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Supplementary Figures 

 

 

 

Figure S1. Schematic representation of the high-throughput SM apparatus. For 

description, including designation of the various parts designated in the figure, see the 

Supplementary Methods section. 
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Figure S2. Acceptor emission intensity as a function of 

GdmCl concentration. Double-labeled protein samples at 

various concentrations of the denaturant were excited at 

560 nm and the acceptor emission was measured. For 

details see the Supplementary Methods section.  
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Figure S3. γ-corrected total emission intensity as 

function of GdmCl concentration. For details see 

the Supplementary Methods section. 
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Figure S4. Fluorescence anisotropy as function of GdmCl 

concentration. Blue dots are the measured values for donor-

only-protein molecules excited at 465 nm. Red dots are 

measured values of double-labeled protein molecules excited 

at 560 nm. For details see the Supplementary Methods 

section. 
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Figure S5. Additional single-molecule FRET trajectories. In each example the left 

panel shows the experimental traces from the donor and acceptor channels, while the 

right panel shows the FRET efficiency trace, calculated till the photobleaching point. 

The transitions between different FRET states seen in the trajectories are anti-

correlated, as were >90% of the transitions seen in our data. The orange lines in the 

right panels are state assignments based on the HMM analysis, and obtained with the 

Viterbi algorithm. 
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Figure S6. Histogram constructed from trajectory segments. Single-molecule 

trajectories were segmented using the Viterbi algorithm, based on the HMM 

parameters. Average FRET efficiency values were calculated for segments longer 

than 1 second, and were used to generate the histogram (yellow symbols connected by 

a green line). Red symbols designate positions of FRET states as predicted by the 

HMM analysis. A similar histogram constructed following random segmentation of 

the data did not show the peak sub-structure. This figure serves as a consistency check 

for the HMM analysis, and shows the validity of the representation of the data with 

six states.  
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Table S1. Statistics of data sets measured at different GdmCl concentrations 

 0.5 M 0.65 M 0.75 M 0.85M 1M 

Number of trajectories 761 1333 1810 1969 1299 

Average trajectory length 

before photobleaching 

step (seconds) 

5.72 4.28 3.54 3.26 3.45 

Total number of  

transitions determined by 

the HMM analysis 

1359 1596 1983 2280 1212 

Average number of 

transitions per trajectory 

1.79 1.20 1.10 1.16 0.93 
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Table S2. The ten most abundant unfolding pathways as a function of GdmCl 

concentration 

Probability %  Pathway GdmCl concentration 
16.6 5  → 1 0.5 M 

   16.2  5  → 4  →   1 
   11.5  5  → 3  → 1 
   10.6  5  → 3  → 2   → 1 
   10.1  5  → 2  → 1 

    8.4  5  → 4  → 3  → 2  → 1 
    8.1  5  → 4  → 3  → 1 
    2.1  5  → 4  → 2  → 1 

2 5  → 6  → 1 
    1.7  5  → 6  → 4  → 1 

18.7 5  → 4  → 3  → 2  → 1 0.65 M 
15.7 5  → 3  → 2  → 1 
11.5 5  → 4  → 3  → 1 
11 5  → 1 
9.8 5  → 3  → 1 
5.2 5  → 6  → 3  → 2  → 1 
3.8 5  → 6  → 4  → 3  → 2  → 1 
3.5 5  → 2  → 1 
3.4 5  → 6  → 3  → 1 
3.4 5  → 4  → 1 
31.4 5  → 4  → 3  → 2  → 1 0.75 M 
14.2 5  → 4  → 3  → 1 
10.7 5  → 3  → 2  → 1 
5.2 5  → 4  → 2  → 1 
4.9 5  → 3  → 1 
4.3 5  → 4  → 1 
4.1 5  → 6  → 3  → 2  → 1 
4 5  → 2  → 1 
3.8 5  → 6  → 2  → 1 
3.7 5  → 1 
20.4 5  → 4  → 3  → 2  → 1 0.85 M 
12.8 5  → 2  → 1 
10.3 5  → 3  → 2  → 1 
9.7 5  → 4  → 3  → 1 
9.5 5  → 4  → 2  → 1 
5.3 5  → 3  → 1 
5.1 5  → 6  → 2  → 1 
4.7 5  → 6  → 3  → 2  → 1 
3.5 5  → 1 
3.3 5  → 4  → 1 
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48.5 5  → 4  → 3  → 2  → 1 1 M 
14 5  → 2  → 1 
8.8 5  → 4  → 3  → 1 
6.8 5  → 4  → 2  → 1 
4.4 5  → 6  → 2  → 1 
4.3 5  → 1 
3.9 5  → 3  → 2  → 1 
3.3 5  → 6  → 3  → 2  → 1 
0.9 5  → 3  → 1 
0.8 5  → 4  → 3  → 6  → 2  → 1 

Unfolding pathways were obtained by applying the transition-path theory of Weikl 

and coworkers 44 or, equivalently, a stochastic simulation to the HMM model 

transition probability matrices. In the simulation, 10,000 trajectories were generated 

in state space starting from the folded state (state 5), and ending when reaching state 

1. It is important to note that dynamics on multiple-state landscapes might involve 

back-and-forth jumps, which lead to loops in pathways, e.g. …i→j→k→j→l…. 

Obviously, loops carry neither forward nor backward flux, and they were therefore 

removed from the trajectories, and pathways of each type were then enumerated. The 

ten most abundant pathways obtained by both methods are shown in the table.  
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Table S3. Transition probability matrix from the HMM analysis of the 0.65 M 

GdmCl data set 

Bleached 

state 
6 5 4 3 2 1 To 

 From 

2.2E-02 4.1E-04 1.2E-03 1.1E-03 9.8E-03 2.2E-02 9.4E-01 1 

1.5E-02 2.5E-04 3.6E-04 4.9E-04 2.7E-02 9.5E-01 1.1E-02 2 

1.8E-02 1.1E-03 1.3E-03 6.9E-03 9.5E-01 1.6E-02 2.9E-03 3 

9.5E-03 4.6E-03 8.5E-03 9.5E-01 2.5E-02 1.0E-03 1.2E-03 4 

4.3E-03 3.6E-03 9.8E-01 4.7E-03 2.6E-03 4.2E-04 7.1E-04 5 

3.5E-03 9.8E-01 6.1E-03 4.3E-03 3.8E-03 4.9E-04 4.1E-04 6 

1 0 0 0 0 0 0 Bleached 

state 

Numbers in this table represent the probabilities for transitions between pairs of states 

to occur in 50 ms, as obtained from the 0.65 M GdmCl data set using the HMM 

analysis. The transition probabilities from the bleached state back to any of the ‘real’ 

states are by definition 0. 
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Table S4. Change-point and HMM analysis of a simulated data set  

Total number of false 

positive identifications  

Missed non-

sequential 

transitions 

Missed sequential 

transitions  

Method 

236 2 % 1.7 % HMM  

578 21 % 39 % Change point, CS 

549 22 % 37 % Change point, MSE 

The table shows results of analysis of simulated data using the two change point 

methods and the HMM. For details see the section “Tests of methods for detection 

of transitions” in the Supplementary methods. 
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Table S5. Assessment of HMM analysis of the 0.65 M GdmCl data set - FRET 

efficiency values 

State Mean FRET  

efficiency values 

from original 

HMM analysis 

Standard 

deviation 

FRET  

efficiency values 

from analysis 

with 100 ms 

bins 

FRET  

efficiency values 

from analysis 

with 150 ms 

bins 

1     0.1172     0.0016     0.1255     0.1258 

2     0.2675     0.0026     0.2768     0.2688 

3     0.4049     0.0014     0.4080     0.3998 

4     0.6006     0.0009     0.5921     0.5890 

5     0.7473     0.0006     0.7457     0.7460 

6     0.8315     0.0016     0.8325     0.8323 

Standard deviation values were estimated using bootstrapping. For details on this 

analysis see the section “Assessment of the robustness of the HMM data analysis” 

in the Supplementary Methods. 
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Table S6. Assessment of HMM analysis of the 0.65 M GdmCl data set- State 

propensities 

State: State propensity 

values from 

original HMM 

analysis 

Standard 

deviation 

State propensity 

values from 

analysis with 

100 ms bins 

State propensity 

values from 

analysis with 

150 ms bins 

1     0.0990     0.0075     0.1086     0.1040 

2     0.2002     0.0279     0.2157     0.2008 

3     0.3374     0.0274     0.3112     0.3258 

4     0.0946     0.0086     0.0891     0.0912 

5     0.1691     0.0118     0.1767     0.1842 

6     0.0998     0.0096     0.0987     0.0941 

Standard deviation values were estimated using bootstrapping. For details on this 

analysis see the section “Assessment of the robustness of the HMM data analysis” 

in the Supplementary Methods. 
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Table S7. Assessment of HMM analysis of the 0.65 M GdmCl data set- 

productive flux values 

Transition type: Relative 

productive flux 

values from 

original HMM 

analysis  

Standard 

deviation 

Relative 

productive flux 

values from 

analysis with 

100 ms bins 

Relative 

productive flux 

values from 

analysis with 

150 ms bins 

1→2 0.5130 0.0877 0.6221 0.5762 

1→3 0.3005 0.0989 0.2925 0.3207 

1→4 0.0524 0.0182 0.0217 0.0354 

1→5 0.1101 0.0136 0.0548 0.0649 

2→3 0.4235 0.0913 0.4869 0.4649 

2→4 0.0223 0.0352 0.0593 0.040 

2→5 0.0494 0.0136 0.0692 0.0633 

3→4 0.3509 0.0425 0.3571 0.3595 

3→5 0.2679 0.0210 0.3089 0.3538 

4→5 0.3693 0.0147 0.3089 0.3538 

Standard deviation values were estimated using bootstrapping. For details on this 

analysis see the section “Assessment of the robustness of the HMM data analysis” 

in the Supplementary Methods.  
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Supplementary Methods 

Protein expression and labeling. The pEAK90 expression vector containing the E. 

coli AK C77S gene was a generous gift from the lab of Prof. Elisha Haas (Bar-Ilan 

University). Two alanine-to-cysteine substitutions were introduced at positions 73 and 

203 of the protein by site-directed mutagenesis (using the StrataGene QuickChange 

kit). These sites were chosen to report on the folding dynamics of the CORE domain 

of AK. Previous studies showed that cysteine residues introduced at these two 

positions differ significantly in their labeling rates 48, which we exploited in order to 

selectively label each cysteine with a particular dye. The sequences of both AK C77S 

and three mutants - AK/C77S/A73C (AK73), AK/C77S/A203C (AK203), and AK 

C77S/A203C/A73C - were verified by DNA sequencing. Each mutant was over-

expressed, using published methods 33, in transformed E. coli. DH5α cells. The cells 

were lysed, and the lysate was separated on a DEAE ion-exchange column (GE 

Healthcare DEAE HiTrap FF). Fractions containing AK were pooled and run on a 

second gel filtration column (GE Healthcare HiLoad 16/60 Superdex 75 prep grade). 

AK eluted as a single peak and was concentrated and stored in 50% glycerol at -20°C. 

Purity was tested on an SDS-PAGE and found to be >95%. MALDI mass-

spectrometry was used to assess the purity of the sample and to verify the molecular 

weight of the protein. Enzymatic activity of the various mutants was checked and 

found to conform to reported values. 

Labeling reactions were preceded by incubation of the protein samples in a freshly 

prepared 1mM solution of DTT. The DTT was then removed using a Bio-Rad Micro 

Bio-Spin 6 size exclusion column. AK73 and AK203 were labeled with either Alexa 

488 maleimide (Invitrogen) or ATTO 590 maleimide (ATTO-TEC) following 

standard procedures, and were separated on a mono-Q 5/50 GL column (GE 

Healthcare). AK73 labeled with Alexa 488 was found to elute at a different ionic 

strength than AK203 labeled with Alexa 488, which facilitated separation of the 

double labeled protein with the desired dye configuration (C73 Alexa 488, C203 

ATTO-590) on a mono-Q column. Double labeling proceeded in two steps in 

degassed phosphate buffer saline (PBS): We first labeled with ATTO 590 maleimide, 

which preferentially reacted with C203, and then with Alexa 488 maleimide. The 

second step was performed in a buffer containing 2M GdmCl. Excess dye molecules 
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were separated using a size exclusion spin column (as above), and the protein was 

refolded by slow dialysis into 50mM Tris pH 8.0 following the procedure described 

by Ratner et al. 49. The various labeled species were separated on a mono-Q column.  

We performed temperature-dependent CD measurements on a Jasco J-815 

spectrometer in order to assess the change in stability of the protein upon double 

labeling (a comparison based on GdmCl denaturation would require prohibitively 

large protein quantities). Based on the CD signal at 222 nm, it was found that the 

transition temperature of the unlabeled protein was 41.9 ºC, while that of the double-

labeled protein was 39.0 ºC. 

Steady-state measurements. Ensemble/bulk fluorescence studies were conducted on 

a Fluorolog spectrofluorometer (Jobin-Yvon) equipped with Glan-Thompson 

polarizers. AK73 labeled with Alexa 488, and the double-labeled AK73-203 were 

used for control experiments, including evaluation of fluorescence quantum yield and 

anisotropy values as a function of GdmCl concentration (Control ). AK73-203 was 

also used for measuring the ensemble/bulk denaturation curve. The concentration of 

each GdmCl stock solution was determined using a Fisher Abbe refractometer (Fisher 

Scientific Co.).  

Sample preparation for single-molecule experiments. Liposomes made of egg 

phosphatidylcholine and a fraction of 1:500 of 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine-N-(cap biotinyl) (both from Avanti Lipids) were prepared by 

extrusion 34 in the appropriate buffer, using a disposable 0.1 μm Anopore syringe 

filter (Whatman Anotop-10). To prepare protein-loaded liposomes, we added labeled 

protein to a final concentration of ~0.3 μM, chosen so that one out of ~10 liposomes 

will contain a single molecule 35. Liposomes were separated from non-encapsulated 

protein on a size exclusion column (GE Healthcare MicroSpin S-400 HR).  

Sample cells were made of two glass #1.5 coverslips (Thomas Scientific), which were 

glued together with two Teflon strips. A supported lipid bilayer was formed on the 

glass surfaces by incubating a cell with a solution containing empty liposomes. 

Incubation with a solution of 1 mg/ml streptavidin (Sigma) was followed by 

introduction of protein-loaded liposomes into the cell. Finally, to prevent buffer 

evaporation during measurement, the cell was sealed with silicon grease. 
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Single-molecule setup and data acquisition. A custom-made single-molecule 

microscope for automated data collection was constructed. A scheme of the system is 

shown in Figure S1, and the labels of the various parts in the figure are included in the 

detailed description below. The beam of an argon ion laser (Spectra-Physics model 

163, 488nm) was passed through a laser-line cleanup filter (designated LP in the 

figure, Chroma Z488/10x) and expanded five times (BX) to fill the back aperture of a 

100x oil-immersion objective (OBJ, Zeiss FLUAR 100x/1.3NA). A sample cell 

(SAM) was mounted on a custom-designed sample holder on top of a capacitance-

feedback 100x100x20μm piezo stage (PIEZO, PI P-517) controlled by a dedicated 

digital signal processor (PI E-710). The piezo stage was mounted on top of a coarse 

motorized stage (MS) to allow larger-scale motion of the sample. The sample was 

excited by the focused laser beam and fluorescent emission from the sample was 

collected by the objective, passed through the first dichroic mirror (DIC1, Chroma 

505DCLP), filtered from remaining excitation light (EF, Semrock LP02-488RU), and 

split into two detection channels by a second dichroic mirror (DIC2, Chroma 

565DCLP). The donor dye emission and acceptor dye emission were filtered by 

respective emission filters (DF, Semrock FF01-536/40 and AF, Semrock FF01-

624/40) and focused onto two single-photon avalanche photo-diodes (APD, Perkin-

Elmer SPCM-AQR-15). The arrival times of individual photons to the APDs was 

recorded by a counter/timer card (National Instruments NI6602) with time resolution 

of 12.5 ns. A standalone TCSPC module (PicoHarp 300, PicoQuant) was used in 

place of the counter/timer card in free diffusion experiments. To prevent excess 

illumination of the sample, a mechanical shutter (ST, Uniblitz LS6T2) blocked the 

laser when measurements were not in progress.  

In order to generate an auto-focus mechanism, laser light that was back-reflected from 

the sample surface was focused on a pinhole (PH) and measured by a photomultiplier 

tube (PMT, Hamamatsu H8249). The PMT position was adjusted to register maximal 

photon flux when the sample was exactly at the microscope focus. The piezo stage 

was scanned in the z direction periodically to find the focused position.  

Data acquisition was fully automated using dedicated software programmed in 

LabWindows/CVI and MATLAB. A 5 μm x 5 μm region of the sample was scanned, 

and the position of vesicles loaded with molecules was identified with subpixel 
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resolution. The piezo stage was used to position the laser beam on each of these in 

turn, in order to obtain a fluorescence time trace (trajectory). For each vesicle, both 

donor and acceptor signals were recorded for one minute, or until the background 

level was reached. After acquiring trajectories of all molecules in a field, the piezo 

stage was moved to a new region, the focus position was adjusted and the acquisition 

cycle was repeated. The laser power was set to 1000 nW during the scan and 250 nW 

during time-trace acquisition.  

Free-diffusion experiments. Cells filled with a dilute solution (15 pM) of AK 

molecules at a particular denaturant concentration were used for these experiments. 

The surfaces of these cells were covered with a supported bilayer, and the solution 

contained 0.01% Tween, both included in order to minimize protein adsorption. The 

laser beam was focused 14 µm into the solution, and data was collected continuously 

for 1 hour before the sample was replaced. Several such data sets were collected at 

each denaturant concentration. Detection of photon bursts and their analysis were 

performed as described previously 50.  

 

Control experiments. A series of control experiments was conducted in order to 

ensure the high quality of the collected data and discard possible artifacts. The first 

four of these control experiments allowed us to conclude that the Förster distance of 

the donor-acceptor pair does not change as the GdmCl concentration is varied, and by 

implication also that the Förster distance is not state-dependent. 

 

• We confirmed that emission spectra of the labeled proteins did not change due 

to local environment variations following increasing denaturant 

concentrations. To this end, the emission spectra of the donor and acceptor 

dyes on the protein were measured as a function of GdmCl concentration. For 

the donor spectra we used molecules labeled with the donor dye only, excited 

at 465 nm. For acceptor spectra we used double-labeled protein molecules, 

excited at 560 nm. Shifts larger than 1 nm were not observed in the spectra. 

• We confirmed that the quantum yield of the acceptor dye was unaffected by 

the denaturant by measuring the emission spectra of double-labeled protein 
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molecules excited at 560 nm as a function of GdmCl concentration, and 

integrating the spectra (Figure S2).  

• We verified that the donor quantum yield did not change as the concentration 

of GdmCl increased, directly using the double-labeled protein sample. To that 

end, we measured emission spectra of the double-labeled protein following 

excitation at 465 nm, as a function of GdmCl concentration. We then 

calculated the  γ-corrected total emission intensity defined as 

∫ ∫+= λλλλγγ dIdII ADDD )()()( , where )(λDDI  and )(λADI  are the donor 

and acceptor contributions to the emission spectrum. γ corrects for differences 

in quantum yields of the two dyes and in detection efficiencies in the spectral 

ranges of )(λDDI  and )(λADI . The donor contribution was calculated by 

subtracting the proportional acceptor emission spectrum from the total 

emission spectrum. Since we already showed above that the acceptor is not 

sensitive to GdmCl concentration, the γ-corrected total emission intensity 

should also be independent of GdmCl if the donor is not affected by the 

denaturant. Figure S3 shows that this is indeed that case.  

• The bulk fluorescence anisotropy of the dyes on the protein was measured at 

different GdmCl concentrations (Figure S4). The low values of the 

fluorescence anisotropy, and the minimal changes induced by GdmCl, indicate 

that the dyes are free to reorient, independently of the denaturant 

concentration. According to the work of Haas et al. 51, the measured 

anisotropies of the dyes can lead to ~10% uncertainty in distance 

determinations, but since we do not attempt to convert the FRET values to 

distances, this is of less importance to our current work. 

• Finally, Chung et al observed photo-induced changes of the emission spectra 

of individual Alexa-488 molecules 23. We explicitly showed that such changes 

are not significant under the conditions of our experiment using the following 

experiment. Individual molecules of AK73 labeled with Alexa-488 (donor-

only-protein) were encapsulated in vesicles and intensity trajectories were 

obtained using our single-molecule setup. For this experiment emission filters 

were selected to allow an increased leak to the “acceptor channel” (20% as 
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opposed to the standard 7%). Any significant change in the emission spectrum 

of the dye should have resulted in anti-correlated changes in the intensities of 

the two detectors. Among ~4500 measured trajectories, we found changes that 

can be categorized as anti-correlated transitions in less than 1%, indicating that 

photo-induced changes in the donor spectrum can be neglected. 

Initial treatment of measured trajectories. The following steps were taken in the 

treatment of single-molecule trajectories before analysis, in order to ensure their 

quality and prevent artifacts. These steps were implemented automatically, and 

resulted in selection of 7-10% of the trajectories (depending on the data set) for 

further analysis. 

• First, since the time between folding/unfolding transitions in AK is long (of 

the order of 1 second), we binned the two data sets in each trajectory (donor 

and acceptor) in 50 ms time windows to get ( )tI rawD,  and ( )tI rawA, .  

• We used change point analysis (see below) to identify trajectories that did not 

show a photobleaching step, and removed them from the set.  

• The lowest intensity region in each single-molecule trajectory (required to be 

longer than 1 second) was identified as the background level for that molecule. 

Trajectories with a total background level larger than 400 cps, or individual 

channel background levels ( AD bb , ) larger than 200 cps, were removed.  

• Any trajectory with a total intensity larger than 1600 was also removed, as it 

might have arisen from two molecules in the same or nearby vesicles.  

• The intensity of the remaining trajectories was then corrected for background 

and leakage of photons from donor to acceptor channel using: 

 
( ) ( )( )( )
( ) ( )( ) ( )( )DrawDArawAA

DrawDD

btIbtItI
btItI

−−−=

+−=

,,

, 1
λ

λ
 

 with the leakage factor λ = 0.069 measured using a solution of free Alexa-488 

molecules (we verified that the spectral properties of the donor-labeled protein 

are essentially identical to those of the free dye).  
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• To ensure that essentially only anti-correlated intensity changes in donor and 

acceptor occur in the trajectories (as expected for FRET transitions), we cut 

the trajectories whenever the total intensity (= ( ) ( )tItI AD + ) changed by more 

than 25%. In most cases, this point occurred when the donor photobleached, 

although in some trajectories we identified additional intensity changes.  

• We also made sure that the acceptor data set of each trajectory included a 

photobleaching step (which could occur either simultaneously with the donor 

photobleaching step or independently of it). Trajectories that did not show 

such a photobleaching step were discarded.  

• Finally, the FRET efficiency was calculated as ( ) ( ) ( ) ( )( )tItItIt DAA ⋅+= γε  

for the remaining molecules. γ in this expression corrects for the difference in 

quantum yields of the two dyes and detection efficiencies of the two channels 

in our setup. We obtained γ by comparing the total intensities before and after 

the acceptor photobleaching step in a set of selected single-molecule 

trajectories. For the two dyes used in this work and with our current optical 

design we found that γ is ~1. 

Change-point analysis. Single-molecule trajectories collected in this study exhibited 

sharp transitions between intensity levels and/or FRET efficiency levels. To identify 

transitions in these signals we implemented a model-free change-point analysis 

algorithm, which has the large advantage in that it does not require any prior 

knowledge on the underlying signal dynamics and noise statistics. Two different 

change-point analysis methods were used 52, with similar results (see discussion based 

on simulations below). The two methods are described below. 

Change-point analysis, cumulative sum (CS) method. For a generic trajectory s(t), 

the CS trajectory, )(~ tsCS , is defined by ( )( )∑
=

−=
t

t
CS ststs

1'

')(~  where s  is the time-

average of s(t). In the absence of any transition in the whole trajectory, the term in 

brackets is small and )(~ tsCS  fluctuates around the zero value. If a transition from a 

low to a high mean value occurred at time t, )(~ tsCS  will decrease before t and increase 

at later times. If the transition is from a high value to a low one, )(~ tsCS  will first 
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increase and then decrease. The estimated transition point is therefore where 

( )( )tsabs CS
~  is maximal.  

Change-point analysis, mean squared error (MSE) method. In this method each 

trajectory is split into two segments, the first running from  τ=1 to t and the second 

from  τ=t+1 to T, and the following function is calculated: 

( )( ) ( )( )∑∑ −+−=
=

T

t

t

MSE ssssts 2

2
1

2

1
)(~ ττ

τ

 where 
1

s  and 
2

s  are the time-averages 

of the first and second segments, respectively. The value of t that minimizes )(~ tsMSE  is 

the best estimator of the last point before the change. 

To estimate the statistical significance of each transition point found by one of the 

above methods, we generated 10000 bootstrapped versions from each trajectory s(t), 

and reanalyzed them with the change-point algorithm. We then calculated a weight 

according to ( ) ( )max minW s t s t   = −      for both the original trajectory and each of 

the 10000 bootstrapped versions. A transition was considered significant if W of the 

original trajectory exceeded W of >95% of the bootstrapped versions. To identify 

multiple transitions in the same trajectories, we used the above procedure iteratively 

with a running window of 50 bins. When the algorithm found a transition within a 

window, the next window started exactly after the location of this transition. 

Otherwise, the next window was positioned to have an 80% overlap with the previous 

one. The procedure was repeated in order to find a possible missed transition between 

each pair of detected transitions, until no further transitions were uncovered. After 

finding all putative transitions, we reevaluated the exact temporal position of each 

change point separately within its own segment by the same method.  

Tests of methods for detection of transitions. To determine the efficiency and 

accuracy of the various methods for transition detection, we analyzed a set of 4000 

simulated trajectories. The total number of transitions in the simulation was 12,040, 

out of which 6,268 were sequential (i→i±1) and 5,772 were non-sequential (i→j, 

where j>i+1 or j<i-1). The two change-point algorithms and the HMM algorithm 

were used to analyze the simulated data. The number of false positive transition 

identifications and missed sequential and non-sequential transitions for each analysis 

method is shown Table S4. The change-point analysis tends to miss a significantly 
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larger number of transitions than the HMM analysis, especially those of the sequential 

type (which are smaller). The number of spurious transitions found by all methods is 

relatively low. 

We also used simulated trajectories to test the method for selection of the correct 

number of states in the HMM analysis. In all tested cases, it was found that cross-

correlation of the transition density maps generated by change-point and HMM 

analyses identified the correct number of states. This shows that the fact that the 

change-point analysis misses a significant fraction of the transitions does not impede 

the correlation analysis from performing correctly. The reason for this is that failure to 

identify transitions by the change-point analysis is not state dependent, and depends 

only on the distance from the diagonal. Therefore, there is no significant distortion of 

the overall shape of the change-point map due to the missing transitions. 

Assessment of the robustness of the HMM data analysis. To assess the accuracy of 

the HMM data analysis, we performed the following two tests on the 0.65 M data set, 

the results of which are reported in Tables S5-S7. 

1. We repeated the analysis after binning the trajectories in 100 ms and 150 ms bins- 

see results in Tables S5-7.  

2. We estimated parameter errors using a bootstrapping procedure. In particular, using 

the HMM optimal model parameters we generated 100 synthetic data sets. The 

number of simulated trajectories in each data set was the same as in our experimental 

one. However, the length of each trajectory was stochastically determined based on 

the photobleaching rates of the various states. We than ran the HMM analysis on each 

synthetic data set separately. In order to ensure convergence we ran 1000 HMM 

analyses for each synthetic data set, each analysis starting from a different random set 

of initial HMM parameters. Finally, we performed a productive flux analysis and 

calculated the deviations from the values obtained from the original experimental 

data. Standard deviations calculated from the bootstrapping analysis are reported in 

Tables S5-7.  
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