Supplementary Material

Just-in-Time Control of Spo0A Synthesis in *Bacillus subtilis* by multiple

regulatory mechanisms.

Arnaud Chastanet and Richard Losick

Name	Genotype		Construction or Reference
PY79	prototrophic		(31)
RL3170	∆spo0H::cat		lab collection
RL4259	∆spo0B::Km		lab collection
786	ΔP_{s} spo0A		this study, PY79 cured from psk5
875	$\Delta P_{v} O_{1-3}$ spo0A		this study, PY79 cured from pAC306
883	ΔO_{1-3} spo0A		this study, PY79 cured from pAC313
894	ΔP_{v} spo0A		this study, PY79 cured from pAC328
ABS988	amyE::P _{s(wt)} .0A-lacZ- spc		this study, pAC407 -> PY79
ABS1085	amyE::P _{s(wt)-} 0A-lacZ- spc::cat		this study, pDAG32 -> ABS988
ABS955	amyE::P _{s(△O1-3)-} 0A-lacZ- spc		this study, pAC370 -> PY79
ABS1112	amyE::P _{s(wt)-} 0A-lacZ- spc::cat	∆spo0B::km	this study, RL4259 -> ABS1085
ABS1149	amyE::P _{s(△O1-3)} -0A-lacZ- spc	∆spo0B::km	this study, RL4259 -> ABS955
ABS999	amyE::P _{s(\D-rich)-} 0A-lacZ- spc		this study, pAC413 -> PY79
ABS956	amyE::P _{s(△01-3 Arich)-} 0A-lacZ- spc		this study, pAC374 -> PY79
ABS1048	amyE::P _{s(m1)-} 0A-lacZ- spc		this study, pAC463 -> PY79
ABS1055	amyE::P _{s(m2)-} 0A-lacZ- spc		this study, pAC458 -> PY79
ABS1205	amyE::P _{s(m3)-} 0A-lacZ- spc		this study, pAC507 -> PY79
ABS1172	amyE::P _{s(m2m3)-} 0A-lacZ- spc		this study, pAC497 -> PY79
ABS1042	amyE::P _{s(m4)-} 0A-lacZ- spc		this study, pAC453 -> PY79
ABS1173	amyE::P _{s(m1m2m3)-} 0A-lacZ- spc		this study, pAC498 -> PY79
ABS1034	amyE::P _{s(ins5)-} 0A-lacZ- spc		this study, pAC434 -> PY79
ABS1035	amyE::P _{s(ins11)} -0A-lacZ- spc		this study, pAC436 -> PY79
ABS1223	amyE::P _{s(wt-VG)-} 0A-lacZ- spc		this study, pAC527 -> PY79
ABS1224	amyE::P _{s(m2-VG)} -0A-lacZ- spc		this study, pAC528 -> PY79
ABS1226	amyE::P _{s(m3-VG)} -0A-lacZ- spc		this study, pAC531 -> PY79
ABS1227	amyE::P _{s(m2m3-VG)-} 0A-lacZ- spc		this study, pAC533 -> PY79
ABS1229	amyE::P _{v(wt)} .lacZ- spc		this study, pAC557 -> PY79
ABS1230	amyE::P _{v(m2)-} lacZ- spc		this study, pAC559 -> PY79
ABS1231	amyE::P _{v(m3)-} lacZ- spc		this study, pAC538 -> PY79
ABS1234	amyE::P _{v(m1)-} lacZ- spc		this study, pAC563 -> PY79
ABS1045	amyE::P _{vs(wt)} .lacZ- spc		this study, pAC454 -> PY79
ABS1041	amyE::P _{vs(mi)} -lacZ- spc		this study, pAC450 -> PY79
ABS997	amyE::P _{vs(wt)-} 0A-lacZ- spc		this study, pAC408 -> PY79
ABS962	amyE::P _{vs(mi)} .0A-lacZ- spc		this study, pAC391 -> PY79
ABS1050	amyE::P _{vs(wt)} .lacZ- spc	∆spo0H::cat	this study, RL3170 -> ABS1045
ABS1049	amyE::P _{vs(mi)} .lacZ- spc	∆spo0H::cat	this study, RL3170 -> ABS1041
ABS1021	amyE::P _{vs(wt)-} 0A-lacZ- spc	∆spo0H::cat	this study, RL3170 -> ABS997
ABS1019	amyE::P _{vs(mi)} .0A-lacZ- spc	∆spo0H::cat	this study, RL3170 -> ABS962
ABS957	amyE::P _{s(mi)-} 0A-lacZ- spc		this study, pAC378 -> PY79

Table S1. *B. subtilis* strains used in this study.

Table S2. Plasmids used in this study.

Plasmids	Description	Reference or construction
pSK5	plasmid for marker-less deletion of P_{s}	(27)
pMAD	plasmid for in frame marker-less deletion	(1)
pDG1728	plasmid for integrating <i>lacZ</i> fusion at <i>amyE</i>	*
pET28a	plasmid for expression of recombinant protein in E. coli with a 6xhis tag	Novagen
pAC571	pET28a derivative, carrying full length spo0A orf under IPTG inducible promoter	AC883-885 (Ncol-Xhol)
	pMAD derivative carrying spo/VB-spo0A intergenic fragment:	
pAC306	deleted for P_v and O_{1-3}	AC739-740 (Ncol-EcoRI) +
pAC313	deleted for O ₁₋₃	AC744-742 (EcoRI-BamHI) AC739-743 (NcoI-EcoRI) +
pAC328	deleted for P_v	AC744-742 (EcoRI-BamHI) AC739-740 (NcoI-EcoRI) + AC741-742 (EcoRI-BamHI)
	pDG1728 derivatives carrying Ps (but not Pv) in translational fusion with <i>lacZ</i> :	
pAC407	wild type	AC796-781 (EcoRI-Sall)
pAC378	containing 8 mutations between O1 and O2	AC783-781 (EcoRI-Sall)
pAC370	deleted of O1-O3	AC786-781 (EcoRI-Sall)
pAC413	deleted of the A-rich area	AC796-788+AC789-781 (EcoRI-Sall)
pAC374	deleted of O1-O3 and the A-rich area	AC787-781 (EcoRI-Sall)
pAC463	mutated on O1	AC816-781 (EcoRI-Sall)
pAC458	mutated on O2	AC814-781 (EcoRI-Sall)
pAC507	mutated on O3	AC820+821-781 (EcoRI-Sall)
pAC497	mutated on O2 and O3	AC814 on pAC507 (EcoRI-Sall)
pAC453	mutated on O4	AC796-812+AC813-781 (EcoRI-Sall)
pAC498	mutated on O1, O2 and O3	AC811 on PAC497 (EcoRI-Sall)
pAC434	with a 5 bp insertion	AC796-809+AC808-781 (EcoRI-Sall)
pAC436	with a 11 bp insertion	AC796-811+AC810-781 (EcoRI-Sall)
pAC527	containing P _{spovG} SigH binding site	QC AC852-853 on pAC407
pAC528	containing P_{spoVG} SigH binding site, and mutated on O2	QC AC852-853 on pAC458
pAC531	containing P_{spovG} SigH binding site, and mutated on O3	QC AC852-853 on pAC507
pAC533	containing $P_{\mbox{spovG}}$ SigH binding site, and mutated on O2 and O3	QC AC852-853 on pAC497
	pDG1728 derivatives carrying Pv (but not Ps) in transcriptional fusion with <i>lacZ</i> :	
pAC557	wild type	AC792-881 (EcoRI-BamHI)
pAC559	mutated on O2	AC792-857+AC856-881 (EcoRI-BamHI)
pAC538	mutated on O3	AC792-859+AC858-881 (EcoRI-BamHI)
pAC563	mutated on O1	AC792-855+AC854-881 (EcoRI-BamHI)
	pDG1728 derivative carrying complete P _{spo0A} :	
pAC454	in transcriptional fusion with lacZ, and wild type	AC792-880 (EcoRI-BamHI)
pAC450	in transcriptional fusion with lacZ, and containing 8 mutations between O1 and	
nAC408	O2 in translational fusion with lac7 and wild type	AC792-793+AC794-880 (EcoRI-BamHI)
pAC391	in translational fusion with lacZ and containing 8 mutations between Q1 and	AC792-781 (EcoRI-Sall)
P. 1900 I	02	AC792-793+AC794-781 (EcoRI-Sall)

* Guerout-Fleury, A. M., N. Frandsen, and P. Stragier. 1996. Plasmids for ectopic integration in Bacillus subtilis. Gene 180:57-61.

Table S3. Oligonucleotides used in this study.

name	sequence
AC-470	ttaagaataagattaagattattaattatag
AC-739	
AC-740	
AC-741	
AC-742	
AC-743	gaagaattcaaatcttcttttgtatattttaccg
AC-744	ggggaattcaaacagagaaaaacatagaataacaaag
AC-766	gcaacacaactttaattttctccac
AC-781	ttcgtcgacttctatattcacttaacaggc
AC-783	aaatatacagaattcgatttttcgacaaattgagctatggaagtttgtca
AC-786	acagaattcgaaaaacagagaaaaacatagaataac
AC-787	actgaattcggtgattatgatttttttagaggg
AC-788	cataatcacctttcgactaaaaatgaaatttgac
AC-789	tagtcgaaaggtgattatgatttttttagaggg
AC-792	caggaattcatatttatggaaaagaaaaagcaagctgac
AC-793	ttccatagctcaatttgtcgaaaaatcttctttgtat
AC-794	tgagctatggaagtttgtcaaatttcattttagtcg
AC-796	acagaattcgatttttcgacaaattcacgtttccttg
AC-808	ttggtgattatcttatgatttttttagagggtatatag
AC-809	aaatcataagataatcaccaatattagtggcatatcttt
AC-810	ttggtgattatctagaggctatgattttttagagggtatatag
AC-811	aaatcatagcctctagataatcaccaatattagtggcatatcttt
AC-812	gctacatgtttacattctccgtgaccgctatataccct
AC-813	agggtatatagcggtcacggagaatgtaaacatgtagc
AC-814	acagaattcgatttttcgacaaattcacgtttccttgtttattaaatttcattt
AC-816	acagaattcgatttttatataaattcacgtttccttg
AC-820	cacgtttccttgtttgtcaaatttcattttatttaaaaaac
AC-821	acagaattcgatttttcgacaaattcacgtttccttgtttgt
AC-852	cagaaaaaatcgtggaattgaaacatgtagcaagggtgaatcctgtt
AC-853	gattttttctgaaatcctgctaaaaaatcataatcaccaatattagtggc
AC-854	gatttttatataaattcacgtttccttgtt
AC-855	gaatttatataaaaatcttcttttgtatattttac
AC-856	ccttgtttattaaatttcatttttagtcgaaaaac
AC-857	gaaatttaataaacaaggaaacgtgaatttgtcg
AC-858	catttttattttaaaaacagagaaaaacatagaataac
AC-859	tttttctctgtttttaaaataaaaatgaaattt
AC-880	ggaggatccatgtagttaacaggattcacccttgctacat
AC-881	ggaggatcctctaaaaaaatcataatcaccaat
AC-883	cggccAtggagaaaattaaagtttgtgttgctgat
AU-885	ctcctcgagttaagaagccttatgctctaacctcagc

Figure sup. 1. Immunoblot analysis of 0A accumulation.

Panel A shows that accumulation of 0A is delayed and slowed in absence of P_v . Immunoblot analysis of 0A accumulation during sporulation was performed using samples taken during sporulation at the indicated times after resuspension. Equal amounts of protein, as quantified by the Bradford technique, were loaded as confirmed by the control immunoblot using anti-SigA (σ^A). Samples were taken from shaking cultures at 37°C of wild type cells (Wt; PY79) and cells mutant for P_v (ΔP_v ; Abs894).

Panel B shows that O_1 - O_3 contains a regulatory element controlling P_s .

Presented is an immunoblot analysis of 0A accumulation during sporulation similar to Fig 2A, except that a longer exposure time was performed in order to observe 0A at time 0. Blots were performed using samples taken just before sporulation induction by resuspension (0h) and 2 h post-induction (2h). Equal amounts of protein, as quantified by the Bradford technique, were loaded as confirmed by the control immunoblot using anti-SigA (σ^A) antibodies. Samples were taken from triplicate shaking culture at 37°C of wild type cells (Wt; PY79), cells mutant for O₁₋₃ (ΔO_{1-3} ; Abs883), and P_v plus O₁₋₃ ($\Delta P_v O_{1-3}$; Abs875).

Fig Sup 2

	time	0		90	
			+ -		+ -
I	wt	1.0	0.0	14.2	6.5
	m1	0.8	0.3	16.5	3.1
Ш	m4	0.4	0.1	3.4	0.7
	m3	1.8	0.3	2.7	1.5
ш	m2	5.7	1.5	17.7	5.6
IV	m2 m3	5.9	2.3	5.4	2.6
	m1 m2 m3	5.9	2.6	6.2	5.6
	∆123	5.8	2.5	5.7	2.2
	∆A rich	5.3	2.3	4.5	3.7
	∆123-A rich	5.5	2.8	1.9	0.6

Figure sup. 2. Mutagenesis of a P_s -lacZ translational reporter fusion reveals four categories of mutants.

Table (left hand panel) reports β -galactosidase activity of different translational fusions with *lacZ* that are depicted in right hand panel. Two time points, representative of exponential and sporulation phase of growth, were reported: time 0 corresponds to sample harvested just before induction of sporulation by resuspension, and time 90 to cells collected 90 minutes after induction. Values are presented as a ratio as compared to the specific activity of the wild type fusion during exponential growth (thus, the ratio for the wild type fusion at time 0 was 1). Bold values are averaged ratio of specific activities, followed by the standard deviations.

Four categories of phenotypes are:

I- Wild type: expression was minimal during exponential phase and strongly induced during sporulation; wild type (wt; Abs988), mutant of O_1 (m1; Abs1048).

II- Shut down: expression is minimal in every condition tested; mutant of site 3 (m3; Abs1205) or site 4 (m4; Abs1042).

III- De-repressed: intermediate level of expression during exponential phase and full induction during sporulation; mutant of site 2 (m2; Abs1055).

IV- 0A insensitive: expression is almost constant from time 0 to time 90; double mutant for site2 and 3 (m2m3; Abs1172), triple mutant for site 1, 2 and 3 (m1m2m3; Abs1173), fragment lacking O_{1-3} (ΔO_{1-3} ; Abs955), fragment lacking only A-rich area (Δ A-rich; Abs999), fragment starting downstream of the A-rich area (Δ 123 A-rich; Abs956).

Fig Sup 3

Figure sup. 3. Mutations in O_1 and O_3 impair 0A binding to corresponding sites. DNase I footprinting assays were performed using purified 0A and labeled DNA fragments as described in material and methods. 364 bp DNA fragments were amplified from plasmid pAC407 (wt), pAC463 (m1), pAC458 (m2) or pAC507 (m3) and incubated with varying amount of purified native 0A (0, 1, 3, 10, 0 μ M). First four lanes correspond to dideoxy-sequencing ladders produced with the same labeled primer. Boxes on the left indicated the consensus 0A binding sequences. Bars on the right indicate areas protected from DNase I digestion and the dotted line indicates extension of the protection occurring at higher 0A concentration. Red boxes are areas matching with 0A-boxes O1, O3 and O4; the green box marks a protected area appearing only when O1 and O3 and present; the blue box marks an area protected at high 0A concentration despite the absence of protection on box O3.

		-35		-10	
		R-AGGAwWW	<11/12>	RGAATww	
spoVG	ttaaaaacga	GcAGGAtTT	cagaaaaaatc	GtgGAATTg	atacactaat
spo0A	tgatttttt	AgAGGgtAT	atagcggt ttt	GtcGAA TgT	aaacatGtag
chimera	tgattttta	GcAGGAtTT	cagaaaaaatc	GtgGAATTg	aaacatGtag

Figure sup. 4. Construction of a chimeric promoter between P_s and P_{spoVG}. 31 bp

corresponding to the *spoVG* promoter (green) and containing the -35 and -10 sequences for σ^{H} -RNA polymerase were introduced in place of the -35 and -10 sequences of the *spo0A* P_s promoter (red) to create a chimeric regulatory region. Aligned are sequences of *spoVG*, *spo0A* and the chimeric promoter corresponding to the region containing the -35 and -10 sequences. Capital letters indicate bases matching the σ^{H} -RNA polymerase consensus binding motif (Upper row - according to(3)). The *spo0A* operator O₄ is highlighted with underlined bold letters.

Fig sup 5

Figure sup. 5. A mutant lacking P_v is slightly inhibited for sporulation and impaired for DNA-mediated transformation (competence).

Transformation and sporulation efficiencies were compared between wild type cells (Wt; PY79), cells mutant for O_{1-3} (ΔO_{1-3} ; Abs883), P_v (ΔP_v ; Abs894), and P_v plus O_{1-3} ($\Delta P_v O_{1-3}$; Abs875), and expressed as the ratio to the wild type. For the competence assay (left panel), cells were transformed with 0.5 µg of DNA conferring resistance to spectinomycin and frequencies of transformants were calculated as the ratio of spectinomycin-resistant cells to the total number of cells. Values are averages of two independent experiments. For the sporulation assay, the frequency of sporulation after 30 h in sporulation conditions was calculated as the number of heat-resistant cells after 20 min at 80°C to the total number of cells. Values are averages of at least two independent experiments.