clathrin vesicle coat                 | 0        | protein folding in endoplasmic       | 0.000259 |
| clathrin coat of coated pit           | 0        | reticulum                            |          |
| keratinocyte differentiation          | 0        | adult chitin-based cuticle pattern   | 0        |
| structural constituent of epidermis   | 2.26E-05 | formation                            |          |
| structural constituent of chromatin   | 2.26E-05 | histone acetyltransferase binding    | 0        |
| pseudocleavage                        | 0        | regulation of tube diameter, open    | 0        |
| pseudocleavage during syncytial       | 0        | tracheal system                      |          |
| blastoderm formation                  |          | embryonic hemocyte differentiation   | 0        |
| vitelline membrane formation          | 0        | synaptic transmission, glutamatergic | 0        |
| regulation of actin filament          | 0        | hair cell differentiation            | 0        |
| polymerization                        |          | Roundabout signaling pathway         | 0.000243 |
| negative regulation of actin filament | 0        | autocrine signaling                  | 0        |
| polymerization                        |          | protein refolding                    | 0.000259 |
| positive regulation of actin filament | 0        | 5,10-methylenetetrahydrofolate-      | 0.000102 |
| polymerization                        |          | dependent methyltransferase activity |          |
| platelet dense tubular network        | 0        | ribosome assembly                    | 0        |
| rRNA methylation                      | 0        | error-prone translesion synthesis    | 0        |
| neuromuscular junction                | 5.83E-08 | structural constituent of cuticle    | 1.50E-05 |
| receptor internalization              | 0        | hormone biosynthetic process         | 7.45E-05 |
| regulation of cyclin-dependent        | 0        | ecdysis-triggering hormone receptor  | 0.000269 |
| protein kinase activity involved by   |          | activity                             |          |
| G1/S                                  |          | positive regulation of circadian     | 0        |
| regulation of cyclin-dependent        | 0        | rhythm                               |          |
| protein kinase activity involved in   |          | histone deacetylase binding          | 0        |
| G2/M                                  |          | single-stranded telomeric DNA        | 0        |
| lipopolysaccharide-mediated           | 0.000243 | binding                              |          |

| membrane-bounded organelle            | 0        | cell-cell signaling involved in lung     | 0        |
|---------------------------------------|----------|------------------------------------------|----------|
| apical junction complex               | 0        | development                              |          |
| structural constituent of carboxysome | 2.26E-05 | mesenchymal-epithelial cell signaling    | 0        |
| multi-organism biosynthetic process   | 0.000129 | regulation of branching involved in      | 0        |
| multicellular organismal biosynthetic | 0.000129 | mammary cord morphogenesis by fat        |          |
| process                               |          | precursor cell-epithelial cell signaling |          |
| small molecule biosynthetic process   | 0.000129 | regulation of mammary gland cord         | 0        |
| exoneme                               | 0        | elongation by mammary fat precursor      |          |
| plasma membrane part                  | 7.12E-06 | cell-epithelial cell signaling           |          |
| negative regulation of cyclin-        | 0        | 8 8                                      | 0        |
| dependent protein kinase activity     |          | placenta development                     |          |
| regulation of protein kinase activity | 0        | epithelial-mesenchymal cell signaling    | 0        |
| tetrahydrofolylpolyglutamate          | 0        | cell-cell signaling involved in          | 0        |
| biosynthetic process                  |          | mammary gland development                |          |
| habituation                           | 0        | 1                                        | 0        |
| dATP(dGTP)-DNA purinetransferase      | 0        | ectoderm cell signaling involved in      |          |
| activity                              |          | anterior/posterior axis specification    |          |
| regulation of neuronal synaptic       | 0        | limb basal epidermal cell                | 0        |
| plasticity                            |          | differentiation                          |          |
| cell morphogenesis involved in        | 0        | 8 8                                      | 0        |
| neuron differentiation                |          | development                              |          |
| imaginal disc-derived appendage       | 0        | regulation of dendritic spine            | 0        |
| development                           |          | morphogenesis                            |          |
| presynaptic active zone membrane      | 0        | peptidoglycan recognition protein        | 0.000243 |
| antennal morphogenesis                | 0        |                                          |          |
| regulation of dendrite development    | 0        | chaperone-mediated protein folding       | 0.000414 |
| positive regulation of dendrite       | 0        | mononeme                                 | 0        |
| morphogenesis                         |          | actin-mediated cell contraction          | 0        |
| sensory perception of bitter taste    | 0        | oligosaccharide binding                  | 0        |
| sensory perception of sour taste      | 0        | · · · · · · · · · · · · · · · · · · ·    | 0        |
| sensory perception of umami taste     | 0        | error-free translesion synthesis         | 0        |
| actin filament severing               | 0        | potassium ion export                     | 3.39E-06 |
| actin filament binding                | 4.65E-07 |                                          | 0.000243 |
| excitatory synapse                    | 0        |                                          | 0        |
| inhibitory synapse                    | 0        | , , , , , , , , , , , , , , , , , , , ,  |          |
| synaptic transmission involved in     | 9.93E-06 |                                          | 0        |
| micturition                           |          | low-density lipoprotein involved in      |          |
| oenocyte delamination                 | 0        | cholesterol transport                    |          |

#### Table S5. Annotation of TF-target modules in the bee brain TRN

For each TF (listed by the name of the orthologous *D. melanogaster* TF), we list the number of predicted target genes. For each set of target genes we describe over-represented Gene Ontology biological processes (GO; FDR < 0.05), pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG; FDR < 0.1), *cis*-regulatory DNA sequences in promoter regions (*cis*; the most significant motif, FDR < 0.1), enrichment for genes differentially expressed in each of 27 behavioral comparisons related to aggression, maturation, or foraging (DEG; FDR < 0.1), overlap with the regulatory network of their *Drosophila* counterpart based on physical binding data or enrichment for the binding motif of their corresponding ortholog in *Drosophila* (Dmel; P < 0.1; highlighted in yellow)

| TF Name                                                             | No. of<br>target<br>genes | Enrichment                                                           | Enrichment<br>Category | P-value |
|---------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------|------------------------|---------|
| Lag1 / Longevity assurance gene 1                                   | 394                       |                                                                      |                        |         |
|                                                                     |                           | Time Trained: Spatiotemporal Memories                                | DEG                    | 0.02    |
|                                                                     |                           | Nucleotide excision repair                                           | KEGG                   | 0.01    |
|                                                                     |                           | cytoplasmic mRNA processing body                                     | GO                     | 0       |
|                                                                     |                           | adrenocorticotropin receptor activity                                | GO                     | 0.01    |
| CG9932 / CG9932                                                     | 265                       |                                                                      |                        |         |
|                                                                     |                           | 4-d-old vs. 14-d-old                                                 | DEG                    | 0.03    |
|                                                                     |                           | Glycine, serine and threonine metabolism                             | KEGG                   | 0.03    |
|                                                                     |                           | Neuroactive ligand-receptor interaction                              | KEGG                   | 0       |
|                                                                     |                           | receptor signaling protein tyrosine phosphatase activity             | GO                     | 0       |
| CrebB-17A / Cyclic-AMP response<br>element binding protein B at 17A | 185                       |                                                                      |                        |         |
|                                                                     |                           | 10-d-old vs. 15-d-old                                                | DEG                    | 0       |
|                                                                     |                           | Neuroactive ligand-receptor interaction                              | KEGG                   | 0.03    |
|                                                                     |                           | nucleotide receptor activity, G-protein coupled                      | GO                     | 0.01    |
|                                                                     |                           | growth hormone secretagogue receptor activity                        | GO                     | 0.01    |
|                                                                     |                           | platelet ADP receptor activity                                       | GO                     | 0.01    |
|                                                                     |                           | super conserved receptor expressed in brain receptor activity        | GO                     | 0.01    |
|                                                                     |                           | Mas proto-oncogene receptor activity                                 | GO                     | 0.01    |
|                                                                     |                           | RDC1 receptor activity                                               | GO                     | 0.01    |
|                                                                     |                           | Epstein-Barr Virus-induced receptor activity                         | GO                     | 0.01    |
|                                                                     |                           | nociceptin/orphanin-FQ receptor activity                             | GO                     | 0.01    |
|                                                                     |                           | gastropyloric receptor activity                                      | GO                     | 0.01    |
|                                                                     |                           | pituitary adenylate cyclase-activating polypeptide receptor activity | GO                     | 0.01    |

|                   |     | calcitonin gene-related polypeptide receptor activity                 | GO  | 0.01 |
|-------------------|-----|-----------------------------------------------------------------------|-----|------|
|                   |     | adenylate cyclase inhibiting metabotropic glutamate receptor activity | GO  | 0.01 |
|                   |     | G-protein coupled cytokinin receptor activity                         | GO  | 0.01 |
|                   |     | actin binding                                                         | GO  | 0    |
|                   |     | G-protein coupled receptor activity                                   | GO  | 0.01 |
|                   |     | calcitonin receptor activity                                          | GO  | 0    |
|                   |     | cannabinoid receptor activity                                         | GO  | 0.01 |
|                   |     | icosanoid receptor activity                                           | GO  | 0.01 |
|                   |     | glucagon receptor activity                                            | GO  | 0.01 |
|                   |     | leukotriene receptor activity                                         | GO  | 0.01 |
|                   |     | parathyroid hormone receptor activity                                 | GO  | 0.01 |
|                   |     | platelet activating factor receptor activity                          | GO  | 0.01 |
|                   |     | thyrotropin-releasing hormone receptor activity                       | GO  | 0.01 |
|                   |     | vasoactive intestinal polypeptide receptor activity                   | GO  | 0.01 |
|                   |     | G-protein coupled photoreceptor activity                              | GO  | 0.01 |
|                   |     | melatonin receptor activity                                           | GO  | 0.01 |
|                   |     | peptide receptor activity, G-protein coupled                          | GO  | 0    |
|                   |     | secretin receptor activity                                            | GO  | 0.01 |
|                   |     | corticotrophin-releasing factor receptor activity                     | GO  | 0.01 |
|                   |     | protein-hormone receptor activity                                     | GO  | 0.01 |
|                   |     | pheromone receptor activity                                           | GO  | 0.01 |
|                   |     | gastric inhibitory peptide receptor activity                          | GO  | 0.01 |
|                   |     | growth hormone-releasing hormone receptor activity                    | GO  | 0.01 |
|                   |     | brain-specific angiogenesis inhibitor activity                        | GO  | 0.01 |
|                   |     | ecdysis-triggering hormone receptor activity                          | GO  | 0.01 |
|                   |     | bioactive lipid receptor activity                                     | GO  | 0.01 |
|                   |     | nicotinic acid receptor activity                                      | GO  | 0.01 |
| CG17912 / CG17912 | 181 |                                                                       |     |      |
|                   |     | High vs. Low Pollen Hoarding                                          | DEG | 0    |
|                   |     | Queen Mandibular Pheromone                                            | DEG | 0    |
|                   |     | 10-d-old vs. 15-d-old                                                 | DEG | 0.01 |
|                   |     | immune system process                                                 | GO  | 0.01 |
|                   |     | channel regulator activity                                            | GO  | 0.01 |
|                   |     | metallochaperone activity                                             | GO  | 0.01 |
|                   |     | protein tag                                                           | GO  | 0.01 |
|                   |     | locomotion                                                            | GO  | 0.01 |
|                   |     | chemoattractant activity                                              | GO  | 0.01 |
|                   |     | translation regulator activity                                        | GO  | 0.01 |
|                   |     | chemorepellent activity                                               | GO  | 0.01 |
|                   |     | nutrient reservoir activity                                           | GO  | 0.01 |
|                   | +   | response to stimulus                                                  | GO  | 0.01 |

| br / broad              | 169 |                                                   |      |          |
|-------------------------|-----|---------------------------------------------------|------|----------|
|                         |     | CAACAA                                            | cis  | 0.07     |
|                         |     | Alarm Pheromone                                   | DEG  | 0.04     |
|                         |     | lig vs. mel (10-d-old)                            | DEG  | 0.01     |
|                         |     | lig vs. mel (15-d-old)                            | DEG  | 0.02     |
|                         |     | Time Trained: Anticipating vs. Inactive           | DEG  | 0        |
|                         |     | prospore membrane                                 | GO   | 0        |
|                         |     | plasma membrane                                   | GO   | 0.01     |
|                         |     | membrane                                          | GO   | 0.01     |
|                         |     | outer membrane                                    | GO   | 0        |
|                         |     | organelle membrane                                | GO   | 0        |
|                         |     | pre-autophagosomal structure membrane             | GO   | 0        |
|                         |     | photosynthetic membrane                           | GO   | 0        |
|                         |     | nuclear membrane-endoplasmic reticulum network    | GO   | 0        |
|                         |     | photoreceptor outer segment membrane              | GO   | 0        |
|                         |     | presynaptic membrane                              | GO   | 0        |
|                         |     | postsynaptic membrane                             | GO   | 0        |
|                         |     | coated membrane                                   | GO   | 0        |
|                         |     | photoreceptor inner segment membrane              | GO   | 0        |
|                         |     | Broad Motif                                       | Dmel | 0        |
| rn / rotund             | 162 |                                                   |      |          |
|                         |     | AHB vs. EHB (4-d-old)                             | DEG  | 0.00E+00 |
|                         |     | AHB vs. EHB (14-d-old)                            | DEG  | 0        |
|                         |     | store-operated calcium entry                      | GO   | 0.01     |
|                         |     | calcium ion transport                             | GO   | 0.01     |
|                         |     | N-methyltransferase activity                      | GO   | 0.01     |
|                         |     | folic acid and derivative biosynthetic process    | GO   | 0.00E+00 |
|                         |     | tetrahydrofolylpolyglutamate biosynthetic process | GO   | 0.00E+00 |
|                         |     | cytosolic calcium ion transport                   | GO   | 0.01     |
|                         |     | calcium ion transmembrane transport               | GO   | 0.01     |
| Myb / Myb oncogene-like | 154 |                                                   |      |          |
|                         |     | AHB vs. EHB (4-d-old)                             | DEG  | 0.03     |
|                         |     | AHB vs. EHB (14-d-old)                            | DEG  | 0.04     |
|                         |     | Cysteine and methionine metabolism                | KEGG | 0.03     |
|                         |     | ATP-dependent DNA helicase activity               | GO   | 0.01     |
|                         |     | tropomyosin binding                               | GO   | 0.01     |
|                         |     | Myb Network                                       | Dmel | 0.01     |
|                         |     | Myb Motif                                         | Dmel | 0.09     |
| MTA1-like / MTA1-like   | 146 |                                                   |      |          |
|                         |     | Queen Mandibular Pheromone                        | DEG  | 0        |
|                         |     | Time Trained: Anticipating vs. Inactive           | DEG  | 0.00E+00 |

|                                     |     | Cysteine and methionine metabolism                          | KEGG | 0.03     |
|-------------------------------------|-----|-------------------------------------------------------------|------|----------|
|                                     |     | Glycerolipid metabolism                                     | KEGG | 0.04     |
|                                     |     | actin monomer binding                                       | GO   | 0.01     |
|                                     |     | signaling pathway                                           | GO   | 0.01     |
|                                     |     | actin filament binding                                      | GO   | 0.01     |
| ftz-f1 / ftz transcription factor 1 | 146 |                                                             |      |          |
|                                     |     | V_CDP_02                                                    | cis  | 0.05     |
|                                     |     | AHB vs. EHB (4-d-old)                                       | DEG  | 0.01     |
|                                     |     | AHB vs. EHB (14-d-old)                                      | DEG  | 0.03     |
|                                     |     | Rich vs. Poor Diet                                          | DEG  | 0.05     |
|                                     |     | Time Trained: Anticipating vs. Inactive                     | DEG  | 0.00E+00 |
|                                     |     | Vibration Signalers                                         | DEG  | 0.01     |
|                                     |     | Arachidonic acid metabolism                                 | KEGG | 0.01     |
|                                     |     | Ether lipid metabolism                                      | KEGG | 0.03     |
|                                     |     | Glycerophospholipid metabolism                              | KEGG | 0.04     |
|                                     |     | Linoleic acid metabolism                                    | KEGG | 0.02     |
|                                     |     | alpha-Linolenic acid metabolism                             | KEGG | 0.01     |
|                                     |     | neuromuscular junction development                          | GO   | 0        |
|                                     |     | learning or memory                                          | GO   | 0        |
|                                     |     | learning                                                    | GO   | 0        |
|                                     |     | memory                                                      | GO   | 0.01     |
|                                     |     | neuromuscular junction                                      | GO   | 0.01     |
|                                     |     | synapse organization                                        | GO   | 0        |
|                                     |     | cognition                                                   | GO   | 0        |
|                                     |     | synaptic growth at neuromuscular junction                   | GO   | 0        |
| dl / dorsal                         | 134 |                                                             |      |          |
|                                     |     | AHB vs. EHB Soldiers (Indiv.)                               | DEG  | 0.04     |
|                                     |     | Time Trained: Anticipating vs. Inactive                     | DEG  | 0.04     |
|                                     |     | Time Trained: Spatiotemporal Memories                       | DEG  | 0        |
|                                     |     | Time Trained: Spatiotemporal Memories                       | DEG  | 0.00E+0  |
|                                     |     | 10-d-old vs. 15-d-old                                       | DEG  | 0.04     |
| bun / bunched                       | 133 |                                                             |      |          |
|                                     |     | dl                                                          | cis  | 0.01     |
|                                     |     | Scout vs. Recruit                                           | DEG  | 0.05     |
|                                     |     | Time Trained: Anticipating vs. Inactive                     | DEG  | 0.02     |
|                                     |     | Folate biosynthesis                                         | KEGG | 0.01     |
|                                     |     | Spliceosome                                                 | KEGG | 0.04     |
|                                     |     | pole plasm oskar mRNA localization                          | GO   | 0.01     |
| Trl / Trithorax-like                | 131 | <b>r</b> · · <b>r</b> · · · · · · · · · · · · · · · · · · · |      |          |
|                                     |     | Neuroactive ligand-receptor interaction                     | KEGG | 0.01     |
|                                     |     | diuretic hormone receptor activity                          | GO   | 0.01     |

|                 |     | 3-5 exonuclease activity                            | GO   | 0.01 |
|-----------------|-----|-----------------------------------------------------|------|------|
|                 |     | glial cell development                              | GO   | 0    |
|                 |     | establishment of glial blood-brain barrier          | GO   | 0    |
|                 |     | Trl Network                                         | Dmel | 0.04 |
| cg / combgap    | 131 |                                                     |      |      |
|                 |     | 4-d-old vs. 14-d-old                                | DEG  | 0.01 |
|                 |     | amino acid transmembrane transport                  | GO   | 0    |
|                 |     | G-protein coupled receptor activity                 | GO   | 0.01 |
|                 |     | integral to plasma membrane                         | GO   | 0.01 |
|                 |     | sodium ion transport                                | GO   | 0    |
|                 |     | drug transmembrane transport                        | GO   | 0    |
|                 |     | taste receptor activity                             | GO   | 0.01 |
|                 |     | monovalent inorganic cation transport               | GO   | 0    |
|                 |     | biotin transport                                    | GO   | 0    |
|                 |     | integral to membrane                                | GO   | 0.01 |
|                 |     | metal ion transport                                 | GO   | 0    |
|                 |     | carbohydrate transmembrane transport                | GO   | 0    |
|                 |     | ion transmembrane transport                         | GO   | 0    |
|                 |     | vacuolar transmembrane transport                    | GO   | 0    |
|                 |     | glutathione transmembrane transport                 | GO   | 0    |
|                 |     | acetyl-CoA transmembrane transport                  | GO   | 0    |
|                 |     | coenzyme A transmembrane transport                  | GO   | 0    |
|                 |     | FAD transmembrane transport                         | GO   | 0    |
|                 |     | heme transmembrane transport                        | GO   | 0    |
|                 |     | NAD transmembrane transport                         | GO   | 0    |
|                 |     | nicotinamide mononucleotide transmembrane transport | GO   | 0    |
|                 |     | carbon dioxide transmembrane transport              | GO   | 0    |
|                 |     | sterol transmembrane transport                      | GO   | 0    |
|                 |     | purine nucleoside transmembrane transport           | GO   | 0    |
|                 |     | dipeptide transmembrane transport                   | GO   | 0    |
|                 |     | tripeptide transmembrane transport                  | GO   | 0    |
|                 |     | boron transmembrane transport                       | GO   | 0    |
|                 |     | vitamin transmembrane transport                     | GO   | 0    |
|                 |     | transmembrane transport                             | GO   | 0    |
|                 |     | intracellular protein transmembrane transport       | GO   | 0.01 |
| CG9776 / CG9776 | 108 |                                                     |      |      |
|                 |     | Queen Mandibular Pheromone                          | DEG  | 0    |
|                 |     | Time Trained: Spatiotemporal Memories               | DEG  | 0.04 |
| Vps45 / Vps45   | 106 |                                                     |      |      |
|                 |     | V_DEC_Q1                                            | cis  | 0.01 |
|                 |     | Vitellogenin RNAi                                   | DEG  | 0    |

|                                                 |    | AHB vs. EHB Forager (Indiv.)                              | DEG  | 0.05     |
|-------------------------------------------------|----|-----------------------------------------------------------|------|----------|
|                                                 |    | Aminoacyl-tRNA biosynthesis                               | KEGG | 0.04     |
|                                                 |    | Fatty acid metabolism                                     | KEGG | 0.02     |
|                                                 |    | tRNA 5-leader removal                                     | GO   | 0        |
|                                                 |    | tRNA splicing, via endonucleolytic cleavage and ligation  | GO   | 0        |
|                                                 |    | tRNA metabolic process                                    | GO   | 0        |
|                                                 |    | tRNA modification                                         | GO   | 0.00E+00 |
|                                                 |    | tRNA processing                                           | GO   | 0.00E+00 |
|                                                 |    | cation-transporting ATPase activity                       | GO   | 0        |
|                                                 |    | ncRNA processing                                          | GO   | 0        |
|                                                 |    | tRNA 3-end processing                                     | GO   | 0        |
| CG7786 / CG7786                                 | 98 |                                                           |      |          |
|                                                 |    | 10-d-old vs. 15-d-old                                     | DEG  | 0.03     |
|                                                 |    | 4-d-old vs. 14-d-old                                      | DEG  | 0.01     |
|                                                 |    | Neuroactive ligand-receptor interaction                   | KEGG | 0        |
|                                                 |    | taste receptor activity                                   | GO   | 0        |
| CG6769 / CG6769                                 | 97 |                                                           |      |          |
|                                                 |    | Cysteine and methionine metabolism                        | KEGG | 0.02     |
|                                                 |    | RNA polymerase                                            | KEGG | 0.03     |
|                                                 |    | Spliceosome                                               | KEGG | 0.03     |
|                                                 |    | DNA helicase activity                                     | GO   | 0.01     |
|                                                 |    | DNA metabolic process                                     | GO   | 0.01     |
|                                                 |    | DNA amplification                                         | GO   | 0.01     |
|                                                 |    | S-methyltransferase activity                              | GO   | 0        |
|                                                 |    | S-adenosylmethionine-dependent methyltransferase activity | GO   | 0        |
|                                                 |    | selenocysteine methyltransferase activity                 | GO   | 0        |
|                                                 |    | transferase activity, transferring one-carbon groups      | GO   | 0.01     |
|                                                 |    | ATP-dependent 5-3 RNA helicase activity                   | GO   | 0.01     |
|                                                 |    | ATP-dependent 3-5 RNA helicase activity                   | GO   | 0.01     |
| fd85E / fd85E                                   | 94 |                                                           |      |          |
|                                                 |    | AHB vs. EHB (4-d-old)                                     | DEG  | 0        |
|                                                 |    | AHB vs. EHB (14-d-old)                                    | DEG  | 0        |
|                                                 |    | Butanoate metabolism                                      | KEGG | 0.03     |
|                                                 |    | Fatty acid elongation in mitochondria                     | KEGG | 0        |
|                                                 |    | Fatty acid metabolism                                     | KEGG | 0.04     |
|                                                 |    | Valine, leucine and isoleucine degradation                | KEGG | 0.05     |
| Su(var)2-10 / Suppressor of variegation<br>2-10 | 94 |                                                           |      |          |
| 2-10                                            |    | V_E2F1_Q4_01                                              | cis  | 0.00E+00 |
|                                                 |    | AHB vs. EHB Soldiers (Colony)                             | DEG  | 0.00E+00 |
|                                                 |    | Alarm Pheromone                                           | DEG  | 0        |
|                                                 |    | Foraging Experience                                       | DEG  | 0        |

|                                       |    | Glycerolipid metabolism                      | KEGG | 0.04 |
|---------------------------------------|----|----------------------------------------------|------|------|
|                                       |    | DNA helicase activity                        | GO   | 0    |
|                                       |    | RNA helicase activity                        | GO   | 0.01 |
|                                       |    | peptidyl-prolyl cis-trans isomerase activity | GO   | 0    |
|                                       |    | endosome                                     | GO   | 0    |
|                                       |    | protein folding                              | GO   | 0    |
|                                       |    | de novo protein folding                      | GO   | 0    |
|                                       |    | protein thiol-disulfide exchange             | GO   | 0    |
|                                       |    | post-chaperonin tubulin folding pathway      | GO   | 0    |
|                                       |    | cis-trans isomerase activity                 | GO   | 0    |
|                                       |    | protein maturation by protein folding        | GO   | 0    |
|                                       |    | ATP-dependent 5-3 RNA helicase activity      | GO   | 0    |
|                                       |    | ATP-dependent 3-5 RNA helicase activity      | GO   | 0    |
|                                       |    | protein folding in endoplasmic reticulum     | GO   | 0    |
|                                       |    | protein refolding                            | GO   | 0    |
|                                       |    | chaperone-mediated protein folding           | GO   | 0    |
|                                       |    | Su(var)2-10 Network                          | Dmel | 0    |
| YL-1                                  | 84 |                                              |      |      |
|                                       |    | YL-1 Network                                 | Dmel | 0    |
| su(Hw) / suppressor of Hairy wing     | 80 |                                              |      |      |
|                                       |    | Valine, leucine and isoleucine degradation   | KEGG | 0.03 |
|                                       |    | cellular protein complex assembly            | GO   | 0    |
| ewg / erect wing                      | 79 |                                              |      |      |
|                                       |    | Fructose and mannose metabolism              | KEGG | 0.01 |
| CG15011 / CG15011                     | 78 |                                              |      |      |
|                                       |    | Time Trained: Anticipating vs. Inactive      | DEG  | 0.05 |
|                                       |    | Time Trained: Spatiotemporal Memories        | DEG  | 0    |
| HLH106 / Helix loop helix protein 106 | 76 |                                              |      |      |
|                                       |    | V_STAT1_02                                   | cis  | 0    |
|                                       |    | Vitellogenin RNAi                            | DEG  | 0    |
|                                       |    | Citrate cycle (TCA cycle)                    | KEGG | 0.03 |
|                                       |    | Glycine, serine and threonine metabolism     | KEGG | 0.01 |
|                                       |    | Pyruvate metabolism                          | KEGG | 0.02 |
|                                       |    | structural constituent of cytoskeleton       | GO   | 0    |
|                                       |    | serine-type peptidase activity               | GO   | 0.01 |
|                                       |    | mitochondrial part                           | GO   | 0.01 |
|                                       |    | oxidation reduction                          | GO   | 0    |
|                                       |    | cellular metabolic process                   | GO   | 0.01 |
| woc / without children                | 76 |                                              |      |      |
|                                       |    | Endocytosis                                  | KEGG | 0.04 |
|                                       |    | Peroxisome                                   | KEGG | 0.02 |

|                                |     | serine-type peptidase activity                                      | GO   | 0.01    |
|--------------------------------|-----|---------------------------------------------------------------------|------|---------|
|                                |     | protein import                                                      | GO   | 0       |
| sd / scalloped                 | 73  |                                                                     |      |         |
|                                |     | Time Trained: Anticipating vs. Inactive                             | DEG  | 0.00E+0 |
|                                |     | Time Trained: Spatiotemporal Memories                               | DEG  | 0       |
|                                |     | 5,10-methylenetetrahydrofolate-dependent methyltransferase activity | GO   | 0       |
| tgo / tango                    | 73  |                                                                     |      |         |
|                                |     | VNRYTAATGRBM                                                        | cis  | 0       |
|                                |     | lig vs. mel (10-d-old)                                              | DEG  | 0.02    |
|                                |     | Glutathione metabolism                                              | KEGG | 0.01    |
| CG15715 / CG15715              | 71  |                                                                     |      |         |
|                                |     | Queen Mandibular Pheromone                                          | DEG  | 0       |
|                                |     | structural molecule activity                                        | GO   | 0       |
|                                |     | translation regulator activity                                      | GO   | 0.01    |
| adp / adipose                  | 71  |                                                                     |      |         |
|                                |     | Vitellogenin RNAi                                                   | DEG  | 0       |
|                                |     | Methane metabolism                                                  | KEGG | 0       |
|                                |     | synaptic transmission                                               | GO   | 0.01    |
| CG17829 / CG17829              | 70  |                                                                     |      |         |
|                                |     | V_MAF_Q6_01                                                         | cis  | 0.04    |
| E2f / E2F transcription factor | 68  |                                                                     |      |         |
| *                              |     | 4-d-old vs. 14-d-old                                                | DEG  | 0       |
|                                |     | integral to plasma membrane                                         | GO   | 0       |
|                                |     | integral to membrane                                                | GO   | 0       |
|                                |     | intrinsic to membrane                                               | GO   | 0       |
|                                |     | integral to organelle membrane                                      | GO   | 0       |
|                                |     | integral to thylakoid membrane                                      | GO   | 0       |
|                                |     | integral to cell outer membrane                                     | GO   | 0       |
| Ets97D / Ets at 97D            | 68  |                                                                     |      |         |
|                                |     | kni                                                                 | cis  | 0       |
|                                |     | AHB vs. EHB Soldiers (Colony)                                       | DEG  | 0.01    |
|                                |     | Alarm Pheromone                                                     | DEG  | 0.02    |
|                                |     | Foraging Experience                                                 | DEG  | 0.02    |
|                                | 1   | flight behavior                                                     | GO   | 0       |
|                                |     | adult locomotory behavior                                           | GO   | 0.01    |
| CG9139 / CG9139                | 65  |                                                                     |      | 0.01    |
| 00/10/ 00/10/                  | 0.5 | V_TEF1_Q6                                                           | cis  | 0       |
|                                |     | Foraging Experience                                                 | DEG  | 0.04    |
|                                |     | 4-d-old vs. 14-d-old                                                | DEG  | 0.04    |
|                                |     | Aminoacyl-tRNA biosynthesis                                         | KEGG | 0.01    |
|                                |     | Endocytosis                                                         | KEGG | 0.01    |

|                              |    | ATP-dependent DNA helicase activity                                  | GO   | 0.0 |
|------------------------------|----|----------------------------------------------------------------------|------|-----|
|                              |    | aminoacyl-tRNA ligase activity                                       | GO   | C   |
|                              |    | tRNA aminoacylation for protein translation                          | GO   | 0   |
| Dp / DP transcription factor | 65 |                                                                      |      |     |
|                              |    | Eip74EF                                                              | cis  | 0.0 |
|                              |    | AHB vs. EHB (4-d-old)                                                | DEG  | 0   |
|                              |    | AHB vs. EHB (14-d-old)                                               | DEG  | 0   |
|                              |    | Time Trained: Anticipating vs. Inactive                              | DEG  | 0.0 |
|                              |    | Endocytosis                                                          | KEGG | 0.0 |
|                              |    | epidermal cell differentiation                                       | GO   | 0   |
|                              |    | cell differentiation                                                 | GO   | 0.0 |
|                              |    | actin nucleation                                                     | GO   | 0.0 |
|                              |    | Dp Network                                                           | Dmel | 0.0 |
| CG32121 / CG32121            | 63 |                                                                      |      |     |
|                              |    | Queen Mandibular Pheromone                                           | DEG  | 0.0 |
|                              |    | Time Trained: Anticipating vs. Inactive                              | DEG  | 0   |
|                              |    | Endocytosis                                                          | KEGG | 0.0 |
|                              |    | activation of MAPKK activity                                         | GO   | 0.0 |
|                              |    | activation of MAPK activity                                          | GO   | 0.0 |
| _                            |    | inhibitory G-protein coupled receptor phosphorylation                | GO   | 0.0 |
|                              |    | protein kinase activity                                              | GO   | 0   |
|                              |    | protein histidine kinase activity                                    | GO   | 0   |
|                              |    | protein serine/threonine kinase activity                             | GO   | 0   |
|                              |    | protein serine/threonine/tyrosine kinase activity                    | GO   | 0   |
|                              |    | protein tyrosine kinase activity                                     | GO   | 0.0 |
|                              |    | pyruvate dehydrogenase (acetyl-transferring) kinase activity         | GO   | 0   |
|                              |    | DNA damage induced protein phosphorylation                           | GO   | 0   |
|                              |    | common-partner SMAD protein phosphorylation                          | GO   | 0.0 |
|                              |    | I-kappaB phosphorylation                                             | GO   | 0.0 |
|                              |    | JUN phosphorylation                                                  | GO   | 0.0 |
|                              | 1  | activation of caspase activity by protein amino acid phosphorylation | GO   | 0.0 |
|                              | 1  | [isocitrate dehydrogenase (NADP+)] kinase activity                   | GO   | 0   |
|                              |    | calcium-dependent protein kinase activity                            | GO   | 0   |
|                              | 1  | regulation of translational initiation by eIF2 alpha phosphorylation | GO   | 0.0 |
|                              |    | histone phosphorylation                                              | GO   | 0.0 |
|                              |    | phosphotransferase activity, alcohol group as acceptor               | GO   | 0   |
|                              | 1  | peptidyl-serine phosphorylation                                      | GO   | 0.0 |
|                              |    | peptidyl-histidine phosphorylation                                   | GO   | 0.0 |
|                              | 1  | peptidyl-threonine phosphorylation                                   | GO   | 0.0 |
|                              |    | peptidyl-tyrosine phosphorylation                                    | GO   | 0.0 |
|                              |    | peptidyl-arginine phosphorylation                                    | GO   | 0.0 |

|                   |    | peptidyl-aspartic acid phosphorylation                                           | GO   | 0.01     |
|-------------------|----|----------------------------------------------------------------------------------|------|----------|
|                   |    | peptidyl-cysteine phosphorylation                                                | GO   | 0.01     |
|                   |    | transmembrane receptor protein kinase activity                                   | GO   | 0.01     |
|                   |    | cyclin-dependent protein kinase activating kinase activity                       | GO   | 0        |
|                   |    | actin phosphorylation                                                            | GO   | 0.01     |
|                   |    | histone kinase activity                                                          | GO   | 0        |
|                   |    | post-translational protein modification                                          | GO   | 0.01     |
|                   |    | regulation of imaginal disc growth                                               | GO   | 0        |
|                   |    | regulation of organ growth                                                       | GO   | 0        |
|                   |    | protein amino acid autophosphorylation                                           | GO   | 0.01     |
|                   |    | [hydroxymethylglutaryl-CoA reductase (NADPH)] kinase activity                    | GO   | 0        |
|                   |    | [3-methyl-2-oxobutanoate dehydrogenase (acetyl-transferring)]<br>kinase activity | GO   | 0        |
|                   |    | beta-adrenergic receptor kinase activity                                         | GO   | 0        |
|                   |    | caldesmon kinase activity                                                        | GO   | 0        |
|                   |    | dephospho-[reductase kinase] kinase activity                                     | GO   | 0        |
|                   |    | low-density-lipoprotein-receptor kinase activity                                 | GO   | 0        |
|                   |    | rhodopsin kinase activity                                                        | GO   | 0        |
|                   |    | tau-protein kinase activity                                                      | GO   | 0        |
|                   |    | tropomyosin kinase activity                                                      | GO   | 0        |
|                   |    | [tyrosine 3-monooxygenase] kinase activity                                       | GO   | 0        |
|                   |    | [acetyl-CoA carboxylase] kinase activity                                         | GO   | 0        |
|                   |    | pathway-restricted SMAD protein phosphorylation                                  | GO   | 0.01     |
| NC2&bgr / NC2&bgr | 63 |                                                                                  |      |          |
|                   |    | Vitellogenin RNAi                                                                | DEG  | 0.02     |
|                   |    | Time Trained: Anticipating vs. Inactive                                          | DEG  | 0.01     |
|                   |    | Time Trained: Spatiotemporal Memories                                            | DEG  | 0.00E+00 |
|                   |    | Endocytosis                                                                      | KEGG | 0.04     |
|                   |    | RNA degradation                                                                  | KEGG | 0.03     |
|                   |    | actin filament-based process                                                     | GO   | 0        |
|                   |    | plasma membrane part                                                             | GO   | 0        |
| fru / fruitless   | 61 |                                                                                  |      |          |
|                   |    | YYWWTTA                                                                          | cis  | 0.00E+00 |
|                   |    | AHB vs. EHB (4-d-old)                                                            | DEG  | 0.00E+00 |
|                   |    | AHB vs. EHB (14-d-old)                                                           | DEG  | 0.00E+00 |
|                   |    | Rich vs. Poor Diet                                                               | DEG  | 0.01     |
|                   |    | Vitellogenin RNAi                                                                | DEG  | 0.01     |
|                   |    | Time Trained: Anticipating vs. Inactive                                          | DEG  | 0.00E+00 |
|                   |    | Vibration Signalers                                                              | DEG  | 0.01     |
|                   |    | Time Trained: Morning vs. Afternoon                                              | DEG  | 0.03     |
|                   |    | Wnt signaling pathway                                                            | KEGG | 0.02     |
|                   |    | plasma membrane part                                                             | GO   | 0        |

| Pbp95 / Pbp95                                         | 59 |                                                                                          |      | <u> </u> |
|-------------------------------------------------------|----|------------------------------------------------------------------------------------------|------|----------|
|                                                       |    | V_CREL_01                                                                                | cis  | 0        |
|                                                       |    | AHB vs. EHB Soldiers (Colony)                                                            | DEG  | 0.01     |
|                                                       |    | metallopeptidase activity                                                                | GO   | 0.01     |
|                                                       |    | protein methyltransferase activity                                                       | GO   | 0        |
| bigmax / bigmax                                       | 59 |                                                                                          |      |          |
|                                                       |    | Time Trained: Anticipating vs. Inactive                                                  | DEG  | 0.03     |
| CG14711 / CG14711                                     | 58 |                                                                                          |      |          |
|                                                       |    | MTTWGRCTT                                                                                | cis  | 0.04     |
|                                                       |    | AHB vs. EHB Soldiers (Colony)                                                            | DEG  | 0.01     |
|                                                       |    | Forager vs. Nurse (old, SCC)                                                             | DEG  | 0.01     |
|                                                       |    | anatomical structure formation involved in morphogenesis                                 | GO   | 0        |
|                                                       |    | CG14711 Network                                                                          | Dmel | 0        |
| CG11294 / CG11294                                     | 55 |                                                                                          |      |          |
|                                                       |    | 4-d-old vs. 14-d-old                                                                     | DEG  | 0.01     |
|                                                       |    | Homologous recombination                                                                 | KEGG | 0.01     |
| nej / nejire                                          | 53 |                                                                                          |      |          |
|                                                       |    | RAKWYWAV                                                                                 | cis  | 0.01     |
|                                                       |    | Vitellogenin RNAi                                                                        | DEG  | 0.01     |
|                                                       |    | Time Trained: Anticipating vs. Inactive                                                  | DEG  | 0        |
|                                                       |    | AHB vs. EHB (4-d-old)                                                                    | DEG  | 0.01     |
|                                                       |    | AHB vs. EHB (14-d-old)                                                                   | DEG  | 0.01     |
|                                                       |    | Vitellogenin RNAi                                                                        | DEG  | 0        |
|                                                       |    | Time Trained: Anticipating vs. Inactive                                                  | DEG  | 0        |
|                                                       |    | Wnt signaling pathway                                                                    | KEGG | 0.02     |
|                                                       |    | behavior                                                                                 | GO   | 0        |
|                                                       |    | adult behavior                                                                           | GO   | 0        |
|                                                       |    | sarcolemma                                                                               | GO   | 0        |
|                                                       |    | plasma membrane part                                                                     | GO   | 0        |
|                                                       |    | unfolded protein binding                                                                 | GO   | 0.01     |
|                                                       |    | chaperone binding                                                                        | GO   | 0.01     |
| Deaf1 / Deformed epidermal<br>autoregulatory factor-1 | 52 |                                                                                          |      |          |
|                                                       |    | Alarm Pheromone                                                                          | DEG  | 0.04     |
|                                                       |    | Foraging Experience                                                                      | DEG  | 0        |
|                                                       |    | nitrogen compound metabolic process                                                      | GO   | 0        |
|                                                       |    | catabolic process                                                                        | GO   | 0        |
|                                                       |    | biosynthetic process                                                                     | GO   | 0        |
|                                                       |    | oxidoreductase activity, acting on the CH-OH group of donors, NAD<br>or NADP as acceptor | GO   | 0        |
|                                                       |    | organophosphate metabolic process                                                        | GO   | 0        |
|                                                       |    | secondary metabolic process                                                              | GO   | 0        |

|                     |    | pigment metabolic process                  | GO   | 0        |
|---------------------|----|--------------------------------------------|------|----------|
|                     |    | hormone metabolic process                  | GO   | 0        |
|                     |    | macromolecule metabolic process            | GO   | 0        |
|                     |    | multi-organism metabolic process           | GO   | 0        |
|                     |    | multicellular organismal metabolic process | GO   | 0        |
|                     |    | primary metabolic process                  | GO   | 0        |
|                     |    | small molecule metabolic process           | GO   | 0        |
|                     |    | respiratory burst                          | GO   | 0        |
|                     |    | organic substance metabolic process        | GO   | 0        |
|                     |    | Deaf1 Network                              | Dmel | 0        |
| lilli / lilliputian | 52 |                                            |      |          |
|                     |    | TAATTAA                                    | cis  | 0.02     |
|                     |    | AHB vs. EHB Soldiers (Indiv.)              | DEG  | 0.03     |
|                     |    | AHB vs. EHB (4-d-old)                      | DEG  | 0.01     |
|                     |    | AHB vs. EHB (14-d-old)                     | DEG  | 0.01     |
|                     |    | Time Trained: Anticipating vs. Inactive    | DEG  | 0        |
| pnt / pointed       | 49 |                                            |      |          |
|                     |    | MMRCAWGT                                   | cis  | 0.03     |
|                     |    | AHB vs. EHB (4-d-old)                      | DEG  | 0        |
|                     |    | AHB vs. EHB (14-d-old)                     | DEG  | 0.01     |
|                     |    | Queen Mandibular Pheromone                 | DEG  | 0.01     |
|                     |    | Time Trained: Anticipating vs. Inactive    | DEG  | 0.00E+00 |
|                     |    | Vibration Signalers                        | DEG  | 0.02     |
|                     |    | behavior                                   | GO   | 0.01     |
|                     |    | learning or memory                         | GO   | 0        |
|                     |    | learning                                   | GO   | 0        |
|                     |    | memory                                     | GO   | 0        |
|                     |    | associative learning                       | GO   | 0        |
|                     |    | olfactory learning                         | GO   | 0        |
|                     |    | olfactory behavior                         | GO   | 0        |
|                     |    | neuron projection                          | GO   | 0        |
|                     |    | cognition                                  | GO   | 0        |
| Bgb / Big brother   | 47 |                                            |      |          |
|                     |    | hunchback                                  | cis  | 0        |
|                     |    | Queen Mandibular Pheromone                 | DEG  | 0        |
|                     |    | Time Trained: Anticipating vs. Inactive    | DEG  | 0.00E+00 |
|                     |    | Wnt signaling pathway                      | KEGG | 0        |
| CTCF / CTCF         | 47 |                                            |      |          |
|                     |    | V_STAT1_02                                 | cis  | 0.02     |
|                     |    | AHB vs. EHB Soldiers (Colony)              | DEG  | 0.00E+00 |
|                     |    | protein import into nucleus, translocation | GO   | 0.01     |

|                                                    |    | receptor signaling protein activity                      | GO   | 0.01    |
|----------------------------------------------------|----|----------------------------------------------------------|------|---------|
|                                                    |    | phagocytosis, engulfment                                 | GO   | 0.01    |
|                                                    |    | protein complex                                          | GO   | 0.01    |
|                                                    |    | engulfment of apoptotic cell                             | GO   | 0.01    |
|                                                    |    | CTCF Network                                             | Dmel | 0       |
| Ssb-c31a / Single stranded-binding<br>protein c31A | 46 |                                                          |      |         |
|                                                    |    | sna                                                      | cis  | 0.06    |
|                                                    |    | lig vs. mel (10-d-old)                                   | DEG  | 0.03    |
|                                                    |    | lig vs. mel (15-d-old)                                   | DEG  | 0       |
|                                                    |    | AHB vs. EHB (4-d-old)                                    | DEG  | 0.00E+0 |
|                                                    |    | AHB vs. EHB (14-d-old)                                   | DEG  | 0.00E+0 |
|                                                    |    | Time Trained: Anticipating vs. Inactive                  | DEG  | 0.01    |
|                                                    |    | Basal transcription factors                              | KEGG | 0.01    |
|                                                    |    | N-Glycan biosynthesis                                    | KEGG | 0.03    |
|                                                    |    | Nucleotide excision repair                               | KEGG | 0.04    |
|                                                    |    | structural constituent of ribosome                       | GO   | 0.01    |
|                                                    |    | transcription initiation                                 | GO   | 0       |
|                                                    |    | transcription initiation from RNA polymerase II promoter | GO   | 0       |
|                                                    |    | RNA polymerase II transcription mediator activity        | GO   | 0       |
|                                                    |    | dephosphorylation of RNA polymerase II C-terminal domain | GO   | 0.01    |
| Tkr / Tyrosine kinase-related protein              | 46 |                                                          |      |         |
|                                                    |    | G-protein coupled receptor protein signaling pathway     | GO   | 0.01    |
|                                                    |    | signaling pathway                                        | GO   | 0       |
|                                                    |    | intracellular signal transduction                        | GO   | 0.01    |
| pan / pangolin                                     | 46 |                                                          |      |         |
|                                                    |    | WRNATKTNT                                                | cis  | 0.00E+0 |
|                                                    |    | Time Trained: Anticipating vs. Inactive                  | DEG  | 0.00E+0 |
|                                                    |    | Alarm Pheromone                                          | DEG  | 0.02    |
|                                                    |    | intrinsic to plasma membrane                             | GO   | 0       |
|                                                    |    | pan motif                                                | Dmel | 0.08    |
| l(2)k10201 / lethal (2) k10201                     | 45 |                                                          |      |         |
|                                                    |    | pan                                                      | cis  | 0       |
|                                                    |    | Queen Mandibular Pheromone                               | DEG  | 0       |
|                                                    |    | Time Trained: Anticipating vs. Inactive                  | DEG  | 0.04    |
| CG9876 / CG9876                                    | 44 |                                                          |      |         |
|                                                    |    | V_EGR3_01                                                | cis  | 0.03    |
|                                                    |    | actin binding                                            | GO   | 0.01    |
|                                                    |    | actin monomer binding                                    | GO   | 0       |
|                                                    |    | cytoskeleton organization                                | GO   | 0       |
|                                                    |    | actin cytoskeleton organization                          | GO   | 0.01    |
|                                                    |    | actin filament binding                                   | GO   | 0       |

| Dsp1 / Dorsal switch protein 1                   | 44 |                                                                                        |      |          |
|--------------------------------------------------|----|----------------------------------------------------------------------------------------|------|----------|
|                                                  |    | V_CDP_02                                                                               | cis  | 0.02     |
|                                                  |    | Time Trained: Anticipating vs. Inactive                                                | DEG  | 0.00E+00 |
|                                                  |    | calcium ion binding                                                                    | GO   | 0.01     |
|                                                  |    | locomotory behavior                                                                    | GO   | 0        |
|                                                  |    | Dsp1 Network                                                                           | Dmel | 0.04     |
| Dref / DNA replication-related element<br>factor | 42 |                                                                                        |      |          |
|                                                  |    | CAYNTGT                                                                                | cis  | 0.06     |
|                                                  |    | Queen Mandibular Pheromone                                                             | DEG  | 0.05     |
|                                                  |    | Dref Network                                                                           | Dmel | 0.04     |
| slp2 / sloppy paired 2                           | 42 |                                                                                        |      |          |
|                                                  |    | cad                                                                                    | cis  | 0.03     |
|                                                  |    | AHB vs. EHB (4-d-old)                                                                  | DEG  | 0.02     |
|                                                  |    | N-Glycan biosynthesis                                                                  | KEGG | 0.02     |
|                                                  |    | Proteasome                                                                             | KEGG | 0        |
|                                                  |    | protein secretion                                                                      | GO   | 0        |
|                                                  |    | carbohydrate biosynthetic process                                                      | GO   | 0        |
|                                                  |    | protein import                                                                         | GO   | 0.01     |
|                                                  |    | lactoferrin transport                                                                  | GO   | 0        |
|                                                  |    | transferrin transport                                                                  | GO   | 0        |
|                                                  |    | glycoprotein transport                                                                 | GO   | 0        |
|                                                  |    | lipoprotein transport                                                                  | GO   | 0        |
|                                                  |    | bacteriocin transport                                                                  | GO   | 0        |
|                                                  |    | protein transport by the Sec complex                                                   | GO   | 0        |
|                                                  |    | protein transport by the Tat complex                                                   | GO   | 0        |
|                                                  |    | establishment of protein localization                                                  | GO   | 0        |
|                                                  |    | translocation of peptides or proteins into other organism during symbiotic interaction | GO   | 0        |
|                                                  |    | protein transport in within extracellular region                                       | GO   | 0        |
| aop / anterior open                              | 41 |                                                                                        |      |          |
|                                                  |    | br.Z4                                                                                  | cis  | 0        |
|                                                  |    | AHB vs. EHB (4-d-old)                                                                  | DEG  | 0.03     |
|                                                  |    | Rich vs. Poor Diet                                                                     | DEG  | 0        |
|                                                  |    | Time Trained: Anticipating vs. Inactive                                                | DEG  | 0.00E+00 |
|                                                  |    | DNA replication checkpoint                                                             | GO   | 0.01     |
|                                                  |    | signal transduction during filamentous growth                                          | GO   | 0.01     |
|                                                  |    | prospore membrane                                                                      | GO   | 0        |
|                                                  |    | plasma membrane                                                                        | GO   | 0        |
|                                                  |    | cytoskeleton organization                                                              | GO   | 0        |
|                                                  |    | dorsal closure                                                                         | GO   | 0        |
|                                                  |    | membrane                                                                               | GO   | 0        |

|                   |    | morphogenesis of embryonic epithelium                                 | GO   | 0.01     |
|-------------------|----|-----------------------------------------------------------------------|------|----------|
|                   |    | outer membrane                                                        | GO   | 0        |
|                   |    | neuronal signal transduction                                          | GO   | 0.01     |
|                   |    | signal transmission                                                   | GO   | 0.01     |
|                   |    | organelle membrane                                                    | GO   | 0        |
|                   |    | regulation of conjugation with cellular fusion by signal transduction | GO   | 0.01     |
|                   |    | pre-autophagosomal structure membrane                                 | GO   | 0        |
|                   |    | photosynthetic membrane                                               | GO   | 0        |
|                   |    | nuclear membrane-endoplasmic reticulum network                        | GO   | 0        |
|                   |    | photoreceptor outer segment membrane                                  | GO   | 0        |
|                   |    | presynaptic membrane                                                  | GO   | 0        |
|                   |    | postsynaptic membrane                                                 | GO   | 0        |
|                   |    | coated membrane                                                       | GO   | 0        |
|                   |    | regulation of cellular process                                        | GO   | 0        |
|                   |    | photoreceptor inner segment membrane                                  | GO   | 0        |
|                   |    | SMAD protein signal transduction                                      | GO   | 0.01     |
|                   |    | regulation of floral organ abscission by signal transduction          | GO   | 0.01     |
|                   |    | peptidase activity, acting on L-amino acid peptides                   | GO   | 0        |
|                   |    | aop Network                                                           | Dmel | 0.01     |
| oc / ocelliless   | 41 |                                                                       |      |          |
|                   |    | V_LEF1_Q2                                                             | cis  | 0.04     |
|                   |    | 4-d-old vs. 14-d-old                                                  | DEG  | 0.00E+00 |
|                   |    | Glycerolipid metabolism                                               | KEGG | 0        |
|                   |    | Glycerophospholipid metabolism                                        | KEGG | 0        |
|                   |    | Phosphatidylinositol signaling system                                 | KEGG | 0.00E+00 |
| CG30420 / CG30420 | 40 |                                                                       |      |          |
|                   |    | YGYGGTY                                                               | cis  | 0        |
| kay / kayak       | 40 |                                                                       |      |          |
|                   |    | Time Trained: Anticipating vs. Inactive                               | DEG  | 0.00E+00 |
|                   |    | Time Trained: Spatiotemporal Memories                                 | DEG  | 0.00E+00 |
|                   |    | Forager vs. Nurse (young, SCC)                                        | DEG  | 0.04     |
| vri / vrille      | 40 |                                                                       |      |          |
|                   |    | I_EN_Q6                                                               | cis  | 0.05     |
|                   |    | Aminoacyl-tRNA biosynthesis                                           | KEGG | 0.03     |
|                   |    | Glycerophospholipid metabolism                                        | KEGG | 0.05     |
|                   |    | cellular homeostasis                                                  | GO   | 0.01     |
| Mtp / Mtp         | 39 |                                                                       |      |          |
|                   |    | ap                                                                    | cis  | 0        |
|                   |    | AHB vs. EHB (4-d-old)                                                 | DEG  | 0.03     |
|                   |    | Queen Mandibular Pheromone                                            | DEG  | 0.02     |
|                   |    | Time Trained: Anticipating vs. Inactive                               | DEG  | 0.00E+00 |

|                    |    | Scout vs. Recruit                                  | DEG  | 0.01 |
|--------------------|----|----------------------------------------------------|------|------|
|                    |    | Wnt signaling pathway                              | KEGG | 0.01 |
|                    |    | cell adhesion involved in retrograde extension     | GO   | 0.01 |
|                    |    | dorsal closure                                     | GO   | 0    |
|                    |    | enzyme activator activity                          | GO   | 0    |
|                    |    | morphogenesis of embryonic epithelium              | GO   | 0    |
|                    |    | biological adhesion                                | GO   | 0.01 |
|                    |    | cell-substrate adhesion                            | GO   | 0.01 |
|                    |    | cell adhesion mediated by integrin                 | GO   | 0.01 |
|                    |    | cell adhesion involved in biofilm formation        | GO   | 0.01 |
|                    |    | plasma membrane part                               | GO   | 0.01 |
|                    |    | embryonic morphogenesis                            | GO   | 0.01 |
|                    |    | cell adhesion involved in prostatic bud elongation | GO   | 0.01 |
| maf-S /            | 39 |                                                    |      |      |
|                    |    | sna                                                | cis  | 0    |
|                    |    | lig vs. mel (10-d-old)                             | DEG  | 0    |
|                    |    | lig vs. mel (15-d-old)                             | DEG  | 0    |
|                    |    | RNA polymerase                                     | KEGG | 0.01 |
| rib / ribbon       | 37 |                                                    |      |      |
| CG9890 / CG9890    | 36 |                                                    |      |      |
|                    |    | Bapx 1                                             | cis  | 0.04 |
|                    |    | AHB vs. EHB (4-d-old)                              | DEG  | 0    |
|                    |    | AHB vs. EHB (14-d-old)                             | DEG  | 0    |
|                    |    | intrinsic to plasma membrane                       | GO   | 0.01 |
|                    |    | integral to external side of plasma membrane       | GO   | 0.01 |
| Eip93F /           | 36 |                                                    |      |      |
|                    |    | electron transport chain                           | GO   | 0.01 |
|                    |    | oxidative demethylation                            | GO   | 0.01 |
|                    |    | oxidative deethylation                             | GO   | 0.01 |
| crc / cryptocephal | 36 | 5                                                  |      |      |
| 51 1               |    | I OVO 01                                           | cis  | 0.01 |
|                    |    | High vs. Low Pollen Hoarding                       | DEG  | 0.04 |
|                    |    | Vitellogenin RNAi                                  | DEG  | 0    |
|                    |    | AHB vs. EHB Forager (Colony)                       | DEG  | 0.04 |
|                    |    | Time Trained: Anticipating vs. Inactive            | DEG  | 0.01 |
|                    |    | Peroxisome                                         | KEGG | 0.01 |
| ap / apterous      | 34 |                                                    |      | 0.01 |
| up / uptorous      |    | I_DRI_01                                           | cis  | 0    |
|                    |    | Time Trained: Anticipating vs. Inactive            | DEG  | 0.04 |
|                    |    | endopeptidase activity                             | GO   | 0.04 |
|                    |    | metalloendopeptidase activity                      | GO   | 0.01 |

|                                              |    | metal ion binding                       | GO         | 0        |
|----------------------------------------------|----|-----------------------------------------|------------|----------|
|                                              |    | ap Motif                                | Dmel       | 0        |
| CG12029 / CG12029                            | 29 |                                         |            |          |
|                                              |    | V_CDPCR1_01                             | cis        | 0.04     |
|                                              |    | Neuroactive ligand-receptor interaction | KEGG       | 0        |
| CG16779 / CG16779                            | 27 |                                         |            |          |
| HLHm&bgr / E(spl) region transcript<br>m&bgr | 25 |                                         |            |          |
|                                              |    | MTTWGRCTT                               | cis        | 0.02     |
|                                              |    | Rich vs. Poor Diet                      | DEG        | 0        |
|                                              |    | Queen Mandibular Pheromone              | DEG        | 0.01     |
|                                              |    | Time Trained: Anticipating vs. Inactive | DEG        | 0.00E+0  |
| gem / gemini                                 | 25 |                                         |            |          |
|                                              |    | grh                                     | cis        | 0.02     |
|                                              |    | Queen Mandibular Pheromone              | DEG        | 0.03     |
|                                              |    | Time Trained: Anticipating vs. Inactive | DEG        | 0.02     |
|                                              |    | Vibration Signalers                     | DEG        | 0.01     |
|                                              |    | Time Trained: Anticipating vs. Inactive | DEG        | 0.01     |
| CG34422 / CG34422                            | 24 |                                         |            |          |
|                                              |    | br.Z3                                   | cis        | 0.04     |
|                                              |    | AHB vs. EHB Guards (Colony)             | DEG        | 0        |
|                                              |    | AHB vs. EHB Soldiers (Colony)           | DEG        | 0.00E+0  |
|                                              |    | Vitellogenin RNAi                       | DEG        | 0.01     |
|                                              |    | AHB vs. EHB Forager (Colony)            | DEG        | 0        |
|                                              |    | oocyte fate determination               | GO         | 0.00E+0  |
| AP-2 /                                       | 23 |                                         |            | 0.002.00 |
| 111 2 /                                      | 23 | VSNKTDATKRCNV                           | cis        | 0        |
| fd59A / forkhead domain 59A                  | 23 | VShkibAikkeitt                          |            | 0        |
| 1037A / Torkicad domain 37A                  | 23 | ΤΑΑΤΤΑΑ                                 | cis        | 0.01     |
| Alh / Alhambra                               | 22 | ΙΑΑΠΑΑ                                  | CIS        | 0.01     |
| Am / Amamora                                 | 22 | br.Z1                                   | oia        | 0        |
|                                              |    | Time Trained: Anticipating vs. Inactive | cis<br>DEG | 0.00E+0  |
| 0000500 / 0000500                            |    | Time Trained. Anticipating vs. mactive  | DEG        | 0.00E+0  |
| CG32532 / CG32532                            | 22 |                                         |            | 0.02     |
|                                              |    | I_GAGAFACTOR_Q6                         | cis        | 0.02     |
|                                              |    | High vs. Low Pollen Hoarding            | DEG        | 0.01     |
|                                              |    | Vitellogenin RNAi                       | DEG        | 0.02     |
| CG33695 / CG33695                            | 22 |                                         |            |          |
|                                              |    | V_TCF11_01                              | cis        | 0.02     |
|                                              |    | AHB vs. EHB (4-d-old)                   | DEG        | 0.01     |
|                                              |    | AHB vs. EHB (14-d-old)                  | DEG        | 0.01     |
|                                              |    | Forager vs. Nurse (typical)             | DEG        | 0.04     |
|                                              |    | Time Trained: Anticipating vs. Inactive | DEG        | 0.02     |

|                                       |    | Proteasome                              | KEGG | 0.01 |
|---------------------------------------|----|-----------------------------------------|------|------|
| CG6854 / CG6854                       | 22 |                                         |      |      |
|                                       |    | V_HMEF2_Q6                              | cis  | 0.01 |
|                                       |    | Vitellogenin RNAi                       | DEG  | 0.02 |
|                                       |    | CG6854 Motif                            | Dmel | 0.01 |
| ecd / ecdysoneless                    | 21 |                                         |      |      |
| psq / pipsqueak                       | 21 |                                         |      |      |
|                                       |    | br.Z1                                   | cis  | 0.01 |
| AM04324                               | 20 |                                         |      |      |
|                                       |    | Adfl                                    | cis  | 0.08 |
| Max /                                 | 20 |                                         |      |      |
|                                       |    | V_AML_Q6                                | cis  | 0    |
|                                       |    | Max Network                             | Dmel | 0    |
| abo / abnormal oocyte                 | 20 |                                         |      |      |
|                                       |    | V_GR_01                                 | cis  | 0.06 |
| blos1 / blos1                         | 19 |                                         |      |      |
|                                       |    | V_CREL_01                               | cis  | 0    |
|                                       |    | lig vs. mel (10-d-old)                  | DEG  | 0    |
|                                       |    | lig vs. mel (15-d-old)                  | DEG  | 0.01 |
|                                       |    | AHB vs. EHB (4-d-old)                   | DEG  | 0.03 |
|                                       |    | AHB vs. EHB (14-d-old)                  | DEG  | 0    |
|                                       |    | Queen Mandibular Pheromone              | DEG  | 0.02 |
|                                       |    | Scout vs. Recruit                       | DEG  | 0.02 |
|                                       |    | RNA degradation                         | KEGG | 0    |
|                                       |    | Spliceosome                             | KEGG | 0    |
| Oli / Olig family                     | 19 |                                         |      |      |
|                                       |    | VTKASTCAK                               | cis  | 0.02 |
|                                       |    | Queen Mandibular Pheromone              | DEG  | 0.02 |
| Fer2 / 48 related 2                   | 18 |                                         |      |      |
|                                       |    | V_TCF11MAFG_01                          | cis  | 0.01 |
| jing /                                | 18 |                                         |      |      |
|                                       |    | br.Z4                                   | cis  | 0.04 |
| mbf1 / multiprotein bridging factor 1 | 18 |                                         |      |      |
|                                       |    | CTYAAGTGG                               | cis  | 0.06 |
|                                       |    | Time Trained: Anticipating vs. Inactive | DEG  | 0.03 |
|                                       |    | Vibration Signalers                     | DEG  | 0.01 |
|                                       |    | Oxidative phosphorylation               | KEGG | 0.02 |
|                                       |    | mitochondrial membrane part             | GO   | 0    |
| CG11414 / CG11414                     | 17 | *                                       |      |      |
| CG11641 / CG11641                     | 17 |                                         |      |      |
|                                       |    | RAKWYWAV                                | cis  | 0.01 |

| E2f2 / E2F transcription factor 2                                            | 17 |                                         |     |          |
|------------------------------------------------------------------------------|----|-----------------------------------------|-----|----------|
|                                                                              |    | I_BRCZ1_01                              | cis | 0.03     |
|                                                                              |    | Alarm Pheromone                         | DEG | 0.01     |
| Stat92E / Signal-transducer and activator<br>of transcription protein at 92E | 17 |                                         |     |          |
|                                                                              |    | byn                                     | cis | 0        |
|                                                                              |    | AHB vs. EHB (4-d-old)                   | DEG | 0.01     |
|                                                                              |    | AHB vs. EHB (14-d-old)                  | DEG | 0.05     |
|                                                                              |    | structural constituent of ribosome      | GO  | 0        |
|                                                                              |    | translation                             | GO  | 0.01     |
|                                                                              |    | mitochondrial translation               | GO  | 0.01     |
|                                                                              |    | plastid translation                     | GO  | 0.01     |
| Xbp1 / X box binding protein-1                                               | 17 |                                         |     |          |
|                                                                              |    | V_PIT1_Q6                               | cis | 0.02     |
|                                                                              |    | Forager vs. Nurse (typical)             | DEG | 0.03     |
|                                                                              |    | AHB vs. EHB Forager (Colony)            | DEG | 0.02     |
|                                                                              |    | Time Trained: Anticipating vs. Inactive | DEG | 0        |
|                                                                              |    | Vibration Signalers                     | DEG | 0.01     |
| A3-3 / A3-3                                                                  | 16 |                                         |     |          |
|                                                                              |    | V_AP1_Q6_01                             | cis | 0.09     |
|                                                                              |    | Time Trained: Anticipating vs. Inactive | DEG | 0.01     |
|                                                                              |    | reproductive developmental process      | GO  | 0        |
| BtbVII / BTB-protein-VII                                                     | 16 |                                         |     |          |
|                                                                              |    | Scout vs. Recruit                       | DEG | 0        |
| CG12071 / CG12071                                                            | 16 |                                         |     |          |
|                                                                              |    | I_ELF1_01                               | cis | 0.04     |
|                                                                              |    | Vitellogenin RNAi                       | DEG | 0.03     |
|                                                                              |    | neurotransmitter transport              | GO  | 0        |
|                                                                              |    | protein transport                       | GO  | 0        |
| MEP-1 / MEP-1                                                                | 16 | * *                                     |     |          |
|                                                                              |    | CACGCG                                  | cis | 0        |
|                                                                              |    | Vitellogenin RNAi                       | DEG | 0.01     |
|                                                                              |    | 4-d-old vs. 14-d-old                    | DEG | 0.01     |
|                                                                              |    | chromosomal part                        | GO  | 0        |
| D / Dichaete                                                                 | 16 | 1                                       |     |          |
|                                                                              |    | RTATATRTA                               | cis | 0.07     |
|                                                                              |    | 4-d-old vs. 14-d-old                    | DEG | 0        |
| Ets65A / Ets at 65A                                                          | 16 |                                         |     |          |
|                                                                              |    | V_FOXD3_01                              | cis | 0.00E+00 |
|                                                                              |    | Rich vs. Poor Diet                      | DEG | 0.001    |
|                                                                              |    | Vitellogenin RNAi                       | DEG | 0.01     |
|                                                                              |    | Queen Mandibular Pheromone              | DEG | 0.01     |

|                                            |    | Time Trained: Anticipating vs. Inactive | DEG  | 0.00E+0 |
|--------------------------------------------|----|-----------------------------------------|------|---------|
|                                            |    | Scout vs. Recruit                       | DEG  | 0.02    |
| eg / eagle                                 | 16 |                                         |      |         |
|                                            |    | Adf1                                    | cis  | 0.05    |
|                                            |    | Endocytosis                             | KEGG | 0       |
| Mio / Mlx interactor                       | 15 |                                         |      |         |
|                                            |    | SPI1                                    | cis  | 0.02    |
|                                            |    | Alarm Pheromone                         | DEG  | 0       |
|                                            |    | Queen Mandibular Pheromone              | DEG  | 0       |
| crp / cropped                              | 15 |                                         |      |         |
|                                            |    | exd                                     | cis  | 0       |
|                                            |    | AHB vs. EHB (4-d-old)                   | DEG  | 0.01    |
|                                            |    | AHB vs. EHB (14-d-old)                  | DEG  | 0       |
|                                            |    | microtubule associated complex          | GO   | 0       |
| emc / extra macrochaetae                   | 15 |                                         |      |         |
|                                            |    | I_EVE_Q6                                | cis  | 0.02    |
| unpg / unplugged                           | 15 |                                         |      |         |
|                                            |    | Dref                                    | cis  | 0       |
|                                            |    | 4-d-old vs. 14-d-old                    | DEG  | 0       |
| Eip74EF / Ecdysone-induced protein<br>74EF | 14 |                                         |      |         |
|                                            |    | V_STAT5B_01                             | cis  | 0.01    |
|                                            |    | Time Trained: Anticipating vs. Inactive | DEG  | 0       |
|                                            |    | Eip74EF Motif                           | Dmel | 0.09    |
| CG42748 / CG42748                          | 13 |                                         |      |         |
|                                            |    | VVVBTAATCC                              | cis  | 0.01    |
|                                            |    | lig vs. mel (10-d-old)                  | DEG  | 0.01    |
|                                            |    | lig vs. mel (15-d-old)                  | DEG  | 0       |
|                                            |    | Time Trained: Anticipating vs. Inactive | DEG  | 0.01    |
| Nf-YA / Nf-YA                              | 13 |                                         |      |         |
|                                            |    | KNMTTATSVNH                             | cis  | 0       |
|                                            |    | Vitellogenin RNAi                       | DEG  | 0.03    |
| Med / Medea                                | 12 |                                         |      |         |
|                                            |    | V_TFIIA_Q6                              | cis  | 0.01    |
| Optix / Optix                              | 12 |                                         |      |         |
|                                            |    | pan                                     | cis  | 0.01    |
|                                            |    | 4-d-old vs. 14-d-old                    | DEG  | 0       |
|                                            |    | establishment of localization           | GO   | 0.01    |
| al / aristaless                            | 12 |                                         |      |         |
|                                            |    | GGRNWTTCC                               | cis  | 0       |
|                                            |    | 4-d-old vs. 14-d-old                    | DEG  | 0       |
| chn / charlatan                            | 12 |                                         |      |         |

|                                                       |    | RXR.VDR                                 | cis  | 0.02 |
|-------------------------------------------------------|----|-----------------------------------------|------|------|
| vnd / ventral nervous system defective                | 12 |                                         |      |      |
|                                                       |    | Pbx                                     | cis  | 0    |
|                                                       |    | AHB vs. EHB (4-d-old)                   | DEG  | 0.01 |
|                                                       |    | AHB vs. EHB (14-d-old)                  | DEG  | 0.05 |
|                                                       |    | Scout vs. Recruit                       | DEG  | 0.02 |
|                                                       |    | Vibration Signalers                     | DEG  | 0.04 |
| CG7368 / CG7368                                       | 11 |                                         |      |      |
|                                                       |    | RKAAASA                                 | cis  | 0.01 |
| MBD-like / MBD-like                                   | 11 |                                         |      |      |
|                                                       |    | RTGRGAR                                 | cis  | 0.03 |
|                                                       |    | Scout vs. Recruit                       | DEG  | 0    |
| stc / shuttle craft                                   | 11 |                                         |      |      |
|                                                       |    | RTAAMA                                  | cis  | 0    |
| Ada2b / Ada2b                                         | 10 |                                         |      |      |
|                                                       |    | byn                                     | cis  | 0.07 |
|                                                       |    | Vitellogenin RNAi                       | DEG  | 0.03 |
|                                                       |    | AHB vs. EHB Forager (Colony)            | DEG  | 0.04 |
| CG12769 / CG12769                                     | 10 |                                         |      |      |
|                                                       |    | E2F1                                    | cis  | 0.06 |
| CG3136 / CG3136                                       | 10 |                                         |      |      |
|                                                       |    | DDNBKGTDTHDHV                           | cis  | 0    |
| sima / similar                                        | 10 |                                         |      |      |
|                                                       |    | AHB vs. EHB (4-d-old)                   | DEG  | 0    |
|                                                       |    | AHB vs. EHB (14-d-old)                  | DEG  | 0    |
| CG13296 / CG13296                                     | 9  |                                         |      |      |
|                                                       |    | I_OVO_01                                | cis  | 0.03 |
| Camta / Calmodulin-binding<br>transcription activator | 9  |                                         |      |      |
|                                                       |    | AHB vs. EHB (4-d-old)                   | DEG  | 0.01 |
|                                                       |    | AHB vs. EHB (14-d-old)                  | DEG  | 0.01 |
|                                                       |    | Endocytosis                             | KEGG | 0.01 |
| SoxN / SoxNeuro                                       | 9  |                                         |      |      |
|                                                       |    | Antp                                    | cis  | 0.01 |
|                                                       |    | AHB vs. EHB (14-d-old)                  | DEG  | 0.05 |
|                                                       |    | AHB vs. EHB Forager (Colony)            | DEG  | 0.04 |
|                                                       |    | Time Trained: Anticipating vs. Inactive | DEG  | 0    |
| p53 /                                                 | 9  |                                         |      |      |
|                                                       |    | AAHKMTHBCA                              | cis  | 0.03 |
|                                                       |    | Scout vs. Recruit                       | DEG  | 0.02 |
| trh / trachealess                                     | 9  |                                         |      |      |
|                                                       |    | 4-d-old vs. 14-d-old                    | DEG  | 0.02 |

| tup / tailup                              | 9        |                                         |      |      |
|-------------------------------------------|----------|-----------------------------------------|------|------|
|                                           |          | pan                                     | cis  | 0    |
| Fer3 / 48 related 3                       | 8        |                                         |      |      |
|                                           |          | AAHKMTHBCA                              | cis  | 0.06 |
|                                           |          | Time Trained: Anticipating vs. Inactive | DEG  | 0.04 |
| ash1 / absent, small, or homeotic discs 1 | 8        |                                         |      |      |
|                                           |          | ANHDDBHGATAASSDNNB                      | cis  | 0    |
| bs / blistered                            | 8        |                                         |      |      |
|                                           |          | En1                                     | cis  | 0    |
|                                           |          | AHB vs. EHB (4-d-old)                   | DEG  | 0.03 |
|                                           |          | AHB vs. EHB (14-d-old)                  | DEG  | 0.03 |
| cnc / cap-n-collar                        | 8        |                                         |      |      |
|                                           |          | I_CF1_01                                | cis  | 0.01 |
|                                           |          | Rich vs. Poor Diet                      | DEG  | 0.03 |
| exd / extradenticle                       | 8        |                                         |      |      |
|                                           |          | Cf2.II                                  | cis  | 0.01 |
|                                           |          | Time Trained: Anticipating vs. Inactive | DEG  | 0.01 |
|                                           |          | Time Trained: Spatiotemporal Memories   | DEG  | 0.02 |
|                                           |          | Exd Motif                               | Dmel | 0.06 |
| CG7015 / CG7015                           | 7        |                                         |      |      |
|                                           |          | AMHGGGTTAH                              | cis  | 0.01 |
| CG8506 / CG8506                           | 7        |                                         |      |      |
|                                           |          | V_HNF1_Q6_01                            | cis  | 0.03 |
| HLH4C / Helix loop helix protein 4C       | 7        |                                         |      |      |
| Jra / Jun-related antigen                 | 7        |                                         |      |      |
| U U                                       |          | p120                                    | cis  | 0    |
|                                           |          | Queen Mandibular Pheromone              | DEG  | 0.02 |
| Mi-2 /                                    | 7        | <u> </u>                                |      |      |
|                                           |          | HSRGAAAAHYV                             | cis  | 0.03 |
| Su(H) / Suppressor of Hairless            | 7        |                                         |      |      |
|                                           |          | br.Z4                                   | cis  | 0.02 |
|                                           |          | Vibration Signalers                     | DEG  | 0.02 |
| onecut / onecut                           | 7        |                                         |      | 0.02 |
|                                           |          | AHB vs. EHB (4-d-old)                   | DEG  | 0.03 |
|                                           |          | Scout vs. Recruit                       | DEG  | 0.05 |
| CG3815 / CG3815                           | 6        |                                         |      | 0.05 |
| CG5015 / CG5015                           | <u> </u> | br.Z4                                   | cis  | 0.05 |
|                                           |          | Forager vs. Nurse (old, SCC)            | DEG  | 0.03 |
| Su(var)205 / Suppressor of variegation    |          |                                         | DLG  | 0.03 |
| 205                                       | 6        |                                         |      | ļ    |
| Usf / Usf                                 | 6        |                                         |      |      |
|                                           |          | Arnt.Ahr                                | cis  | 0.01 |

| bab1 / bric a brac 1                 | 6 |                                          |      |      |
|--------------------------------------|---|------------------------------------------|------|------|
|                                      |   | BEAF.32                                  | cis  | 0.05 |
|                                      |   | 4-d-old vs. 14-d-old                     | DEG  | 0.02 |
|                                      |   | bab1 network                             | Dmel | 0    |
| dac / dachshund                      | 6 |                                          |      |      |
|                                      |   | CTYAAGTGG                                | cis  | 0    |
|                                      |   | lig vs. mel (10-d-old)                   | DEG  | 0.02 |
|                                      |   | lig vs. mel (15-d-old)                   | DEG  | 0.03 |
|                                      |   | Time Trained: Anticipating vs. Inactive  | DEG  | 0.04 |
| pros / prospero                      | 6 |                                          |      |      |
|                                      |   | Scout vs. Recruit                        | DEG  | 0.03 |
| sim / single-minded                  | 6 |                                          |      |      |
| CG32105 / CG32105                    | 5 |                                          |      |      |
| CG9418 / CG9418                      | 5 |                                          |      |      |
| Clk / Clock                          | 5 |                                          |      |      |
|                                      |   | intracellular membrane-bounded organelle | GO   | 0.01 |
| MBD-R2 / MBD-R2                      | 5 |                                          |      |      |
|                                      |   | V_GATA6_01                               | cis  | 0    |
| kin17 / kin17                        | 5 |                                          |      |      |
|                                      |   | Espl                                     | cis  | 0.02 |
|                                      |   | Alarm Pheromone                          | DEG  | 0.02 |
| CG12701 / CG12701                    | 4 |                                          |      |      |
| CG3407 / CG3407                      | 4 |                                          |      |      |
|                                      |   | ESR1                                     | cis  | 0.01 |
|                                      |   | 10-d-old vs. 15-d-old                    | DEG  | 0.03 |
| CG7099 / CG7099                      | 4 |                                          |      |      |
|                                      |   | CKCAKCWCT                                | cis  | 0.07 |
|                                      |   | AHB vs. EHB Soldiers (Colony)            | DEG  | 0    |
|                                      |   | AHB vs. EHB (14-d-old)                   | DEG  | 0.04 |
| Tusp / Tusp                          | 4 |                                          |      |      |
| crol / crooked legs                  | 4 |                                          |      |      |
|                                      |   | BHTAAKCYSBV                              | cis  | 0.01 |
| dmrt93B / doublesex-Mab related 93B  | 4 |                                          |      |      |
|                                      |   | abd.A                                    | cis  | 0.01 |
| ey / eyeless                         | 4 |                                          |      |      |
|                                      |   | AAATTAA                                  | cis  | 0.06 |
|                                      |   | Scout vs. Recruit                        | DEG  | 0.01 |
| mip120 / Myb-interacting protein 120 | 4 |                                          |      |      |
|                                      |   | Scout vs. Recruit                        | DEG  | 0.04 |
| repo / reversed polarity             | 4 |                                          |      |      |
| CG11456 / CG11456                    | 3 |                                          |      |      |

|                                       |   | ANHDDBHGATAASSDNNB            | cis | 0.02 |
|---------------------------------------|---|-------------------------------|-----|------|
| CG9215 / CG9215                       | 3 |                               |     |      |
|                                       |   | AHB vs. EHB Soldiers (Colony) | DEG | 0.01 |
| Eip78C / Ecdysone-induced protein 78C | 3 |                               |     |      |
| Sox100B / Sox100B                     | 3 |                               |     |      |
|                                       |   | byn                           | cis | 0.03 |
| bon / bonus                           | 3 |                               |     |      |
| nau / nautilus                        | 3 |                               |     |      |
| ttk / tramtrack                       | 3 |                               |     |      |
| CG11085 / CG11085                     | 2 |                               |     |      |
|                                       |   | Rich vs. Poor Diet            | DEG | 0    |
| CG1832 / CG1832                       | 2 |                               |     |      |
| CG31670 / CG31670                     | 2 |                               |     |      |
| GATAd / GATAd                         | 2 |                               |     |      |
| Hsf / Heat shock factor               | 2 |                               |     |      |
| Mnf / Mnf                             | 2 |                               |     |      |
| Smox / Smad on X                      | 2 |                               |     |      |
| cbt / cbt                             | 2 |                               |     |      |
| cic / capicua                         | 2 |                               |     |      |
| d4 / d4                               | 2 |                               |     |      |
| pita /                                | 2 |                               |     |      |
| CG1620 / CG1620                       | 1 |                               |     |      |
| CG1845 / CG1845                       | 1 |                               |     |      |
| CG18619 / CG18619                     | 1 |                               |     |      |
| CG30443 / CG30443                     | 1 |                               |     |      |
| CG31224 / CG31224                     | 1 |                               |     |      |
| Gug / Grunge                          | 1 |                               |     |      |
| Hr39 / Hormone receptor-like in 39    | 1 |                               |     |      |
| Hr96 / Hormone receptor-like in 96    | 1 |                               |     |      |
| Lmpt / Limpet                         | 1 |                               |     |      |
| Pdp1 / PAR-domain protein 1           | 1 |                               |     |      |
| cyc / cycle                           | 1 |                               |     |      |
| h / hairy                             | 1 |                               |     |      |
| usp / ultraspiracle                   | 1 |                               |     |      |
| zfh1 / Zn finger homeodomain 1        | 1 |                               |     |      |

## Table S6. Network hubs influence many different behavioral states.

We list the number of targets for each of the top 20 network hubs that were differentially expressed in each of the 27 behavioral comparisons. For each of the three behavioral categories (aggression, maturation, and foraging) we also describe the average percentage of differentially expressed genes that were members of each of these modules.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CG8228  | CG7786  | CG6769  | CG16999  | Su(var)2-10 | YL-1    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|----------|-------------|---------|
| AHB vs. EHB Guands<br>(Ind. Genotype) 217 29 8 4 5 1 0 0 3 4 7 0 3 2 4 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1       | 0       | 1       | t        | o           | 2       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |         |         |          | U           | -       |
| (Ind. Genotype) 510 72 13 6 6 1 4 3 5 5 2 9 7 3 6 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2       | 2       | Q       | 1        | 8           | 4       |
| <sup>9</sup> AHB vs. EHB Guards<br><b>→ (Col. Genoptype)</b> 450 62 7 7 8 1 5 2 8 5 8 2 2 2 4 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4       |         | 1       |          | -           |         |
| G       AHB vs. EHB Soldiers       510       72       13       6       1       4       3       5       5       2       9       7       3       6       4         g       AHB vs. EHB Guards       5       13       6       1       4       3       5       5       2       9       7       3       6       4         g       AHB vs. EHB Guards       5       6       1       4       3       5       5       2       9       7       3       6       4         G       Col. Genophype)       450       62       7       7       8       1       5       2       8       5       8       2       2       4       2         G       AHB vs. EHB Soldiers       7       8       1       5       2       8       5       8       2       2       4       2 | 4       | 1       | 1       | 2        | 7           | 6       |
| (Col. Genotype) 757 137 17 9 10 3 8 5 17 8 10 5 7 8 6 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10      | 1       | 7       | 3        | 23          | 21      |
| Alarm Pheromone 430 80 13 3 7 2 7 2 7 12 2 2 7 3 3 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ۵       | 1       | 2       | 3        | 13          | 5       |
| AHB vs. EHB (4-d-old) 3485 804 134 71 58 41 54 83 71 65 72 35 59 58 46 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46      | 20      | 32      | 48       | 39          | 30      |
| AHB vs. EHB (14-d-old) 3660 804 143 74 61 44 51 83 73 67 71 35 59 55 47 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 48      | 18      | 32      | 47       | 41          | 31      |
| lig.vs.mei.(10-d-oid) 2283 804 81 57 37 32 40 50 43 45 49 23 46 34 28 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42      | 12      | 28      | 23       | 28          | 29      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44      | 12      | 27      | 23       | 31          | 32      |
| High vs. Low Pollen<br>Hoarding: 444 103 16 11 14 19 7 9 12 12 7 3 8 3 5 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9       |         |         | 4        | 8           | 5       |
| Versee Numerica Old                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3       | 1       | 0       | 4        | 0           | °       |
| <b>S Forager</b> 1278 231 47 24 16 13 16 20 21 26 22 14 25 16 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16      | 2       | 9       | 7        | 20          | 13      |
| a Nurse vs. Forager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | _       |         |          |             |         |
| Forager       1278       231       47       24       16       13       16       20       21       26       22       14       25       16       11       11         Envise vs. Forager       100       3       2       3       3       5       0       2       2       1         Murse vs. Forager       166       21       2       3       1       0       3       2       3       3       5       0       2       2       1         Nurse vs. Forager (old)       402       73       14       5       6       7       5       3       7       6       6       2       4       4       7       1                                                                                                                                                        | 1       | 0       | 1       | 1        | 1           | 0       |
| ∑ Nurse vs. Forager (old) 402 73 14 5 6 7 5 3 7 6 6 2 4 4 7 1<br>Queen Mandibular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2       | 2       | 4       | 6        | 3           | 1       |
| Pheromone 740 209 26 18 10 48 7 10 11 24 14 8 16 8 13 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6       | 3       | 6       | 2        | 13          | 2       |
| Rich vs. Poor Diet 331 804 7 4 1 3 2 3 5 5 10 1 3 4 3 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0       | 0       | 3       | 2        | 5           | 1       |
| Vitellogenin RNAi 2901 690 119 71 48 42 36 37 38 46 54 36 37 39 33 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 38      | 26      | 26      | 35       | 37          | 28      |
| 10- vs. 15-d-cld 576 130 24 16 24 19 9 11 5 14 10 12 13 7 10 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7       | 10      | 4       | 6        | 1           | 1       |
| 4-vs. 14-d-old 2131 492 90 70 47 30 35 32 31 30 33 23 29 34 42 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8       | 28      | 29      | 13       | 30          | 18      |
| AHB vs. EHB Foragers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |         |         |          |             | -1      |
| (Ind. Genotype) 50 5 1 1 0 0 0 1 1 1 0 1 0 0 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2       | 0       | Q       | O        | 0           | 0       |
| AHB vs. EHB Foragers<br>(Col. Genotype) 316 48 4 2 2 2 4 1 3 8 2 1 3 0 5 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3       | 2       | 1       | O        | 6           | 4       |
| Scout vs. Recruit 1041 226 28 11 18 17 15 9 9 15 13 10 22 6 13 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9       | 5       | 9       | 12       | 16          | 12      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5       | 2       | 0       | g        | 5           | 3       |
| Differentiation Signalers         711         155         34         9         5         3         6         9         11         12         20         8         8         13         8         7           Differentiation vs. Inactive         3222         804         132         57         50         43         56         39         47         81         89         47         59         37         44         34                                                                                                                                                                                                                                                                                                                           | 20      | 45      | 20      | 20       | 20          | 40      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20<br>8 | 15<br>1 | 20<br>3 | 30<br>10 | 30<br>4     | 19<br>2 |
| Morning vs. Afternoon 784 804 35 14 10 6 5 11 13 12 19 11 12 11 7 13<br>Spatiotemporal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0       | '       | э       | 10       | 4           | -       |
| Memories 224 804 16 10 7 1 1 2 0 3 2 16 2 0 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3       | 3       | 0       | 1        | 1           | 1       |
| Foreging Experience 190 804 9 4 3 3 4 1 6 2 1 2 1 2 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0       | 0       | 1       | 2        | 7           | 2       |
| Distance Perception 52 8 1 1 0 1 0 0 0 1 1 0 1 0 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0       | 1       | 0       | 0        | 1           | 0       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 106     | 98      | 97      | 94       | 94          | 84      |
| Nof Full TRN         18         12         9         8         7         7         7         6         6         6         5           Mean % DEGs in Aggression Comp.         15         7         9         2         7         3         10         9         6         5         7         4         6         3                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5       | 5       | 4       | 4        | 4           | 4       |
| <b>E Mean % DEGs in Aggression Comp.</b> 15 7 9 2 7 3 10 9 6 5 7 4 6 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4       | 2       | 2       | з        | 14          | 9       |
| 👼 Mean % DEGs in Maturation Comp. 16 10 8 9 6 7 8 9 9 4 7 6 6 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5       | 3       | 5       | 4        | 6           | 3       |
| Mean % DEGs in Foraging Comp. 19 8 7 4 6 4 6 8 7 8 6 4 6 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4       | 2       | 2       | 4        | 7           | 4       |

### Table S7. Associations between TFs and behavioral comparisons

This table shows the enrichment P-values summarized Fig. 3C. The rows correspond to each TF and the columns correspond to various conditions. The rows are sorted in descending order based on the number of enrichments for each TF. The subdivisions in the rows correspond to different class of TFs: the top 4 are the global regulators with targets enriched in all 3 behavior classes, followed by those TFs involved in more than 1 class and the last 3 are specific to each behavior.

|                    |        | MATURATION |           |        |          |                         |                         |      |           | AGGRESSION |           |        |      |      |               | FORAGING |        |        |                      |                  |        |           |
|--------------------|--------|------------|-----------|--------|----------|-------------------------|-------------------------|------|-----------|------------|-----------|--------|------|------|---------------|----------|--------|--------|----------------------|------------------|--------|-----------|
| dl                 | 1      | 1          | 1         | 1      | 1        | 1                       | 1 1                     | 0.04 | 1         | 1          | 1         | 1      | 0.04 | 1    | 1 1           | 1        | 1      | 0      | 1 1                  | 1                | 0.04   | 1         |
| CG7274             | 1      | 1          | 1         | 1      | 1        | 1                       | 1 1                     | 1    | 1         | 0.01       | 1         | 1      | 1    | 1    | 0 0           | 1        | 1      | 1      | 1 0                  | 1                | 1      | 1         |
| br                 | 1      | 1          | 0.01      | 0.02   | 1        | 1                       | 1 1                     | 1    | 1         | 1          | 1         | 1      | 1    | 0.04 | 1 1           | 1        | 1      | 1      | 1 1                  | 1                | 0      | 1         |
| lilli              | 0.01   | 0.01       | 1         | 1      | 1        | 1                       | 1 1                     | 1    | 1         | 1          | 1         | 1      | 0.03 | 1    | 1 1           | 1        | 1      | 1      | 1 1                  | 1                | 0      | 1         |
| fru                | 0      | 0          | 1         | 1      | 1        |                         | <mark>01</mark> 1       | 1    | 1         |            | 1         | 1      | 1    |      | 1 1           | 1        | 0.03   | 1      | 1 1                  | 1                | 0      | 0.01      |
| CG30077            | 0.03   | 0          | 0         | 0.01   | 1        | 1                       | 1 1                     | 1    | 0.02      |            | 1         | 1      | 1    |      | 1 1           | 1        | 1      | 1      | 1 1                  |                  | 1      | 1         |
| nej                | 0.01   | 0.01       | 1         | 1      | 1        | 1                       | 1 1                     | 1    | 1         |            | 1         | 1      | 1    |      | 1 1           | 1        | 1      | 1      | 1 1                  | 1                | 0      | 1         |
| Ets65A<br>Ssb-c31a | 1      | 1<br>0     | 1<br>0.03 | 1<br>0 | 1<br>1   | 1 <mark>0</mark> .<br>1 | <mark>01</mark> 1<br>11 | 1    | 0.01<br>1 |            | 1         | 1      | 1    |      | 1 1<br>1 1    | 1        | 1<br>1 | 1<br>1 | 1 1<br>1 1           | <u>0.02</u><br>1 | 0.01   | 1         |
| ftz-f1             | 0.01   | 0.03       | 0.03      | 1      | 1        |                         | 05 1                    | 1    | 1         |            | 1         | 1<br>1 | 1    |      | 1 1<br>1 1    | 1        | 1      | 1      | 1 1                  | 1                | 0.01   | 1<br>0.01 |
| pnt                | 0.01   | 0.00       | 1         | 1      | 1        | 1                       | 1 1                     | 1    | 0.01      |            | 1         | 1      | 1    |      | 1 1           | 1        | 1      | 1      | 1 1                  | 1                | 0      | 0.02      |
| CG33695            | 0.01   | 0.01       | 1         | 1      | 1        | 1                       | 1 0.04                  | 1    | 1         |            | 1         | 1      | 1    |      | 1 1           | 1        | 1      | 1      | 1 1                  | 1                | 0.02   | 1         |
| CG9342             | 0.03   | 1          | 1         | 1      | 1        | 1                       | 1 1                     | 1    | 0.02      | 1          | 1         | 1      | 1    | 1    | 1 1           | 1        | 1      | 1      | 1 1                  | 0.01             | 0      | 1         |
| Xbp1               | 1      | 1          | 1         | 1      | 1        | 1                       | 1 0.03                  | 1    | 1         | 1          | 1         | 1      | 1    | 1    | 1 1           | 1        | 1      | 1      | 1 0.02               | 1                | 0      | 0.01      |
| crc                | 1      | 1          | 1         | 1      | 0.04     | 1                       | 1 1                     | 1    | 1         | 0          | 1         | 1      | 1    | 1    | 1 1           | 1        | 1      | 1      | 1 0.04               | 1                | 0      | 1         |
| gem                | 1      | 1          | 1         | 1      | 1        | 1                       | 1 1                     | 1    | 0.03      | 1          | 1         | 1      | 1    | 1    | 1 1           | 1        | 1      | 1      | 1 1                  | 1                | 0.01   | 0.01      |
| vnd                | 0.01   | 0.05       | 1         | 1      | 1        | 1                       | 1 1                     | 1    | 1         | 1          | 1         | 1      | 1    | 1    | 1 1           | 1        | 1      | 1      | 1 1                  | 0.02             | 1      | 0.04      |
| CG15216            | 1      | 1          | 0.01      | 0      | 1        | 1                       | 1 1                     | 1    | 1         | 1          | 1         | 1      | 1    | 1    | 1 1           | 1        | 1      | 1      | 1 1                  | 1                | 0.01   | 1         |
| Dp                 | 0      | 0          | 1         | 1      | 1        | 1                       | 1 1                     | 1    | 1         | 1          | 1         | 1      | 1    |      | 1 1           | 1        | 1      | 1      | 1 1                  | 1                | 0.01   | 1         |
| HLHm&bgr           | 1      | 1          | 1         | 1      | 1        | 1                       | 0 1                     | 1    | 0.01      |            | 1         | 1      | 1    |      | 1 1           | 1        | 1      | 1      | 1 1                  | 1                | 0      | 1         |
| NC2&bgr<br>SoxN    | 1      | 1<br>0.05  | 1         | 1<br>1 | 1<br>1   | 1<br>1                  | 1 1<br>1 1              | 1    | 1         | 0.02<br>1  | 1         | 1<br>1 | 1    |      | 1 1<br>1 1    | 1        | 1      | 0<br>1 | 1 1<br>1 <u>0.04</u> | 1                | 0.01   | 1<br>1    |
| aop                | 0.03   | 0.05       | 1         | 1      | 1        | 1                       | 0 1                     | 1    | 1         | 1          | 1         | 1      | 1    |      | 1 1           | 1        | 1      | 1      | 1 <u>0.04</u><br>1 1 | 1                | 0      | 1         |
| dac                | 1      | 1          | 0.02      | 0.03   | 1        | 1                       | 1 1                     | 1    | . 1       | 1          | 1         | 1      | 1    |      | 1 1           | 1        | 1      | 1      | 1 1                  |                  | 0.04   | 1         |
| kay                | 1      | 1          | 1         | 1      | 1        | 1                       | 1 1                     | 1    | 1         |            | . 1       | 0.04   | 1    |      | 1 1           | 1        | 1      | 0      | 1 1                  | 1                | 0      | 1         |
| Ada2b              | 1      | 1          | 1         | 1      | 1        | 1                       | 1 1                     | 1    | 1         | 0.03       | 1         | 1      | 1    | 1    | 1 1           | 1        | 1      | 1      | 1 0.04               | 1                | 1      | 1         |
| Bgb                | 1      | 1          | 1         | 1      | 1        | 1                       | 1 1                     | 1    | 0         | 1          | 1         | 1      | 1    | 1    | 1 1           | 1        | 1      | 1      | 1 1                  | 1                | 0      | 1         |
| CG32121            | 1      | 1          | 1         | 1      | 1        | 1                       | 1 1                     | 1    | 0.01      | 1          | 1         | 1      | 1    | 1    | 1 1           | 1        | 1      | 1      | 1 1                  | 1                | 0      | 1         |
| CG8228             | 1      | 1          | 1         | 1      | 1        | 1                       | 1 1                     | 1    | 1         | 0          | 1         | 1      | 1    | 1    | 1 1           | 0.05     | 1      | 1      | 1 1                  | 1                | 1      | 1         |
| CG9139             | 1      | 1          | 1         | 1      | 1 0      | .01                     | 1 1                     | 1    | 1         |            | 1         | 1      | 1    | 1    | 1 1           | 1        | 1      |        | ) <mark>.04</mark> 1 | 1                | 1      | 1         |
| CG9776             | 1      | 1          | 1         | 1      | 1        | 1                       | 1 1                     | 1    | 0         |            | 1         | 1      | 1    |      | 1 1           | 1        | 1      | 0.04   | 1 1                  | 1                | 1      | 1         |
| MTA1-like          | 1      | 1          | 1         | 1      | 1        | 1                       | 1 1                     | 1    | 0         |            | 1         | 1      | 1    |      | 1 1           | 1        | 1      | 1      | 1 1                  | 1                | 0      | 1         |
| l(2)k10201         | 0.03   | 1<br>1     | 1         | 1      | 1        | 1<br>1                  | 1 1<br>1 1              | 1    | 1         |            | 1         | 1      | 1    |      | 1 1           | 1        | 1<br>1 | 1<br>1 | 1 1<br>1 1           | 1<br>0.05        | 0.04   | 1         |
| onecut<br>CG14711  | 0.03   | 1          | 1         | 1<br>1 | 1        | 1                       | 1 1<br>1 1              | 1    | 1         |            | 1<br>0.01 | 1      | 1    |      | 1 1<br>1 0.01 | 1        | 1      | 1      | 1 1                  | <u>0.05</u><br>1 | 1<br>1 | 1<br>1    |
| CG7099             | 1      | 0.04       | 1         | 1      | 1        | 1                       | 1 1                     | 1    | 1         |            | 1         | 1      | 1    | 1    | 1 0.01        | 1        | 1      | 1      | 1 1                  | 1                | 1      | 1         |
| Mio                | 1      | 1          | 1         | 1      | 1        | 1                       | 1 1                     | 1    | 0         |            | 1         | 1      | 1    |      | 1 1           | 1        | 1      | 1      | 1 1                  | 1                | 1      | 1         |
| Ets97D             | 1      | 1          | 1         | 1      | 1        | 1                       | 1 1                     | 1    | 1         | 1          | 1         | 1      | 1    |      | 1 0.01        | 1        | 1      | 1      | 0 1                  | 1                | 1      | 1         |
| Su(var)2-10        | 1      | 1          | 1         | 1      | 1        | 1                       | 1 1                     | 1    | 1         | 1          | 1         | 1      | 1    | 0    | 1 0           | 1        | 1      | 1      | 0 1                  | 1                | 1      | 1         |
| Deaf1              | 1      | 1          | 1         | 1      | 1        | 1                       | 1 1                     | 1    | 1         | 1          | 1         | 1      | 1    | 0.04 | 1 1           | 1        | 1      | 1      | 0 1                  | 1                | 1      | 1         |
| pan                | 1      | 1          | 1         | 1      | 1        | 1                       | 1 1                     | 1    | 1         | 1          | 1         | 1      | 1    |      | 1 1           | 1        | 1      | 1      | 1 1                  | 1                | 0      | 1         |
| CG17912            | 1      | 1          | 1         | 1      | 0        | 1                       | 1 1                     | 0.01 |           |            | 1         | 1      | 1    |      | 1 1           | 1        | 1      | 1      | 1 1                  | 1                | 1      | 1         |
| CG1244             | 1      | 1          | 1         | 1      |          | .01                     | 1 1                     | 1    | 1         |            | 1         | 1      | 1    | 1    | 1 1           | 1        | 1      | 1      | 1 1                  | 1                | 1      | 1         |
| CG16899            | 0      | 0          | 1         | 1      | 1        | 1                       | 1 1                     | 1    | 1         |            | 1         | 1      | 1    |      | 1 1           | 1        | 1      | 1      | 1 1                  | 1                | 1      | 1         |
| CG32532<br>CG7786  | 1<br>1 | 1<br>1     | 1         | 1      | 0.01     | 1<br>.01                | 1 1<br>1 1              | 0.03 | 1         | 0.02<br>1  | 1         | 1      | 1    |      | 1 1<br>1 1    | 1        | 1<br>1 | 1<br>1 | 1 1<br>1 1           | 1<br>1           | 1<br>1 | 1         |
| CG9890             | 0      | 0          | 1         | 1      | 1 0<br>1 | 1                       | 1 1                     | 0.03 | 1         | 1          | 1         | 1<br>1 | 1    |      | 1 1<br>1 1    | 1        | 1      | 1      | 1 1                  | 1                | 1      | 1         |
| Camta              | 0.01   | 0.01       | 1         | 1      | 1        | 1                       | 1 1                     | 1    | 1         | 1          | 1         | 1      | 1    |      | 1 1           | 1        | 1      | 1      | 1 1                  | 1                | 1      | 1         |
| Myb                | 0.03   | 0.04       | 1         | 1      | 1        | 1                       | 1 1                     | 1    | 1         | 1          | 1         | 1      | 1    | 1    | 1 1           | 1        | 1      | 1      | 1 1                  | 1                | 1      | 1         |
| Stat92E            | 0.01   | 0.05       | 1         | 1      | 1        | 1                       | 1 1                     | 1    | 1         | 1          | 1         | 1      | 1    | 1    | 1 1           | 1        | 1      | 1      | 1 1                  | 1                | 1      | 1         |
| bs                 | 0.03   | 0.03       | 1         | 1      | 1        | 1                       | 1 1                     | 1    | 1         | 1          | 1         | 1      | 1    | 1    | 1 1           | 1        | 1      | 1      | 1 1                  | 1                | 1      | 1         |
| crp                | 0.01   | 0          | 1         | 1      | 1        | 1                       | 1 1                     | 1    | 1         | 1          | 1         | 1      | 1    | 1    | 1 1           | 1        | 1      | 1      | 1 1                  | 1                | 1      | 1         |
| maf-S              | 1      | 1          | 0         | 0      | 1        | 1                       | 1 1                     | 1    | 1         | 1          | 1         | 1      | 1    | 1    | 1 1           | 1        | 1      | 1      | 1 1                  | 1                | 1      | 1         |
| m                  | 0      | 0          | 1         | 1      | 1        | 1                       | 1 1                     | 1    | 1         |            | 1         | 1      | 1    |      | 1 1           | 1        | 1      | 1      | 1 1                  |                  | 1      | 1         |
| sima               | 0      | 0          | 1         | 1      | 1        | 1                       | 1 1                     | 1    | 1         |            | 1         | 1      | 1    |      | 1 1           | 1        | 1      | 1      | 1 1                  | 1                | 1      | 1         |
| CG11085            | 1      | 1          | 1         | 1      | 1        | 1                       | 0 1                     | 1    |           |            | 1         | 1      | 1    |      | 1 1           | 1        | 1      | 1      | 1 1                  |                  | 1      | 1         |
| CG11294            | 1      | 1          | 1         | 1      |          | .01                     | 1 1                     | 1    | 1         |            | 1         | 1      | 1    |      | 1 1           | 1        | 1      | 1      | 1 1                  | 1                | 1      | 1         |
| CG12071            | 1      | 1          | 1         | 1      | 1        | 1                       | 1 1                     | 1    | 1         | 0.03       | 1         | 1      | 1    | 1    | 1 1           | 1        | 1      | 1      | 1 1                  | 1                | 1      | 1         |

|           |      |   |      |   |   |      |      |     |      |      |      |      |   |   |      |   | i    |   |   |      |   |     |      |      |      |
|-----------|------|---|------|---|---|------|------|-----|------|------|------|------|---|---|------|---|------|---|---|------|---|-----|------|------|------|
| CG15715   | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 0    | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 1    | 1    | 1    |
| CG3407    | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 0.03 | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 1    | 1    | 1    |
| CG3815    | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 1    | 1    | 0.03 | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 1    | 1    | 1    |
| CG3891    | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 1    | 0.03 | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 1    | 1    | 1    |
| CG6854    | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 1    | 0.02 | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 1    | 1    | 1    |
| CG9932    | 1    | 1 | 1    | 1 | 1 | 0.03 | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 1    | 1    | 1    |
| CrebB-17A | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 0    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 1    | 1    | 1    |
| D         | 1    | 1 | 1    | 1 | 1 | 0    | 1    | . 1 | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | . 1 | 1    | 1    | 1    |
| Dref      | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 0.05 | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 1    | 1    | 1    |
| E2f       | 1    | 1 | 1    | 1 | 1 | 0    | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 1    | 1    | 1    |
| HLH106    | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 1    | 0    | 1    |   | 1 | 1    |   | 1    | 1 | 1 | 1    | 1 | 1   | 1    | 1    | 1    |
|           |      | • | -    |   |   |      |      |     |      |      |      | -    | 1 |   |      | 1 |      |   | - |      |   | -   |      |      |      |
| Jra       | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 0.02 | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 1    | 1    | 1    |
| Oli       | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 0.02 | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 1    | 1    | 1    |
| Optix     | 1    | 1 | 1    | 1 | 1 | 0    | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 1    | 1    | 1    |
| adp       | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 1    | 0    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 1    | 1    | 1    |
| al        | 1    | 1 | 1    | 1 | 1 | 0    | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 1    | 1    | 1    |
| bab1      | 1    | 1 | 1    | 1 | 1 | 0.02 | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 1    | 1    | 1    |
| cg        | 1    | 1 | 1    | 1 | 1 | 0.01 | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 1    | 1    | 1    |
| cnc       | 1    | 1 | 1    | 1 | 1 | 1    | 0.03 | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 1    | 1    | 1    |
| OC        | 1    | 1 | 1    | 1 | 1 | 0    | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 1    | 1    | 1    |
| slp2      | 0.02 | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 1    | 1    | 1    |
| tgo       | 1    | 1 | 0.02 | 1 | 1 | 1    | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 1    | 1    | 1    |
| trh       | 1    | 1 | 1    | 1 | 1 | 0.02 | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 1    | 1    | 1    |
| unpg      | 1    | 1 | 1    | 1 | 1 | 0    | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 1    | 1    | 1    |
| CG15011   | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 0    | 1 | 1   | 1    | 0.05 | 1    |
| bun       | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 0.05 | 0.02 | 1    |
| exd       | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 0.02 | 1 | 1   | 1    | 0.01 | 1    |
| mbf1      | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 1    | 0.03 | 0.01 |
| sd        | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 0    | 1 | 1   | 1    | 0    | 1    |
| A3-3      | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 1    | 0.01 | 1    |
| Alh       | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 1    | 0    | 1    |
| BtbVII    | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 0    | 1    | 1    |
| Dsp1      | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 1    | 0    | 1    |
| Eip74EF   | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 1    | 0    | 1    |
| Fer3      | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 1    | 0.04 | 1    |
| Lag1      | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 1    | . 1  | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 0.02 | 1 | . 1 | 1    | 1    | 1    |
| MBD-like  | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 0    | 1    | 1    |
| Su(H)     | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 1    | 1    | 0.02 |
|           | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 1    | 0.04 | 1    |
| ap        | 1    | 1 | -    | 1 | 1 | 1    | 1    | 1   |      |      | 1    | 1    |   | 1 | 1    |   |      | 1 | 1 |      | 1 | 1   | 1    | 0.04 |      |
| bigmax    |      | 1 | 1    |   |   |      |      |     | 1    | 1    | 1    |      | 1 | - | -    | 1 | 1    | - | - | 1    |   |     |      |      | 1    |
| ey        | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 0.01 | 1    | 1    |
| mip120    | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 0.04 | 1    | 1    |
| p53       | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 0.02 | 1    | 1    |
| pros      | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 0.03 | 1    | 1    |
| AM09256   | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 0    | 1 | 1 | 1    | 1 | 1   | 1    | 1    | 1    |
| CG2702    | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 0.01 | 1 | 1 | 1    | 1 | 1   | 1    | 1    | 1    |
| CG9215    | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 0.01 | 1 | 1 | 1    | 1 | 1   | 1    | 1    | 1    |
| CTCF      | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 1    | 1 | 0    | 1 | 1 | 1    | 1 | 1   | 1    | 1    | 1    |
| E2f2      | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 0.01 | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 1    | 1    | 1    |
| kin17     | 1    | 1 | 1    | 1 | 1 | 1    | 1    | 1   | 1    | 1    | 1    | 1    | 1 | 1 | 0.02 | 1 | 1    | 1 | 1 | 1    | 1 | 1   | 1    | 1    | 1    |

### Table S8. Measures of network dynamics and regulation for the 27 behavioral comparisons

To analyze the possibility of differences in transcriptional regulation acting over different timescales, we divided the 27 comparisons into those that influence behavior over long (hereditary differences, which influence behavior over evolutionary time), medium (maturation and other environmentally-induced differences occurring over weeks), or short (e.g., changes in foraging activity occurring over hours or a few days) timescales (1st column). For each comparison, we list the number of differentially expressed target genes in the TRN (DEGs); the number of modules for which there was significant between-state 'shuffling' in the relative expression of target genes; the average number of TFs regulating each differentially expressed target gene (in-degree); and the number of differentially expressed target gene (in-degree); and the number of differentially expressed target gene (in-degree); S9.

|                    | Comparison                                 | DEGs | Shuffled<br>Modules | <i>k<sub>in</sub>of</i><br>Targets | <i>k<sub>out</sub></i> of<br>TFs |
|--------------------|--------------------------------------------|------|---------------------|------------------------------------|----------------------------------|
| <b>y</b> )         | AHB vs. EHB (4-d-old)                      | 804  | 0                   | 3.19                               | 14.02                            |
| ar                 | AHB vs. EHB (14-d-old)                     | 834  | 0                   | 3.19                               | 14.46                            |
| dit                | AHB vs. EHB Soldiers (Individual Genotype) | 72   | 0                   | 3.11                               | 2.43                             |
| ere                | AHB vs. EHB Foragers (Individual Genotype) | 5    | 0                   | 3.60                               | 1.06                             |
| long (hereditary)  | <i>lig.</i> vs. <i>mel.</i> (10-d-old)     | 582  | 5                   | 3.14                               | 10.56                            |
| ng                 | <i>lig.</i> vs. <i>mel.</i> (15-d-old)     | 593  | 12                  | 3.15                               | 10.92                            |
| lo                 | High vs. Low Pollen Hoarding               | 103  | 0                   | 3.22                               | 3.22                             |
|                    | AHB vs. EHB Guards (Colony Genotype)       | 62   | 0                   | 3.16                               | 2.45                             |
| 2                  | AHB vs. EHB Soldiers (Colony Genotype)     | 137  | 6                   | 3.01                               | 3.90                             |
| ek                 | AHB vs. EHB Foragers (Colony Genotype)     | 48   | 1                   | 3.04                               | 1.83                             |
| medium (weeks)     | 10- vs. 15-d-old                           | 130  | 62                  | 3.15                               | 3.47                             |
| n (                | 4- vs. 14-d-old                            | 492  | 87                  | 3.07                               | 8.98                             |
| iui                | Young Nurse vs. Old Forager                | 231  | 42                  | 3.15                               | 5.64                             |
| led                | Nurse vs. Forager (old)                    | 73   | 0                   | 2.89                               | 2.24                             |
| n                  | Nurse vs. Forager (young)                  | 21   | 0                   | 3.19                               | 1.43                             |
|                    | Foraging Experience                        | 45   | 14                  | 3.04                               | 1.90                             |
|                    | Alarm Pheromone                            | 80   | 0                   | 3.15                               | 2.68                             |
| (sv                | Queen Mandibular Pheromone                 | 209  | 0                   | 2.89                               | 4.79                             |
| da                 | Rich vs. Poor Diet                         | 66   | 0                   | 2.83                               | 2.31                             |
| rs/                | Vitellogenin RNAi                          | 690  | 0                   | 3.00                               | 11.65                            |
| short (hours/days) | Vibration Signalers                        | 155  | 0                   | 2.82                               | 3.77                             |
| <b>()</b>          | Scout vs. Recruit                          | 226  | 0                   | 3.01                               | 4.93                             |
| ort                | Morning vs. Afternoon                      | 146  | 0                   | 3.10                               | 3.91                             |
| sh                 | Spatiotemporal Memories                    | 60   | 0                   | 2.95                               | 2.33                             |
|                    | Anticipation vs. Inactive                  | 804  | 0                   | 3.05                               | 13.35                            |

# Table S9. The hormonally-related TF *Ultraspiracle* binds genomic regions near foraging- and maturation-related TFs

16 of the TFs predicted to regulate maturation and/or foraging are themselves direct targets of the hormonally-related TF *ultraspiracle (usp)*. Genome-wide targets of *usp* protein in the bee were characterized using chromatin immunoprecipitation—genomic tiling microarrays (Ament et al., submitted).

|    | Foraging-related TFs                       | Maturation-related TFs                                                    |  |  |  |  |  |  |
|----|--------------------------------------------|---------------------------------------------------------------------------|--|--|--|--|--|--|
| 1  | Eip74EF / Ecdysone-induced<br>protein 74EF | D / Dichaete                                                              |  |  |  |  |  |  |
| 2  | Ets65A / Ets at 65A                        | Ets65A / Ets at 65A                                                       |  |  |  |  |  |  |
| 3  | SoxN / SoxNeuro                            | SoxN / SoxNeuro                                                           |  |  |  |  |  |  |
| 4  | ey / eyeless                               | Stat92E / Signal-transducer and activator of transcription protein at 92E |  |  |  |  |  |  |
| 5  | fru / fruitless                            | bs / blistered                                                            |  |  |  |  |  |  |
| 6  | lilli / lilliputian                        | fru / fruitless                                                           |  |  |  |  |  |  |
| 7  | pan / pangolin                             | lilli / lilliputian                                                       |  |  |  |  |  |  |
| 8  | pnt / pointed                              | oc / ocelliless                                                           |  |  |  |  |  |  |
| 9  | vnd / ventral nervous system defective     | pnt / pointed                                                             |  |  |  |  |  |  |
| 10 |                                            | sima / similar                                                            |  |  |  |  |  |  |
| 11 |                                            | slp2 / sloppy paired 2                                                    |  |  |  |  |  |  |
| 12 |                                            | trh / trachealess                                                         |  |  |  |  |  |  |
| 13 |                                            | vnd / ventral nervous system defective                                    |  |  |  |  |  |  |

# Table S10. Mushroom body or optic-lobe specific gene expression does not predict TRN membership or accurate modeling of mushroom body gene expression.

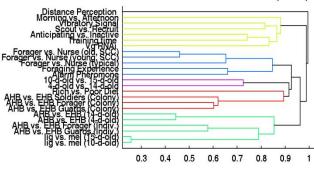
Gene co-expression modules in the mammalian brain have been linked to expression in specific sub-regions and cell types the brain. To understand the relationship between whole-brain TRN performance and expression in sub-regions of the honey bee brain, we looked for enrichment of the TRN with genes that were strongly differentially expressed (FDR < 0.05; > 5-fold difference in expression) between two of the largest sub-regions of the brain: the mushroom bodies (MB) and optic lobes (OL). We looked for overlap between these region-specific gene lists among the 2176 genes in the TRN to determine whether region-specific expression improved or reduced our ability to model genes accurately. We also looked for overlap between region-specific gene expression and a list of 550 genes for which the whole brain TRN model could accurately predict (r > 0.5) MB gene expression (see Fig. S10). For each pair of gene lists, we report the hypergeometric P-value for enrichment. We found no relationship between region-specific gene expression and our ability to accurately model gene expression. Among the TRN modules, there were a few that were enriched for genes differentially expressed between the two regions, but the TRN as a whole was not dominated by brain region-specific patterns of expression<sup>29</sup>. It was neither enriched nor depleted for genes known to show MB- or OL-specific patterns of gene expression (Table S10, Fig. S10). Moreover, the model performed more poorly when predicting MB-specific gene expression compared to whole brain gene expression (Fig. S11).

| Gene lists compared (# of genes)                | P-value |
|-------------------------------------------------|---------|
| MB> OL (70) vs. all TRN genes (2176)            | 0.13    |
| OL > MB (30) vs. all TRN genes (2176)           | 0.32    |
| MB > OL (70) vs. accurately modeled in MB (550) | 0.41    |
| OL > MB (30) vs. accurately modeled in MB (550) | 0.26    |

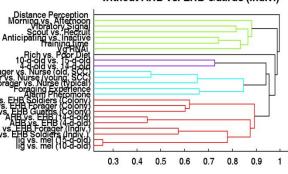
# Table S12. ArrayExpress Accession IDs and microarray count for each of the experiments

| Experiment Name                                         | ArrayExpress<br>Accession | Array<br>Count |
|---------------------------------------------------------|---------------------------|----------------|
| AHB vs EHB foragers                                     | E-TABM-605                | 60             |
| AHB vs EHB guards                                       | E-TABM-606                | 60             |
| AHB vs EHB soldiers                                     | E-TABM-607                | 58             |
| alarm pheromone                                         | E-TABM-604                | 64             |
| Behavioral maturation (AHB-EHB)                         | E-TABM-953                | 112            |
| Behavioral maturation<br>( <i>ligustica/mellifera</i> ) | E-TABM-952                | 224            |
| distance perception                                     | E-TABM-910                | 40             |
| Drone-Worker                                            | Pending                   | 100            |
| foraging experience                                     | E-MTAB-482                | 152            |
| high v. low pollen hoarding                             | E-MEXP-3079               | 19             |
| nurse-forager                                           | E-TABM-658                | 90             |
| queen pheromone                                         | Pending                   | 32             |
| Rich vs. poor diet brains                               | E-MTAB-507                | 48             |
| scout behavior                                          | E-MTAB-491                | 58             |
| time training                                           | E-MTAB-489                | 76             |
| Vibration signal                                        | E-TABM-608                | 28             |
| vitellogenin RNAi brains                                | E-MTAB-490                | 84             |
| Total                                                   |                           | 1305           |

The experiments that are in the process of submission are marked as 'pending'.


## **Supplementary Figures**

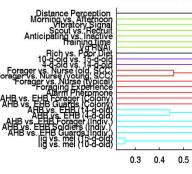

# Fig. S1. Global analysis of bee brain gene expression and social behavior – Controls and Statistical Significance

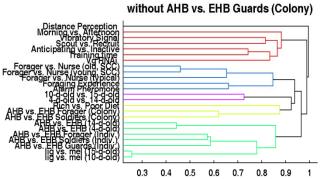

We performed several statistics to verify the significance of the hierarchical clustering ( Methods, Table S3 and Fig S1) which showed that the obtained behavior-specific clusters were robust. As mentioned in the S. Methods section, we used the used the cophenetic correlation metric to measure how faithfully the tree represents the dissimilarities among observations and found it to be at a very high value of 0.89, suggesting an accurate fit to the data.

We performed clustering with each of the 25 phenotype comparisons removed to check the stability of the clusters. We found that in all the clustering runs, there were clusters specific for aggression and foraging phenotypes, and the maturation phenotypes spread across other remaining clusters. The aggression subcluster for environmental influences sometimes grouped into a separate cluster of their own; nevertheless, all its members were retained in the same cluster. Additional validation and discussion in Table S3 and Methods section on '*Global analysis of bee brain gene expression and social behavior*'.







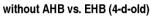




Fo

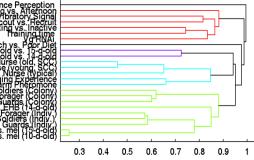
AAH

without AHB vs. EHB Soldiers (Colony)

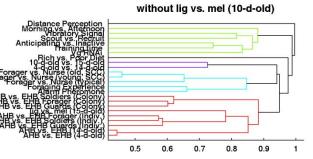




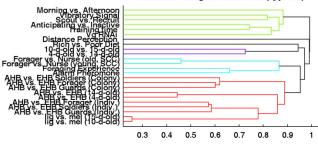




0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

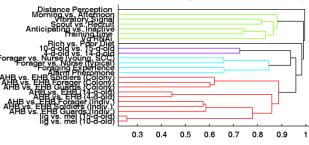



細

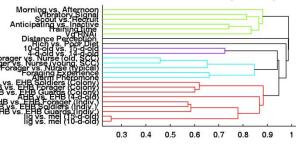



0.6 0.7 0.8 0.9 1




57




### without Forager vs. Nurse (typical)



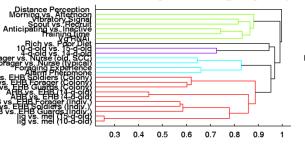
#### without Forager vs. Nurse (old, SCC)

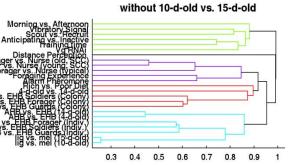


### without AHB vs. EHB (14-d-old)

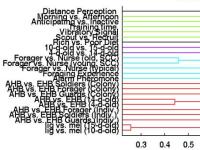


For

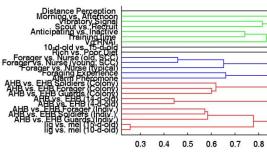

A


F9F89 SVIIIVS AVIIIVS AVIIIVS

### without lig vs. mel (15-d-old)




without Forager vs. Nurse (young, SCC)

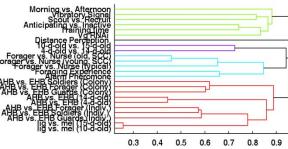





without Vg RNAi



### without 4-d-old vs. 14-d-old

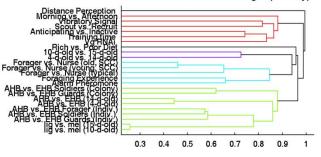



without Rich vs. Poor Diet

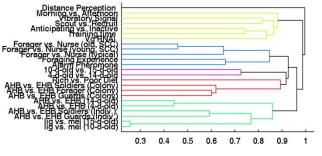
0.9

1

1




without AHB vs. EHB Forager (Colony)


0.6

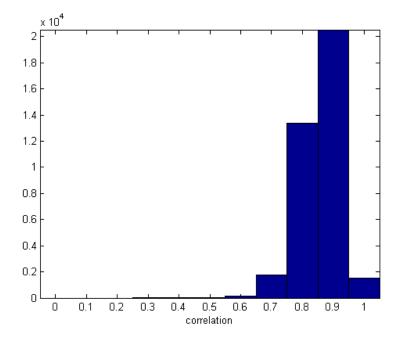
0.7 0.8 0.9

1



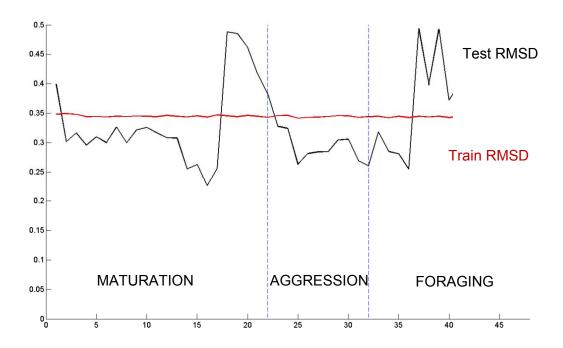






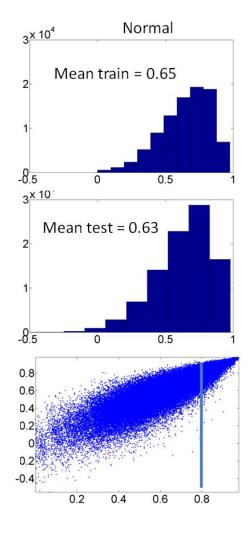


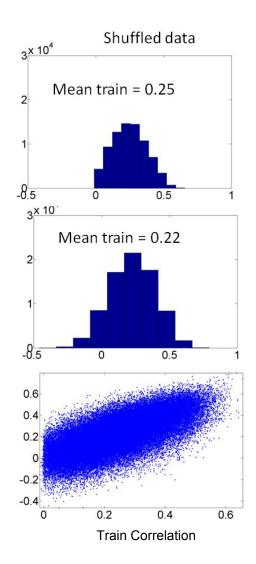




## Fig. S2. Performance of the bee brain TRN in 10-fold cross validation

Histogram shows the distribution of Pearson correlations in test set for the expression values predicted by the TRN compared to actual gene expression, for the 2176 genes that were accurately predicted in the training set (training set, r > 0.8).

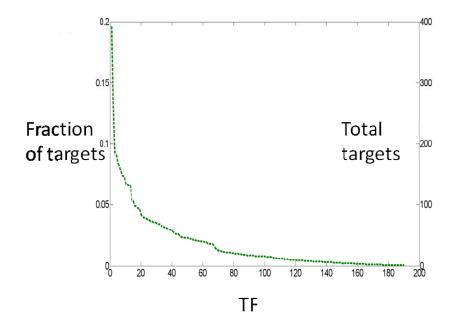



### Fig. S3. Performance of the bee brain TRN in leave-one-state-out cross validation


Our algorithm (ARACNE+LARS) was trained using the samples from all but one state, and the samples from the remaining state were then used as a test set. Mean Root Mean Square Deviation (RMSD) in training sets (red line) and in test sets (black line) are shown, using each of the 48 behavioral states as the test condition. We included in each test condition those genes that were predicted with high accuracy in that training set (training RMSD < 0.5).

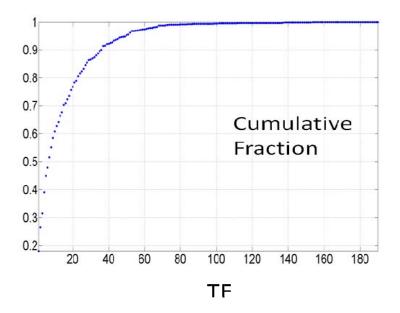


# Fig S4. TF expression permutation across phenotypes for estimating background correlation


We performed permutation tests to estimate background correlation levels in the data. Left column shows performance of the TRN using 'normal' data; right column shows performance in 'shuffled' data. The first and second rows of histograms show the distribution of correlations in training and in test sets, respectively. In the shuffled data the correlation distribution appears to be randomly distributed. The plots at the bottom of the figure show the relationship between training set correlations and test set correlations for each gene. Training set and test set accuracy were more closely related in the normal data; correlation between training and test set accuracy was especially high (r = 0.92) for the accurately predicted genes (right of the sold line) that were retained in the final TRN model. See Methods section on '*Estimation of background accuracy and controls*' for additional details on permutation tests.

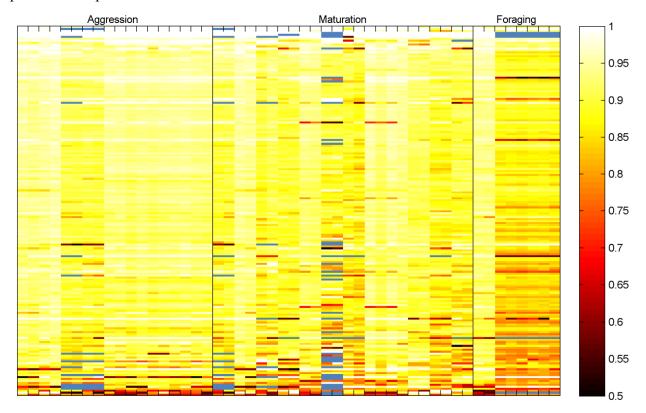





## Fig. S5. Distribution of targets regulated by individual TFs

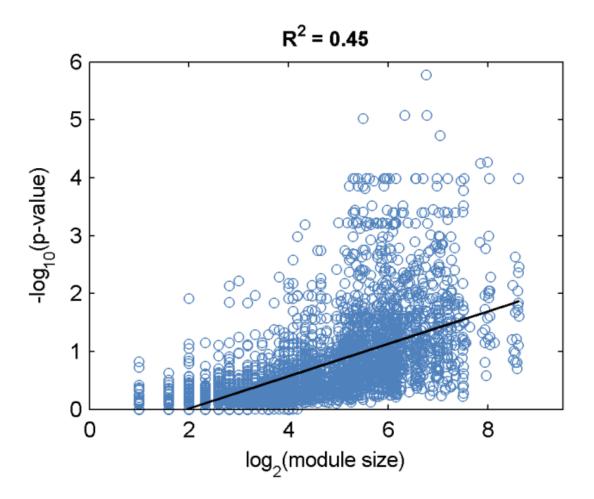
Most TFs were predicted to regulate only a few genes; a few network hubs (shown at the left side of the graph) regulate many targets.




## Fig. S6. A small number of network hubs regulate most genes in the network

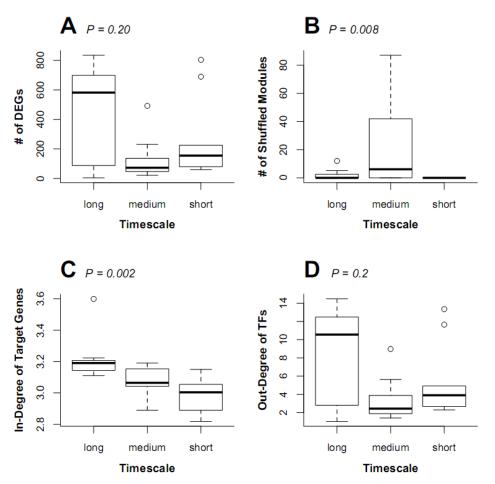
The fraction of targets that are regulated with at least one interaction is shown as a function of the number of TFs included, added from most to least targets. The top seven TFs with the most targets together regulate 50% of the target genes; the top 40 together regulate 90% of all target genes.




# Fig. S7. Within-state consistency in the relative expression of target genes within each module

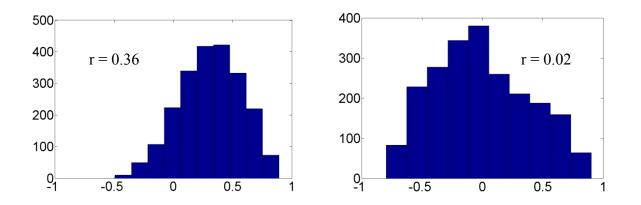
We used DIRAC to determine the extent to which the relative levels of expression for the target genes in each module were preserved across all the individuals (10-20 bees) in each of the 48 behavioral states. Relative expression of targets within most modules was highly conserved across most or all states. The rows correspond to each TF and the columns are the various pairwise comparisons.




# Fig. S8. Between-state reordering of relative gene expression increases with module size

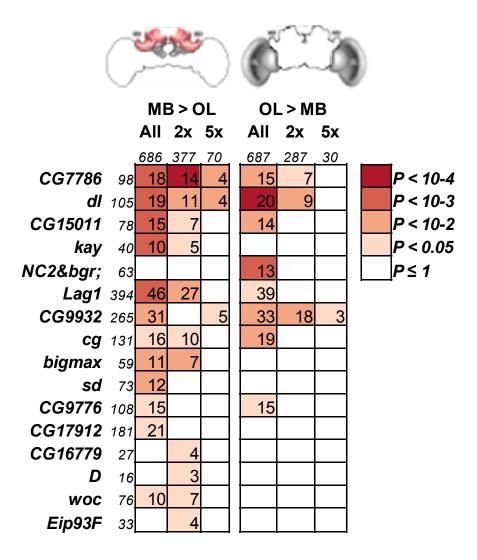
For each TF-target module, we used DIRAC to identify between-state perturbations in the relative expression of target genes within a module, for each of the 27 behaviorally-related comparisons. DIRAC determines a probability for these 'shuffling' events based on the accuracy with which these changes in relative gene expression can be used to classify the two states in the comparison. There was a highly significant association between the number of target genes in a module and the degree of shuffling. There was no such association for random gene sets with the same size distribution ( $r^2 = 0.02$ ), indicating that this is a specific feature to TF-target modules, rather than an artifact of the method.




# Fig. S9. Factors that influence behavior over long vs. short timescales influence network states differently

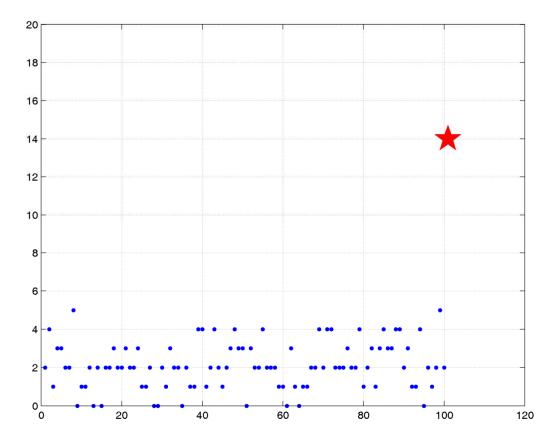
We subdivided the 27 comparisons into three categories based on the timescales over which they influence behavior (Table S8): *long-term differences* (hereditary differences between strains and sub-species that accumulate over evolutionary time); *medium-term differences* (changes occurring over a few weeks, primarily due to environmentally-induced changes); and *short-term differences* (factors that influence behavior for only hours or a few days; e.g., pheromones and the imprints of spatiotemporal memories on foraging). We compared the effects of these timescales on four aspects of network dynamics and regulation: the number of differentially expressed genes in the TRN (DEGs; A), the number of between-state perturbations in relative gene expression within modules ('shuffling', B), the number of TFs influencing each target gene (in-degree; C); and the number of target genes regulated by each TF (out-degree; D). Statistical significance for differences between timescales was determined using Kruskal-Wallis rank-sum tests.




# Fig. S10. Performance of the whole brain TRN in modeling mushroom body gene expression

Our model of the bee brain TRN accurately modeled the expression of ca. 25% of the genes expressed in the bee's brain, despite the fact that the brain is subdivided into ca. 20 sub-regions. To begin to characterize how whole brain gene expression relates to patterns of regulation within specific sub-regions, we used our whole-brain TRN to predict expression in the mushroom bodies (MB), the largest sub-region of the bee's brain, comprising ca. 40% by volume. We used the Foraging Experience dataset (Table S1), which includes expression profiles from the MB of 120 bees (primarily foragers). The whole brain TRN predicted MB expression for the 2176 genes in the model with a mean (Pearson) correlation accuracy, r = 0.36, including 550 genes with a correlation of 0.5 or higher (histogram in left panel). This performance was much better than if we used the average expression of all TFs (r = -0.01). However, this performance was much worse than the TRN's performance on whole brain data. This suggests, as expected, that the regulation of some genes can deviate significantly within brain sub-regions from the 'average' expression predicted by the whole brain TRN.




### Fig. S11. Modules enriched for mushroom body- or optic lobe-specific expression

We looked for enrichment of the modules in the TRN with genes that were differentially expressed (FDR < 0.05) between two of the largest sub-regions of the brain: the mushroom bodies (MB, in pink) and optic lobes (OL, in grey). Several modules were enriched for genes with regional differences in expression, including genes with large fold differences (> 2- or > 5- fold difference between MB and OL). A few modules appear to be specifically associated with gene expression in one sub-region (e.g., the *kayak* module and MB-specific genes); this is consistent with anatomically defined regulation within the TRN. Surprisingly, several modules were separately enriched for genes with both MB- and OL-specific expression; these may represent region-specific responses to a broadly expressed TF. For instance, we speculate that *dl* (*NF-kB*) could respond to stress-related signals that simultaneously influence multiple brain regions but influence different targets depending on their baseline expression levels in each tissue. We report the number of region-specific genes and hypergeometric P-values for modules enriched (FDR < 0.1) in at least one test.



### Fig. S12. Comparison with Drosophila Transcriptional Regulatory Network

We compiled physical binding data for *Drosophila* from ModENCODE (21), REDfly (22), DROID (23) databases to compare TF targets with those predicted by our bee brain TRN. We found that 14 of the TF modules overlap with the corresponding TF module in *Drosophila*. To estimate the background overlap, we generated 100 random TRNs with the same module sizes as our TRN and overlapped with the *Drosophila* network. The average number of modules in the background set with significant overlap (P < 0.05) was 2.2 (shown as <u>blue dots</u> in the figure below). Hence our TRN's overlap (red star) is much more significant than could be observed by chance ( $P < 10^{-15}$ ).

