Supplemental Material to Yao et al., submitted to J. Bacteriol. 8/3/2011

Fig. S1. Relationship of PABLO ligation yield to rate constants for mRNA degradation. The top line is a schematic of full-length, 5'-triphosphorylated $\Delta ermC$ mRNA or $\Delta ermC$ -del mRNA (deletion endpoints shown by square brackets). The 5'-monophosphorylated version of these mRNAs is shown on the line below. Rate constants for various processes that contribute to the cellular amounts of $\Delta ermC$ and $\Delta ermC$ -del mRNAs are indicated.

 k_2 = rate constant for RNA degradation by the 5' exonuclease activity of RNase J1

= 0

- k_3 = rate constant for tri-P RNA degradation by RNase Y
- k_4 = rate constant for mono-P RNA degradation by RNase Y

The system is described by two differential equations:

$$\frac{dN_1}{dt} = k_0G - (k_1 + k_3)N_1$$

$$\frac{dN_2}{dt} = k_1N_1 - (k_2 + k_4)N_2$$
At steady state: $\frac{dN_1}{dt} = 0$, $\frac{dN_2}{dt}$

and
$$\frac{N_2}{N_1} = \frac{k_1}{k_2 + k_4}$$

Ligation yield: $\frac{N_2}{N_2 + N_1} = \frac{k_1}{k_1 + k_2 + k_4}$

Thus, the ligation yield is inversely related to the rate constant k_4 . Because k_4 is smaller for $\Delta ermC$ -del mRNA than for $\Delta ermC$ mRNA, the ligation yield will be higher for $\Delta ermC$ -del than for $\Delta ermC$.