Supporting Information to Manuscript

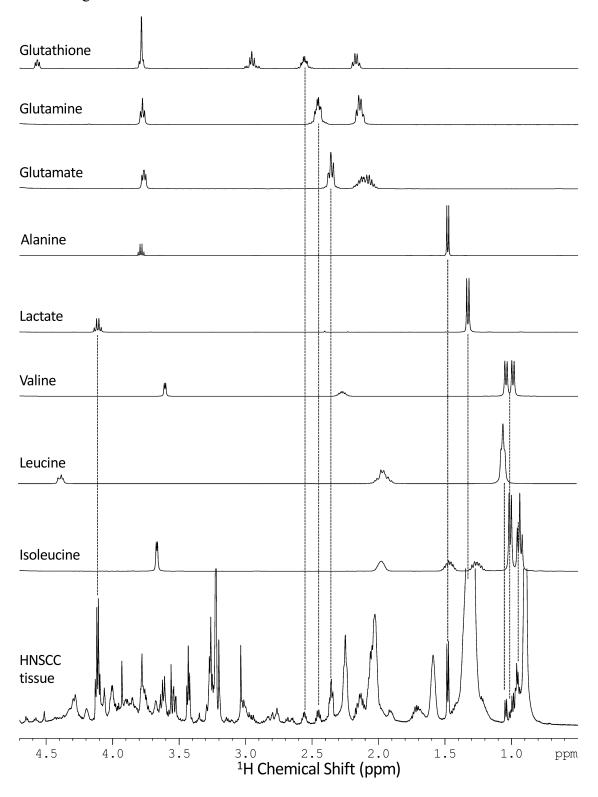
Magic Angle Spinning NMR Based Metabolic Profiling of Head and Neck Squamous Cell Carcinoma Tissues

Bagganahalli S.Somashekar^{1#}, Pachiyappan Kamarajan^{2#}, Theodora Danciu², Yvonne L. Kapila², Arul M. Chinnaiyan^{3,4,5,6}, Thekkelnaycke M. Rajendiran³, Ayyalusamy Ramamoorthy^{1,*}

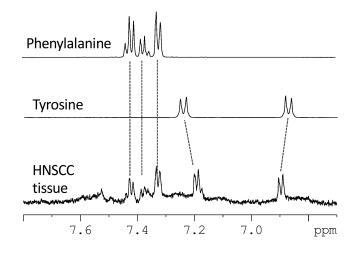
¹Department of Chemistry and Biophysics, ²Department of Periodontics and Oral Medicine,
School of Dentistry, University of Michigan, Ann Arbor, MI, USA. ³Michigan Center for
Translational Pathology, Department of Pathology, ⁴Department of Urology, ⁵Comprehensive
Cancer Center, and ⁶Howard Hughes Medical Institute, University of Michigan Medical School,
Ann Arbor, MI, USA.

Authors contributed equally.

* Corresponding Author Prof. Ayyalusamy Ramamoorthy Biophysics and Department of Chemistry University of Michigan 930 North University Avenue Ann Arbor, Michigan 48109-1055, USA Phone: (734) 647-6572


Phone: (734) 647-6572 Fax: (734) 764-3323

E-mail: <u>ramamoor@umich.edu</u>


Table S1: ¹H chemical shift of metabolites detected in the head and neck tissues.

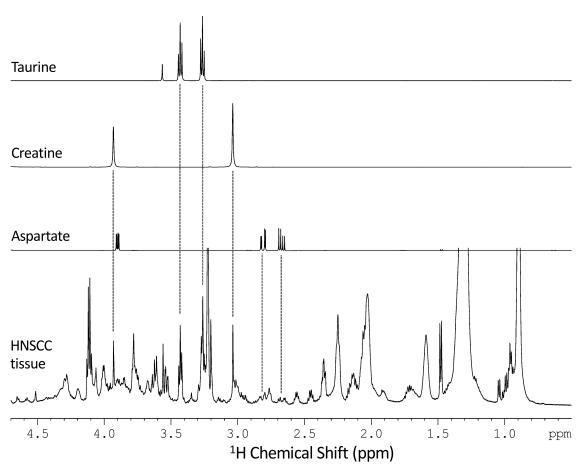

Metabolite	Moiety	¹ H Chemical Shift (ppm)
Acetate	CH ₃	1.92
Alanine	αCH ; βCH_3	3.77; 1.48
Aspartate	αCH ; βCH_2	3.90; 2.82, 2.67
Choline	$N(CH_3)_3$; αCH_2 ; βCH_2	3.19; 4.05, 3.51
Creatine	N-CH ₃ ; CH ₂	3.04; 3.93
Glutamate	αCH; $β$ CH ₂ ; $γ$ CH ₂	3.75; 2.09; 2.35
Glutamine	αCH; β CH ₂ ; γ CH ₂	3.78; 2.14; 2.44
Glutathione Glycerophosphocholine	Glu (CH; CH ₂ ; CH ₂) Cys (CH; CH ₂) Gly (CH ₂) N(CH ₃) ₃ ; OCH ₂ ; NCH ₂	3.76; 2.16; 2.54 4.51; 3.01 3.77 3.22; 4.32; 3.68
Glycine	CH_2	3.57
Isoleucine	αCH; βCH; γCH ₂ ;	3.65; 1.97; 1.26/1.47
	γCH ₃ ; δCH ₃	1.02; 0.94
Lactate	αСН; βСН ₃	4.11; 1.33
Leucine	αCH ; βCH_2 ; γCH ;	3.73; 1.72; 1.70;
	δCH ₃ ; δCH ₃	0.97; 0.95
Phenylalanine	$\alpha CH; \beta CH_2;$	3.99; 3.11/3.28;
	2,6-H; 3,5-H, 4H	7.34; 7.44; 7.37
Phosphocholine	N(CH ₃) ₃ ; OCH ₂ ; NCH ₂	3.20; 4.16; 3.58
Taurine	S-CH ₂ ; N-CH ₂	3.26; 3.42
Tyrosine	α CH; β CH ₂ ;	3.93; 3.06/3.20
	2,6-Н; 3,5-Н	7.23; 6.89
Valine	αCH; βCH;	3.61; 2.25;
	γCH_3 ; γCH_3	1.04; 0.99

Figure S1. A comparison of NMR spectra of a tumor tissue with that of standard compounds to support the chemical shift assignments of isoleucine, leucine, valine, lactate, alanine, glutamate, glutamine and glutathione.

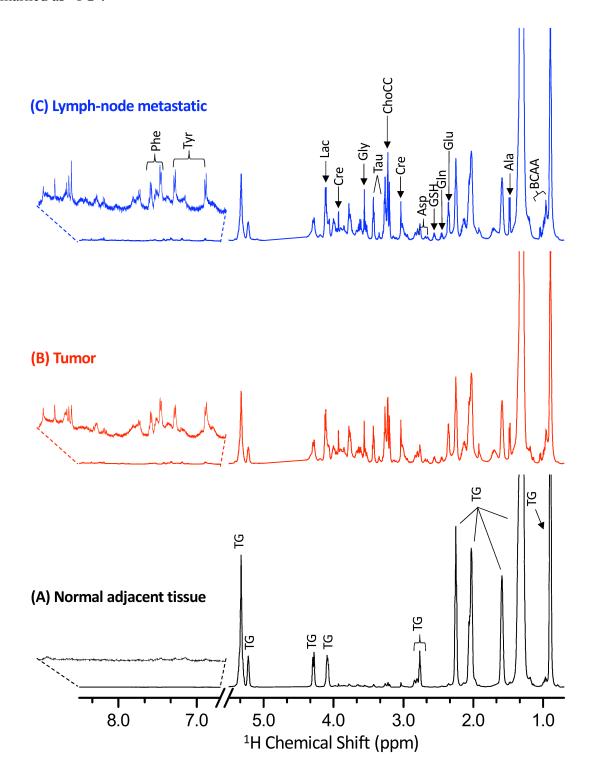


Figure S2. A comparison of NMR spectra of a tumor tissue with that of standard compounds to support the chemical shift assignments of aspartate, creatine, taurine, tyrosine and phenylalanine.

Figure S3. Average 1 H HR-MAS CPMG spectra obtained from area normalized spectra of (A) normal adjacent tissues (15 tissues), (B) tumor (18 tissues) and (C) lymph-node metastatic (7 tissues) tissues. The intensity of peaks in the chemical shift region 6.7 - 8.5 ppm was increased equally in all spectra to show the low-abundant taurine and phenylalanine. Triglyceride signals are marked as 'TG'.

