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MATERIALS AND METHODS 
 
Study population 

The US Medicare program covers hospitalization for all residents aged 65 and older. 

Using data for the years 1985 to 2006, we constructed four cohorts of persons with potentially 

predisposing conditions. These were defined as persons discharged alive after emergency 

admission for the specific conditions we hypothesized might render subjects at greater risk, 

defining cases as a primary discharge diagnosis of chronic obstructive pulmonary disease 

(COPD, International Classification of Disease 9th revision (ICD-9): 490-496, except 493), 

diabetes (ICD-9: 250), congestive heart failure (CHF, ICD-9: 428), and myocardial infarction (MI, 

ICD-9: 410).  

We obtained date of death for each subject, or whether they were still alive as of the end 

of 2006, and information on age, gender, race, severity of the index admission expressed by the 

number of coronary and medical intensive care days, and on medical conditions that might 

affect the risk of survival. We defined these as previous admissions with diagnoses of atrial 

fibrillation (ICD-9: 427.3) or MI, and secondary (on the index admission) or previous diagnoses 

for COPD, diabetes, CHF, and essential hypertension (ICD-9: 401). 

Subjects alive the first of May of the year following the index admission entered into the 

cohort, and follow-up periods were calendar years. We excluded subjects whose death or 

subsequent admission occurred within the first three months of their index admission, and those 

who were admitted in 2006. 



Environmental data 

We obtained ozone (8-hour mean) data from US Environmental Protection Agency’s Air 

Quality System Technology Transfer Network in 105 cities 

(http://www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm). For each subject and 

follow-up period we created yearly averages of the 8-hour mean daily ozone concentrations for 

the summer (May-September) and transitional season (Spring and Autumn) for that year. Ozone 

was then treated as a time varying covariate in the survival analysis.  

Similarly, Jerrett et al (1) used the daily maximum ozone concentrations during April to 

September only. 

We choose 105 cities with at least 100k inhabitants, monitoring data for ozone, and 

representing a geographic distribution across the US. The cities and the ozone distributions are 

in Table 1S in the online supplement. In each city the data was retrieved on a county level; 

when more than one monitor was available in one county, we computed local daily mean ozone 

concentrations using an algorithm that accounts for the different monitor-specific means and 

variances (2,3). 

 

Meteorological data 

We obtained temperature data from the National Oceanic and Atmospheric 

Administration (NOAA) (http://www.ncdc.noaa.gov/oa/ncdc.html), and created the yearly 

average of summertime (June-August) and wintertime (December- February) temperature in 

each year in each city.  

We examined if the risk differed by prevailing climate by dividing the US into regions 

based on the Köppen climate classification (4) (http://koeppen-geiger.vu-wien.ac.at/), which is 

one of the most widely used climate classification systems. We used the following classification: 

region 1: humid subtropical climates and maritime temperate climates, which includes FL, LA 

TX, GA, AL, MS, AR, OK, KS, MO, TN, SC, NC, VA, WV, KY; region 2: warm summer 



continental climates , including ND, MN, WI, MI, PA, NY, CT, RI, MA, VT, NH, ME; region 3: hot 

summer continental climates  with SD, NE, IA, IL, IN, OH; region 4: dry climates  (NM, AZ, NV); 

region 5: dry climates together with continental climate   with MT, ID, WY, UT, CO; region 6: 

Mediterranean climates which includes CA, OR, WA . 

Statistical methods 

To avoid cross-sectional confounding we fit separate survival analyses in each city. The 

exposure was warm season (or transitional season) ozone, which was treated as a time varying 

covariate. To do this, we used the counting process extension of the Proportionate Hazard 

model pioneered by Andersen and Gill (5). In this formulation, multiple observations are created 

for each person, where each observation represents a single person-year of mortality follow-up.   

We analyzed the data with an extended Cox’s proportional hazard regression model, which 

takes the following form: 

 

 

Where: hi(t) is the hazard for individual i at time t (year), λ0(t) is the baseline hazard function, 

β1xi1 + … + βkxik is a linear function of a set of k fixed time-invariant covariates such as gender, 

δ1xi1 + … + δjxij is a linear function of time-varying covariates such as air pollution. 

We analyzed the data using  Proc PHREG in SAS (6). To control for tied observations we used 

the appropriate likelihood function as given by Kalbfleisch and Prentice (7). 

City-specific cohorts were created for each of the four conditions that we wanted to 

analyze. Separate survival analyses, with failure defined as death, were conducted for each city 

and each cohort.  A subject entered the cohort if he/she survived at least 3 months and was 

alive on the first January of the year following the index admission. For each subject the follow 

up periods were 1 year periods (January – December) until the year in which they die or until 

December 2006 (censoring). This method has been previously described (8, 9). 

)(...)(...
0

1111)()( tztzxx
i

ijjiikkietth δδββλ +++++=



The focus of our analysis was whether year- to-year variations in ozone concentrations 

within each city were associated with year-to-year variations in survival. To avoid confounding 

by long-term time trends, we controlled for such a trend with a linear term for year of follow up. 

Hence we were examining whether year-to-year variations in survival around its long-term trend 

were associated with year-to-year variations in ozone, around its long-term trend. We also 

included in the model indicator variables for season of index admission, defined as: cold 

(December through February), hot (June through August), and transitional. To control for 

weather we included in the model the yearly averages of summertime and wintertime 

temperature. 

We also controlled for individual risk factors such as age, gender, race, number of days 

of coronary and medical intensive care, previous diagnoses for atrial fibrillation and MI, and 

secondary or previous diagnoses for COPD, diabetes, CHF, and hypertension. To allow for 

possible non-proportionality of the survival rates, age (5 year categories), gender, and race 

(white, black, others) were treated as stratification variables.  

In the second stage of the analysis, the results of these city specific analyses (for each 

predisposing condition) were combined using a random effect meta-analysis (10).  

The pooled analysis was done separately for the two choices of exposure index: the 

average ozone during summer and the average during the transitional period. 

We used a meta-regression between the city specific effect estimates for ozone and city 

average temperature and temperature squared, and we found an inverted U-shaped 

relationship. Temperature is a proxy measure for ventilation and therefore also of air 

conditioning use and may play a role in explaining differences among regions.  

We then added dummy variables for region to the meta-regression and we obtained the 

estimated deviation from the overall effect of ozone in each region, as predicted by temperature. 

In this way we could determine whether there was any remaining regional variation in ozone 

effect not explained by temperature. 



The results are expressed as Hazard ratio (HR) for a 5 ppb increment of ozone.  
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Table E1: Total population, population 65 and older and average ozone   
during warm (May-September) and transitional season (Spring + Autumn)  
in the 105 cities included in the study during the years 1985-2006   

City State Total  Pop Regions 
Ozone average 
May-September 

Ozone average 
Spring+Autumn 

    Pop 65 +   mean 5% 95% mean 5% 95% 
Albuquerque NM 557 65 4 52.2 43.1 60.6 42.9 35.6 47.9 
Allentown PA 579 92 2 47.7 43.0 53.6 36.5 29.8 41.7 
Anaheim CA 2846 284 6 49.7 44.3 55.1 43.6 38.4 48.9 
Ann  Arbor MI 323 27 2 45.9 41.4 50.6 40.1 35.7 46.1 
Atlanta GA 2915 217 1 55.2 48.2 64.8 43.3 37.3 52.2 
Austin TX 812 56 1 45.3 38.9 49.0 42.8 37.2 46.3 
Bakersfield CA 662 63 6 71.4 66.7 76.4 55.1 50.2 62.4 
Baltimore MD 1405 199 1 51.1 41.1 57.6 35.4 29.9 41.9 
Baton Rouge LA 434 44 1 47.2 43.7 52.7 43.1 37.9 48.2 
Birmingham AL 805 105 1 49.5 43.3 56.6 41.1 36.1 49.2 
Boston MA 3529 464 2 41.8 37.7 46.9 34.6 30.9 38.2 
Boulder CO 291 23 5 51.3 45.1 58.5 38.0 29.4 45.1 
Broward FL 1623 256 1 28.4 22.9 32.6 35.8 31.3 39.8 
Buffalo NY 1170 188 2 47.1 40.4 55.1 36.0 32.3 40.5 
Canton/Akron OH 921 136 3 51.5 46.0 59.0 40.3 37.6 44.9 
Cedar Rapids IA 192 24 3 40.1 31.9 47.2 34.2 25.8 40.9 
Charleston SC 310 37 1 43.1 37.9 48.7 41.1 35.2 48.4 
Charlotte NC 695 61 1 55.6 49.3 62.4 46.1 41.9 50.0 
Chicago IL 6925 788 3 40.8 35.8 45.9 29.6 26.1 34.6 
Cincinnati OH 845 116 3 49.9 43.2 55.9 38.4 34.6 43.0 
Cleveland OH 1621 252 3 46.4 39.6 51.5 35.9 31.1 38.1 
Colorado Springs CO 517 46 5 48.3 39.6 55.8 38.9 31.9 43.8 
Columbia SC 537 55 1 49.9 43.8 57.7 43.7 39.7 47.0 
Columbus OH 1069 107 3 50.4 43.8 58.4 38.6 34.5 42.3 
Dallas TX 2219 183 1 49.6 41.4 56.9 40.2 34.1 46.8 
Davenport IL 308 42 3 48.1 40.4 53.6 40.2 35.1 44.1 
Dayton OH 559 78 3 50.0 42.1 58.1 39.5 33.0 46.0 
Denver CO 1446 145 5 49.1 44.2 54.1 35.5 32.4 39.0 
Des Moines IA 375 42 3 35.1 21.5 46.2 29.6 15.3 38.1 
Detroit MI 4043 500 2 43.3 38.2 49.6 36.1 30.3 40.5 
Durham NC 223 22 1 53.3 46.6 59.7 45.1 41.6 48.8 
El paso TX 680 68 1 50.0 41.5 54.5 41.7 34.9 44.8 
Erie PA 281 41 2 49.1 44.8 56.9 38.6 33.7 44.9 
Eugene OR 323 43 6 36.1 32.8 40.9 34.6 30.5 39.7 
Fresno CA 799 80 6 69.0 62.1 75.6 52.7 45.9 59.9 
Ft. Worth TX 1446 124 1 54.2 47.1 59.0 44.1 40.9 47.2 
Gary IN 485 0 3 47.1 39.9 53.8 40.4 35.4 49.4 



Grand Rapids MI 574 61 2 44.8 40.2 49.6 40.0 37.1 45.3 
Greensborough NC 421 50 1 54.5 43.6 62.2 48.0 39.8 52.8 
Harrisburg PA 252 36 2 49.3 43.1 54.6 37.5 33.0 42.9 
Hartford CT 857 126 2 44.7 39.9 48.4 36.0 29.8 42.1 
Holland MI 344 36 2 48.5 44.2 53.7 43.0 39.1 48.6 
Honolulu HI 876 118 1 15.6 9.8 23.9 20.9 14.4 29.3 
Houston TX 3401 258 1 44.2 39.3 51.2 40.9 35.4 49.4 
Indianapolis IN 860 97 3 51.4 44.5 57.8 44.8 39.5 53.8 
Jacksonville FL 920 97 1 43.3 37.9 48.3 43.8 39.9 48.6 
Jersy city NJ 609 71 2 46.7 38.8 56.2 29.8 24.5 33.5 
Kansas City KS 793 85 1 49.7 41.7 55.0 39.1 34.0 42.8 
Kansas City MO 655 83 1 47.0 42.8 53.5 38.3 33.9 43.5 
Knoxville TN 488 65 1 53.4 46.5 64.9 45.0 40.9 55.2 
Las Vegas NV 1376 153 4 55.3 49.9 59.2 44.5 40.4 47.1 
Little Rock AR 361 42 1 50.1 43.8 55.3 40.2 36.3 45.0 
Los Angeles CA 9519 943 6 58.2 49.8 74.0 44.4 37.2 55.3 
Louisville KY 694 95 1 49.5 41.0 58.0 38.2 28.7 46.6 
Medford OR 181 29 6 45.5 40.7 48.6 42.4 37.8 47.5 
Memphis TN 897 91 1 55.1 46.9 63.2 46.2 40.4 54.7 
Mercer PA 120 22 2 50.7 45.6 59.1 39.9 33.2 45.7 
Miami FL 2253 305 1 29.6 26.9 32.5 38.3 34.8 43.5 
Milwaukee WI 1301 167 2 44.1 38.7 49.8 36.9 33.6 41.1 
Nashville TN 570 64 1 46.5 34.7 57.9 35.4 25.7 42.5 
New Haven CT 824 120 2 44.7 40.8 52.3 37.1 29.8 45.1 
New Orleans LA 940 113 1 42.5 36.2 50.1 41.1 35.4 47.8 
Norfolk VA 1354 136 1 52.2 46.1 59.0 43.6 40.4 47.5 
New York City NY 8008 953 2 39.8 34.7 45.5 26.1 23.0 28.5 
Oakland CA 1444 149 6 32.3 28.3 38.4 30.7 27.4 34.9 
Oklahoma City OK 660 83 1 52.5 45.9 60.0 42.6 38.9 45.8 
Omaha NE 586 60 3 37.0 31.8 43.6 31.7 24.5 40.6 
Orlando FL 1262 131 1 42.0 37.0 45.5 44.0 41.1 49.7 
Palm beach FL 1131 258 1 28.7 23.6 32.1 35.1 30.3 40.8 
Pensacola FL 294 40 1 46.9 40.9 52.1 45.7 38.4 49.2 
Philadelphia NJ 4603 642 2 50.7 45.6 58.9 34.9 30.7 37.5 
Phoenix AZ 3072 364 4 56.2 50.6 60.0 48.8 44.5 52.0 
Pinellas FL 921 206 1 38.2 32.7 43.0 41.4 38.1 45.4 
Pittsburg PA 1282 230 2 48.9 37.1 56.2 34.8 27.7 39.9 
Port Arthur TX 252 35 1 42.2 36.1 49.6 41.4 34.7 47.9 
Portland OR 1789 186 6 34.0 30.8 37.0 31.5 27.7 36.1 
Providence RI 789 117 2 44.8 41.8 50.0 38.9 33.7 44.9 
Provo/Orem UT 369 24 5 54.7 51.2 58.0 49.1 47.0 52.1 
Raleigh NC 628 48 1 53.8 46.0 65.1 46.4 39.5 55.1 
Reno NV 339 37 4 49.8 43.4 53.5 39.8 36.6 41.7 
Richmond VA 720 82 1 53.6 46.5 60.6 44.3 40.9 49.5 
Riverside CA 1545 197 6 67.7 60.0 81.3 52.7 49.4 56.3 
Sacramento CA 1223 137 6 55.0 50.6 58.0 43.3 39.6 48.7 



Salt Lake City UT 898 74 5 54.6 49.0 57.8 47.7 37.6 51.9 
San Antonio TX 1393 147 1 44.1 36.7 49.2 42.4 36.6 48.0 
San Diego CA 2814 317 6 48.6 45.1 55.4 47.8 43.3 56.3 
San Francisco CA 1484 197 6 26.6 21.2 30.9 27.5 22.5 31.5 
San Jose CA 1683 163 6 38.7 35.3 42.4 34.2 30.7 36.8 
Scranton PA 213 42 2 47.5 42.2 54.4 38.9 34.4 43.4 
Seattle WA 3044 312 6 34.3 30.6 39.3 32.1 28.3 35.5 
Spokane WA 418 53 6 45.4 40.4 50.9 42.7 37.2 48.7 
Springfield MA 456 67 2 45.2 39.9 48.5 36.4 32.2 44.6 
Steubenville OH 132 25 3 47.7 38.9 56.6 36.8 28.7 42.4 
St. Louis MO 1563 213 1 48.8 43.6 55.0 37.6 33.1 44.2 
Tallahassee FL 239 20 1 41.2 34.3 45.4 43.2 38.1 50.5 
Tampa FL 999 121 1 41.0 34.9 45.6 43.9 39.4 48.7 
Terra Haute IN 106 15 3 48.9 41.7 58.2 42.7 34.5 50.6 
Toledo OH 455 61 3 45.6 41.0 49.3 35.9 31.4 40.2 
Tucson AZ 844 121 4 50.5 46.7 53.0 45.6 43.1 47.7 
Tulsa OK 563 68 1 52.8 46.3 58.0 42.7 39.1 46.2 
Washington DC 762 88 1 49.8 43.4 56.9 32.3 27.0 36.9 
Wilmington DE 500 59 1 49.7 41.8 55.2 35.1 28.9 38.8 
Winston NC 306 40 1 52.8 46.9 59.4 45.6 41.8 49.3 
Worcester MA 751 99 2 45.3 40.3 50.2 39.7 32.5 45.8 
Youngstown OH 483 82 3 49.7 40.4 56.2 39.6 33.2 43.4 

 

 

 
 


