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SI Results
Testing for Action Value Coding in Motor Cortex. Activity in both
motor cortices increased as a function of the reward obtained by
the selected action [i.e., the left motor cortex (lMC) positively
correlated with the right value and the right motor cortex (rMC)
positively correlated with the left value; P < 0.05, corrected]
(Table S11).
Note, however, that lMC and rMC did not meet the criteria for

the encoding of action values (1, 2), which is defined as a signal
that encodes the value of an action regardless of whether it is
chosen. Post hoc tests showed that, when the opposite response
was chosen, lMC and rMC were not significantly correlated with
right [t(18) = 1.21, not significant (n.s.)] or left values (t(18) =
−0.09, n.s.), respectively.

Differences Between Neural Drift Diffusion Model Predictions of Total
Activity in Comparator Regions and Difficulty Measures. Although
these two measures are highly correlated, there are two important
differences between them, which allows us to test which of the two
parametric regressors fits better with the patterns of activity found
in areas like dorsal medial prefrontal cortex (dmPFC) and
intraparietal sulcus (IPS).
First, our neural drift diffusion model (nDDM) model predicts

greater activity in comparator regions during error than correct
trials (Fig. 2D), whereas the measure of difficulty does not dif-
ferentiate between the two trial types. Here, we define an error
trial as one in which the liquid of lower value is chosen. This
greater activity in error than correct trials arises as a function of
the noise and mutual inhibition parameters of the nDDMmodel.
Second, the difficulty measure is a simple linear function of the

difference in values, whereas the activity predicted by the nDDM
is monotonically related to the difference in values but not
perfectly linear (Fig. 2D). This nonlinearity is present even when
considering correct and error trials separately.
Motivated by these differences, we carried out a post hoc

Bayesian model selection (3) in dmPFC, dorsolateral prefrontal
cortex (dlPFC), and IPS to test whether the total activity measure
from the nDDM or the difficulty measure best explained activity
in these regions. We used the exceedance probability (EP; the
probability that a given model is more likely than any other
model in the comparison set given the group data) as our metric
for model comparison. The EP of the nDDM model was greater
than the difficulty model in all four regions (dmPFC EP = 0.99,
dlPFC EP = 0.58, lIPS EP = 0.98, and rIPS EP = 0.94), in-
dicating that the nDDM provided a better fit to activity in these
areas than the difficulty measure, especially in dmPFC and IPS.
We ran an additional model comparison to determine whether

the nDDM predictions were a better fit to blood oxygen level-
dependent (BOLD) signals in dmPFC and IPS than difficulty,
even when the distinction between correct and error trials was
removed from the parametric regressor. To create this regressor,
we assigned the parametric value of all trials as if they were
correct. The all correct nDDMparametric regressor fit the BOLD
signal better than difficulty (EP > 90%) in all regions of interest.
However, the original nDDM regressor is also more likely than
the all correct nDDM regressor (EP > 90%) in all regions of
interest, indicating that both the shape of the curve and sepa-
ration between correct and error trials are important factors in
the fit to the BOLD signal.
There is also a previous body of literature suggesting that activity

in the ventral parts of dmPFC, particularly in the anterior cingulate
cortex (ACC), plays a role in resolving response conflict and error

monitoring in a variety of tasks (4, 5). Although our results are not
fundamentally incompatible with a role for ACC in error moni-
toring or response conflict in other paradigms, neither role is likely
to explain the dmPFC activity in the current study. There are
several reasons for this finding. First, the area of dmPFC identified
here is more dorsal than the areas of ACC that have generally
been associated with these alternative signals in previous studies.
Second, response conflict in our paradigm would be the same as
the choice difficulty measure discussed above. Third, error mon-
itoring is also an unlikely function for dmPFC in our experiment,
because we see the dmPFC become active well before the re-
sponse (potentially an error) has been made.

SI Materials and Methods
Additional Stimuli and Task Details. Subjects abstained from all
liquids for 3 h before the experiment. Before entering the scanner,
subjects were asked to consume three saltine crackers to increase
their level of thirst and were also given one saltine cracker to eat
between the four functional runs to maintain thirst. Thirst ratings
were obtained before each functional run to confirm that subjects
remained thirsty throughout the task. A different colored shape
represented each flavor (apple, grape, fruit punch, and water),
with the number of shapes on the screen indicating the amount of
liquid (1 = 0.2 mL, 2 = 0.45 mL, or 3 = 0.7 mL). If the subject
failed to respond within 1.5 s after the response prompt appeared,
an option was selected at random. Stimulus presentation, res-
ponse recording, and liquid delivery were controlled using Cogent
2000 software (Wellcome Department of Imaging Neuroscience).

Liquid Delivery. Electronic syringe pumps located in the scanning
control room delivered each liquid to the subject through ∼10 m
polyethylene tubing and a perfusion manifold. The perfusion
manifold allowed four incoming tubes to be connected to one
output tube with a minimum of dead space to avoid mixing the
liquids. The subjects held the output tube between their lips like
a straw while lying in the supine position inside the MRI scanner.
Visual stimuli were presented using an overhead mirror and
projection system.

Value of Liquid Rewards. We determined the subjective value of
each liquid reward option using the individual’s pattern of
choices. The value of each flavor–amount combination was cal-
culated using the equation V= F × A, where V is the value of the
option, F is the frequency with which that flavor was selected
regardless of the amount offered, and A is the amount of liquid
offered. All of the other value signals used in the analysis were
derived from this basic calculation. In particular, the stimuli
value (SV) for each trial was equal to the sum of the values for
the available options (left value + right value). Action value left
(right) was equal to the left (right) value. Chosen value (CV) was
equal to the value of the chosen option, whereas nonchosen
value (NCV) was equal to the value of the nonchosen option.

nDDM Estimation Procedure. The nDDM model assumes that the
comparator system contains two identical pools of neurons: one
encoding the relative value signal for left (i.e., value of left minus
value of right) and one encoding the relative value signal for right
(i.e., valueof rightminus valueof left).Themodel alsoassumes that
activity in eachof thepools commences at a zero level and that each
of them changes after a GaussianMarkovian process similar to the
one for theDDM,except that they are not allowed to go below zero
at anypoint during thedecisionprocess. Finally, themodel assumes
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that a choice is made in favor of its respective option when one of
the two pools reaches a prespecified threshold level of activity and
that the two pools dynamically inhibit each other.
We calibrated the model to the psychometric group choice data

by simulating the model 5,000 times with different parameter sets
and selecting the parameters that maximized the fit between the
simulated and actual choice curves. Maximal fit was evaluated
using a sum of square deviations criterion, including a weighting
term for each level of jVL − VRj that was inversely proportional to
its frequency in the dataset. This calculation was done by
searching among combinations of the following free parameters:
mean and SD of the integration slope (d), SD of the Gaussian
noise (η), and inhibition strength (θ). The psychometric curve for
the best-fitting set of parameters (d = 0.009 ± 0.005, η = 0 ±
0.035, θ = 0.2) is shown in Fig. 2C. We used the group choice
data, because it leads to less noisy choice curves and therefore,
generated more reliable estimates of the parameters of the
nDDM.
We then used this set of parameters to estimate the dis-

tributions of total activity in both pools of comparator neurons by
simulating the model 5,000 times for each combination of value
differences. Total activity is defined to be as the sum of in-
stantaneous levels of activity in both pools of neurons from
stimulus onset to choice. Fig. 2D depicts summary statistics for
the resulting distributions for both correct and error trials. The
value of total activity in each trial predicted by the model is
referred to as Mout.
We note one caveat to applying the nDDM to this dataset.

Ideally, the experiment would have had free reaction times, which
would have helped us to estimate the nDDM parameters more
precisely, because the model makes predictions for both the
accuracy and reaction time of choices. Because reaction time data
are not available in our design, we fitted the nDDMusing only the
choice data. The lack of reaction time data likely introduces noise
in our parameter estimates for the model and thus, reduces our
ability to identify comparator regions using fMRI, but it does not
introduce any systematic biases in our analyses.

Functional MRI Data Acquisition. The functional imaging was con-
ducted using a Siemens 3.0 Tesla Trio MRI scanner. We acquired
gradient echo T2*-weighted echoplanar images (EPIs) with
BOLD contrast. To optimize functional sensitivity in the orbito-
frontal cortex (OFC), we used a tilted acquisition in an oblique
orientation of 30° to the anterior commissure–posterior commis-
sure line (6). In addition, we used an eight-channel phased array
coil that yields a 40% signal increase in signal in the OFC over
a standard head coil. Each volume comprised 48 axial slices col-
lected in an interleaved-ascending manner. Data were collected in
four sessions (209 volumes, ∼11 min). The imaging parameters
were echo time, 30 ms; field of view, 192 mm; in-plane resolution
and slice thickness, 3 mm; repetition time, 3 s. Whole-brain, high-
resolution T1-weighted structural scans (1 × 1 × 1 mm) were ac-
quired from the 20 subjects and coregistered with their mean EPI
images; they were averaged together to permit anatomical locali-
zation of the functional activations at the group level.

Functional MRI Data Preprocessing. Image analysis was performed
using SPM8 (Wellcome Department of Imaging Neuroscience).
Images were corrected for slice acquisition time within each
volume, motion-corrected, spatially normalized to the standard
Montreal Neurological Institute EPI template, and spatially
smoothed using a Gaussian kernel with a full width at one-half
maximum of 8 mm. Intensity normalization and high-pass tem-
poral filtering (using a filter width of 128 s) were also applied to
the data.

General Linear Models. We estimated the following general linear
model of BOLD responses to identify regions reflecting stimulus

values, action values, and motor responses. This process was done
in three steps.
First, for each individual, we estimated a general linear model

(GLM) with first-order autoregression and the following nine
indicator functions: R1, initial stimulus screen; R2, choice re-
sponse period (CR); R3, left button press; R4, right button press;
R5, juice delivery; R6–9, presence of each preference ranked
juice (based on each subject’s choices) on the stimulus screen.
The stimulus screen, juice delivery, and preference ranked in-
dicators were modeled as events with 1-s durations. The CR
period was modeled as an event with duration equal to the
elapsed time between the onset of the choice screen and the
button press on that trial (5–9.5 s). Left and right button presses
were modeled with durations equal to the reaction time as
measured by the time elapsed between the appearance of the
response screen and the button press. In addition to the nine
indicator functions, the model included four parametric re-
gressors: (i) choice screen × SV, (ii) CR × left V, (iii) CR × right
V, and (iv) juice delivery × CV. The model also included session
constants and motion parameters as regressors of no interest.
Second, we calculated first-level, single-subject contrasts for

each of the four parametric regressors listed above.
Third, we calculated second-level group contrasts using one-

sample t tests on the single-subject contrasts. We carried out
whole-brain corrections for multiple comparisons at the cluster
level. Details of the correction for each contrast can be found in
Tables S1–S11. Small-volume correction for the ventromedial
prefrontal cortex (vmPFC) was conducted within a 10-mm
sphere centered on the vmPFC coordinates (x, y, z = −3, 42, −6)
from the work by Chib et al. (7).
We estimated a second GLM to identify regions reflecting the

output of our nDDM model. This model included the same in-
dicator functions as the first GLM and the following parametric
regressors: (i) choice screen × SV, (ii) CR × Mout, and (iii) juice
delivery × CV. All omitted details are as detailed.

Post Hoc Analyses.To determine if stimulus location (left vs. right),
choice (chosen vs. nonchosen), or identity (liquid 1–4) affected its
association with vmPFC activity, we computed three additional
GLMs. All of these GLMs included the same three indicator
functions of (R1) choice screen, (R2) response screen, and (R3)
juice delivery. The location model included parametric modu-
lators for left V and right V for each indicator function. The
choice model included parametric modulators for CV and NCV
for each indicator function. There was little correlation between
left value and right value (mean r = −0.187) or CV and NCV
(mean r = 0.183). The identity model included parametric
modulators for the value of each liquid for each indicator
function. Liquid values were set to zero on trials where they were
not offered.
First-level, single-subject contrasts were created for the para-

metric modulators left V, right V, chosen V, nonchosen V, and
the value of each liquid at the time of choice screen onset. These
single-subject contrast values were then averaged across all
voxels shown in Fig. 3A and compared using paired t tests.
To test whether activity in dmPFC, dlPFC, and Par was more

associated withMout or difficulty (jleft V − right Vj), we estimated
an additional GLM. This GLM was identical to the second GLM
except that the parametric modulator for Mout from the previous
model was replaced with jleft V − right Vj.
Post Hoc Comparison of Fits for nDDM and Difficulty GLMs. We
created functional masks in dmPFC, dlPFC, and left and right Par
from all voxels in those regions correlating withMout and difficulty
(conjunction threshold P < 0.005, uncorrected for each contrast).
Next, we reestimated both GLMs using the Bayesian first-level
estimation techniques incorporated into SPM8 and previously
described in detail in the work by Penny et al. (8). Last, we used
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a random effects Bayesian model selection procedure to de-
termine exceedance probabilities that indicated whether theMout
or difficulty models provided a better fit to the data in each of
the three regions. A brief description of this method is given in
Materials and Methods on dynamic causal modeling, and addi-
tional details can be found in two recent papers (3, 9).

Dynamic Causal Modeling Description. For all 20 models tested, the
driving inputs to all regions were assigned based on the results
from the univariate GLMs and were not mean-centered (i.e., the
fixed coupling parameters represent connectivity in the absence of
task stimulation). Those inputs included five inputs: (i) an input
of constant magnitude into vmPFC and dlPFC during stimulus
presentation, (ii) an input to vmPFC during stimulus pre-
sentation proportional to the sum of the stimulus values, (iii) an
input into dmPFC, dlPFC, and bilateral IPS of constant magni-
tude during the period from stimulus onset to button press for
left choices, (iv) an input into dmPFC, dlPFC, and bilateral IPS
of constant unit magnitude during the period from stimulus
onset to button press for right choices, and (v) an input of
constant value into lMC and rMC at the time of response. Pa-
rameter estimates for the inputs to each region are shown in
Table S10. In addition, all of the models allowed for the fol-
lowing event-related changes in coupling strength: (i) the cou-
pling from vmPFC to dmPFC, dlPFC, and parietal cortex was
allowed to be influenced by the onset of the stimulus screen
(unmodulated), (ii and iii) left and right CR periods were al-
lowed to modulate coupling in all existing connections, and (iv)
button presses were allowed to modulate self-connections in
lMC and rMC. To carry out these analyses, we estimated an
additional GLM that was identical to the first GLM described in
Materials and Methods except that the CR period was separated
into right and left choice trials, the choice screen was modeled
with an indicator function of 2-s duration, and the indicators for
each preference-ranked juice were omitted.

Bayesian Model Selection for Dynamic Causal Modeling. We identi-
fied the best model using the Bayesian model selection method
developed by Stephan et al. (3). Briefly, this technique treats the
models as random variables and computes a distribution of the
probabilities for all models under consideration. The probabili-
ties can be used to define a multinomial distribution over model
space from which the likelihood that a specific model generated
the data of a randomly selected subject can be estimated. This
procedure permits the computation of the exceedance proba-
bility for each model in the comparison set, which measures the
probability that each model is the most likely one to be correct.
Note that the exceedance probabilities add to one over the
comparison set and thus, generally decrease as the number of
models considered increases. We posited 20 different models of
connectivity involving the seven areas identified above (vmPFC,

dmPFC, dlPFC, lMC, rMC, lIPS, and rIPS) and used a Bayesian
model selection process to identify the most probable model in
the set (Fig. S3). The set of alternative models is described in
detail in Tables S5–S10. We specified a large set of models,
because given existing data, we did not have strong priors about
the exact pattern of connectivity in the network. The set of
models considered included the model depicted in Fig. 4 and
most variations where vmPFC, dlPFC, and IPS are disconnected
from sets of one or two other regions, including motor cortex.

Bayesian Parameter Averaging. Here, we present the equations
underlying the Bayesian parameter averaging method that we
used to make inferences about the modulatory dynamic causal
modeling parameters at the group level. As stated in the work by
Kasess et al. (10) and in other works (11, 12), this procedure
treats the posterior distribution for one subject as the prior for
the next subject. The process continues up to the nth subject,
resulting in the following expression (S1):

pðθjy1; . . . ; yNÞ∝ pðθÞ∏
N

i¼1
pð yijθÞ

∝ pðθjy1Þ∏
N

i¼2
pðyijθÞ

∝ pðθjy1; . . . ; yN − 1Þ ∏
N

i¼N
pð yijθÞ

[S1]

Under Gaussian assumptions about the densities, which is the
case in dynamic causal modeling, the procedure can be simplified
using a reduced form, where subject-specific conditional param-
eter densities are weighted by their precision and summed across
subjects (Eq. S2):

μ ¼ Λ− 1
XN

i¼1

Λiμi [S2]

and (Eq. S3)

Λ ¼
XN

i¼1

Λi [S3]

where μi is the posterior mean of the ith subject and ΛI = Σi
−1 is

the inverse posterior covariance or precision matrix. The matrix
Λ represents not only the precisions of the model parameters (on
the diagonal) but also the interdependence of the parameters
(off-diagonal elements). The incorporation of the within subjects
estimation precision is an advantage of Bayesian parameter av-
eraging over frequentist approaches (e.g., one-sample t test) that
do not include any measure of within subject variance.
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Fig. S1. Motor regions associated with left and right action selection. (A) Activity in the left motor cortex was greater when selecting the right juice reward
with the right thumb than when selecting the left juice reward with the left thumb (P < 0.05, whole-brain corrected). (B) Activity in the right motor cortex was
greater when selecting the left juice reward with the left thumb than when selecting the right juice reward with the right thumb (P < 0.05, whole-brain
corrected).

Fig. S2. Area of left dlPFC in which activity was also correlated with the predicted levels of activity generated by the nDDM at P < 0.05, whole-brain corrected.

Fig. S3. Exceedance probabilities for the 20 alternative connectivity models. This measure represents the probability that each model is the most likely one to
be correct among the set of models tested. The numbers on the x axis correspond to the numbering of the models in Table S4. The most probable model
(dynamic causal model 1) is shown in Fig. 4 and Tables S5–S10.
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Table S1. Regions correlating with stimulus values

Region BA Side Cluster size x y z Z score

Occipital cortex 19/18 B 3,272 −18 −94 13 5.33*
Hippocampus Left 37 −18 −25 −8 3.94
Hippocampus/amygdala Right 47 12 −7 −11 3.72
Medial orbitofrontal/anterior cingulate cortex 10 Left 48 −6 44 −5 3.55†

Superior parietal lobule 7 Right 34 21 −70 46 3.37

Height threshold t = 2.88; extent threshold = 20 voxels (3 × 3 × 3 mm). BA, Brodmann area.
*The activation survives whole-brain correction for multiple comparisons at the cluster level (height threshold t = 2.88, extent = 134
voxels).
†Survives small-volume correction within a 10-mm sphere centered on the vmPFC coordinates (x, y, z = −3, 42, −6) from the work of
Chib et al. (1).

Table S2. Regions reflecting motor responses

Region BA Side Cluster size x y z Z score

Regions showing greater responses for left vs. right responses
Cerebellum Left 968 −12 −52 −23 5.4*
Precentral gyrus 6/4/3 Right 1,188 42 −19 67 5.22*
Rolandic operculum/insula 13 Right 100 45 −19 19 3.99
Middle temporal gyrus 21 Left 44 −66 −43 −11 3.36
Putamen Right 61 27 −10 4 3.3

Regions showing greater responses for right vs. left responses
Precentral gyrus 4/3/6 Left 749 −45 −34 64 4.33*
Cuneus 18 Right 37 18 −97 7 3.75
Fusiforn gyrus 19 Right 29 21 −64 −14 3.60
Cerebellum Right 47 21 −49 −23 3.35

Height threshold t = 2.88; extent threshold = 20 voxels (3 × 3 × 3 mm). BA, Brodmann area.
*The activation survives whole-brain correction for multiple comparisons at the cluster level (height threshold t = 2.88, extent = 137
voxels).

Table S3. Regions reflecting the pattern of activity predicted by the DDM implementation

Region BA Side Cluster size x y z Z score

Parietal cortex (IPS) 40/7 Left 483 −30 −70 55 4.27*
Insula 13/47 Left 53 −30 17 4 4.21
Middle/inferior frontal gyrus 46/10 Left 364 −51 35 19 4.17*
Parietal cortex (IPS) 40/7 Right 379 30 −49 40 3.92*
Medial frontal/cingulate gyrus 6/32 Right 193 0 14 58 3.86*
Inferior temporal lobe 37/20 Left 64 −54 −58 −17 3.82
Middle/inferior frontal gyrus 10/46 Right 125 42 41 10 3.77
Anterior cingulate cortex 24 Right 29 0 2 25 3.59
Precentral gyrus 6 Left 37 −45 −4 43 3.57
Lingual gyrus 18 Left 25 −12 −79 −8 3.55
Precentral gyrus 6 Left 32 −60 −10 40 3.47
Cerebellum Left 95 −33 −67 −38 3.46
Inferior temporal lobe 17/18/19 Right 82 33 −70 −8 3.25
Precuneus 7 Right 23 12 −70 49 3.08
Thalamus Left 27 −15 −13 13 3.07
Precuneus 7 Left 44 −6 −67 55 2.94
Posterior cingulate cortex 23 Right 20 6 −31 22 2.93

Height threshold t = 2.88; extent threshold = 20 voxels (3 × 3 × 3 mm). BA, Brodmann area.
*The activation survives whole-brain correction for multiple comparisons at the cluster level (height threshold
t = 2.88, extent = 126 voxels).

1. Chib VS, Rangel A, Shimojo S, O’Doherty JP (2009) Evidence for a common representation of decision values for dissimilar goods in human ventromedial prefrontal cortex. J Neurosci 29:
12315e12320.
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Table S4. Alternative dynamic causal models tested

Region vmPFC ⇒ dmPFC ⇒ lIPS ⇒ rIPS ⇒ dlPFC ⇒ lMC ⇒ rMC ⇒

DCM 1
vmPFC 1 1 1 1 1 0 0
dmPFC 1 1 1 1 1 0 0
lIPS 1 1 1 1 1 0 0
rIPS 1 1 1 1 1 0 0
dlPFC 1 1 1 1 1 0 0
lMC 0 1 1 1 1 1 1
rMC 0 1 1 1 1 1 1

DCM 2
vmPFC 1 0 1 1 1 0 0
dmPFC 0 1 1 1 1 0 0
lIPS 1 1 1 1 1 0 0
rIPS 1 1 1 1 1 0 0
dlPFC 1 1 1 1 1 0 0
lMC 0 1 1 1 1 1 1
rMC 0 1 1 1 1 1 1

DCM 3
vmPFC 1 1 0 0 1 0 0
dmPFC 1 1 1 1 1 0 0
lIPS 0 1 1 1 1 0 0
rIPS 0 1 1 1 1 0 0
dlPFC 1 1 1 1 1 0 0
lMC 0 1 1 1 1 1 1
rMC 0 1 1 1 1 1 1

DCM 4
vmPFC 1 1 1 1 0 0 0
dmPFC 1 1 1 1 1 0 0
lIPS 1 1 1 1 1 0 0
rIPS 1 1 1 1 1 0 0
dlPFC 0 1 1 1 1 0 0
lMC 0 1 1 1 1 1 1
rMC 0 1 1 1 1 1 1

DCM 5
vmPFC 1 1 0 0 0 0 0
dmPFC 1 1 1 1 1 0 0
lIPS 0 1 1 1 1 0 0
rIPS 0 1 1 1 1 0 0
dlPFC 0 1 1 1 1 0 0
lMC 0 1 1 1 1 1 1
rMC 0 1 1 1 1 1 1

DCM 6
vmPFC 1 1 1 1 1 0 0
dmPFC 1 1 0 0 1 0 0
lIPS 1 0 1 1 1 0 0
rIPS 1 0 1 1 1 0 0
dlPFC 1 1 1 1 1 0 0
lMC 0 1 1 1 1 1 1
rMC 0 1 1 1 1 1 1

DCM 7
vmPFC 1 1 1 1 1 0 0
dmPFC 1 1 0 0 1 0 0
lIPS 1 1 1 1 1 0 0
rIPS 1 1 1 1 1 0 0
dlPFC 1 1 1 1 1 0 0
lMC 0 1 1 1 1 1 1
rMC 0 1 1 1 1 1 1

DCM 8
vmPFC 1 1 1 1 1 0 0
dmPFC 1 1 1 1 0 0 0
lIPS 1 1 1 1 1 0 0
rIPS 1 1 1 1 1 0 0
dlPFC 1 0 1 1 1 0 0
lMC 0 1 1 1 1 1 1
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Table S4. Cont.

Region vmPFC ⇒ dmPFC ⇒ lIPS ⇒ rIPS ⇒ dlPFC ⇒ lMC ⇒ rMC ⇒

rMC 0 1 1 1 1 1 1
DCM 9

vmPFC 1 1 1 1 1 0 0
dmPFC 1 1 0 0 0 0 0
lIPS 1 0 1 1 1 0 0
rIPS 1 0 1 1 1 0 0
dlPFC 1 0 1 1 1 0 0
lMC 0 1 1 1 1 1 1
rMC 0 1 1 1 1 1 1

DCM 10
vmPFC 1 1 1 1 1 0 0
dmPFC 1 1 1 1 1 0 0
lIPS 1 1 1 1 1 0 0
rIPS 1 1 1 1 1 0 0
dlPFC 1 1 1 1 1 0 0
lMC 0 0 1 1 1 1 1
rMC 0 0 1 1 1 1 1

DCM 11
vmPFC 1 1 1 1 1 0 0
dmPFC 1 1 1 1 1 0 0
lIPS 1 1 1 1 1 0 0
rIPS 1 1 1 1 1 0 0
dlPFC 1 1 1 1 1 0 0
lMC 0 1 0 0 1 1 1
rMC 0 1 0 0 1 1 1

DCM 12
vmPFC 1 1 1 1 1 0 0
dmPFC 1 1 1 1 1 0 0
lIPS 1 1 1 1 1 0 0
rIPS 1 1 1 1 1 0 0
dlPFC 1 1 1 1 1 0 0
lMC 0 1 0 0 0 1 1
rMC 0 1 0 0 0 1 1

DCM 13
vmPFC 1 1 1 1 1 0 0
dmPFC 1 1 1 1 1 0 0
lIPS 1 0 1 1 1 0 0
rIPS 1 0 1 1 1 0 0
dlPFC 1 0 1 1 1 0 0
lMC 0 1 0 0 0 1 1
rMC 0 1 0 0 0 1 1

DCM 14
vmPFC 1 1 1 1 1 0 0
dmPFC 1 1 1 1 1 0 0
lIPS 1 1 1 1 0 0 0
rIPS 1 1 1 1 0 0 0
dlPFC 1 1 0 0 1 0 0
lMC 0 1 1 1 1 1 1
rMC 0 1 1 1 1 1 1

DCM 15
vmPFC 1 1 0 0 1 0 0
dmPFC 1 1 1 1 1 0 0
lIPS 1 1 1 1 1 0 0
rIPS 1 1 1 1 1 0 0
dlPFC 1 1 1 1 1 0 0
lMC 0 1 1 1 1 1 1
rMC 0 1 1 1 1 1 1

DCM 16
vmPFC 1 1 1 1 1 0 0
dmPFC 1 1 1 1 1 0 0
lIPS 1 1 1 1 1 0 0
rIPS 1 1 1 1 1 0 0
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Table S4. Cont.

Region vmPFC ⇒ dmPFC ⇒ lIPS ⇒ rIPS ⇒ dlPFC ⇒ lMC ⇒ rMC ⇒

dlPFC 1 1 1 1 1 0 0
lMC 0 1 0 1 1 1 1
rMC 0 1 1 0 1 1 1

DCM 17
vmPFC 1 1 1 1 1 0 0
dmPFC 1 1 1 1 1 0 0
lIPS 1 1 1 1 1 0 0
rIPS 1 1 1 1 1 0 0
dlPFC 1 1 1 1 1 0 0
lMC 0 1 1 1 0 1 1
rMC 0 1 1 1 0 1 1

DCM 18
vmPFC 1 1 1 1 1 0 0
dmPFC 1 1 1 1 1 0 0
lIPS 1 1 1 1 0 0 0
rIPS 1 1 1 1 0 0 0
dlPFC 1 1 1 1 1 0 0
lMC 0 1 1 1 1 1 1
rMC 0 1 1 1 1 1 1

DCM 19
vmPFC 1 1 1 1 1 0 0
dmPFC 1 1 1 1 1 0 0
lIPS 1 1 1 1 1 0 0
rIPS 1 1 1 1 1 0 0
dlPFC 1 1 1 1 1 0 0
lMC 0 0 0 0 1 1 1
rMC 0 0 0 0 1 1 1

DCM 20
vmPFC 1 1 1 1 1 0 0
dmPFC 1 1 0 0 0 0 0
lIPS 1 0 1 0 0 0 0
rIPS 1 0 0 1 0 0 0
dlPFC 1 0 0 0 0 0 0
lMC 0 1 1 1 1 1 1
rMC 0 1 1 1 1 1 1

Connection directionality moves from columns to rows as the arrows in-
dicate. Existing connections are represented by ones, whereas zeros indicate
no connection between regions. DCM, dynamic causal modeling.
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Table S9. Modulation of coupling parameters at the time of response

vmPFC ⇒ dmPFC ⇒ lIPS ⇒ rIPS ⇒ dlPFC ⇒ lMC ⇒ rMC ⇒

vmPFC — — — — — — —

dmPFC — — — — — — —

lIPS — — — — — — —

rIPS — — — — — — —

dlPFC — — — — — — —

lMC — — — — — 0.01 (σ2 = 0.2e−3; Pm = 0.76) 0 (σ2 = 0.2e−3; Pm = 0.55)
rMC — — — — — 0 (σ2 = 0.2e−3; Pm = 0.58) 0.01 (σ2 = 0.2e−3; Pm = 0.76)

Each cell provides statistics for the connection from the column area to the row area. σ2, sample variance; P, probability that the
specified input drives activity in the given region; Pc, probability that the absolute value of the coupling parameter is greater than zero
[note that the absolute magnitude of coupling parameters is relative to the driving inputs and will change based on the scale of any
parametric modulator (e.g., stimulus value) used as a driving input to the model]; Pm, probability that the coupling parameter is
modulated by task condition. The effect size for these parameters should be evaluated relative to the magnitude of the fixed coupling
parameters. Parameters with a posterior probability greater than 90% are shown in bold. All values are rounded to two decimals.

Table S10. Parameter estimates for each task related input by region

Stimulus presentation Stimulus value CR left CR right Button press

vmPFC −0.01 (σ2 = 0.01e−3; P = 0.9) 0.04 (σ2 = 0.23e−3; P = 0.99) — — —

dmPFC — — 0.01 (σ2 = 0e−3; P = 1) 0.01 (σ2 = 0e−3; P = 1) —

lIPS — — 0.01 (σ2 = 0e−3; P = 1) 0.01 (σ2 = 0e−3; P = 1) —

rIPS — — 0.01 (σ2 = 0e−3; P = 1) 0.01 (σ2 = 0e−3; P = 1) —

dlPFC −0.01 (σ2 = 0.01e−3; P = 0.99) — 0.01 (σ2 = 0e−3; P = 1) 0.01 (σ2 = 0e−3; P = 1) —

lMC — — — — 0.07 (σ2 = 0.14e−3; P = 1)
rMC — — — — 0.07 (σ2 = 0.17e−3; P = 1)

Each cell provides statistics for the connection from the column area to the row area. σ2, sample variance; P, probability that the specified input drives
activity in the given region; Pc, probability that the absolute value of the coupling parameter is greater than zero [note that the absolute magnitude of
coupling parameters is relative to the driving inputs and will change based on the scale of any parametric modulator (e.g., stimulus value) used as a driving
input to the model]; Pm, probability that the coupling parameter is modulated by task condition. The effect size for these parameters should be evaluated
relative to the magnitude of the fixed coupling parameters. Parameters with a posterior probability greater than 90% are shown in bold. All values are
rounded to two decimals.

Table S11. Regions correlated with right and left value across all trials

Region BA Side Cluster size x y z Z score

Region correlated with left value
Precentral gyrus 3/4 Right 179 48 −19 64 4.15*

Region correlated with right value
Precentral gyrus 6/4/3 Left 1,073 −42 −19 61 4.88*
Medial frontal gyrus 9/8 Right 176 24 29 37 4.45*
Rolandic operculum/insula 13 Left 149 −42 −28 19 4*
Inferior frontal gyrus 10/46 Right 25 48 53 4 3.67
Middle temporal gyrus 39 Right 21 45 −82 25 3.64
Cerebellum Right 57 12 −85 −29 3.58
Orbitofrontal cortex 10 Left 37 −21 50 −5 3.51
Occipital cortex 19 Left 20 −12 −97 34 3.09

Height threshold t = 2.88; extent threshold = 20 voxels (3 × 3 × 3 mm). BA, Brodmann area.
*The activation survives whole-brain correction for multiple comparisons at the cluster level (height threshold
t = 2.88, extent = 178 voxels for the left value, extent = 122 voxels for the right value).
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