Myosin Binding Protein C Slow is a Novel Substrate for Protein Kinase C (PKC) and A (PKA) in Skeletal Muscle

SUPPLEMENT

Maegen A. Ackermann and Aikaterini Kontrogianni-Konstantopoulos

Supplemental Figure Legends

SFig 1: A-B: Phosphorylation events mediated by PKC were identified in the NH₂-terminal construct via mass spectrometry analysis using LTQ. MS/MS scans of peptides carrying phosphorylated Ser-83 (A) and Thr-84 (B) identified by Bioworks-SEQUEST with Xcorr scores of 2.827 and 2.94, respectively, and manually validated are shown. An immunoreactive band of ~150 kDa was detected in homogenates prepared from adult FDB muscle, using affinity-purified antibodies recognizing phosphorylated Ser-83 (inset in panel A) or Thr-84 (inset in panel B), confirming that native MyBP-C slow undergoes phosphorylation at those amino acids in vivo. C: Schematic of a hypothetical MyBP-C slow protein containing all three novel insertions, highlighted in red, generated from a compilation of published sequences (NCBI accession numbers, EDL21488, HQ848554, HQ848555). Highlighted light and dark regions denote Ig and FNIII domains, respectively, while underlined regions indicate the three recombinant proteins, NH₂-terminal construct, C7-domain construct and COOH-terminal construct. Residues identified by MS/MS to be phosphorylated are shown in bold. D: In vitro kinase assays of wild type and mutant NH₂-terminal constructs treated with PKA and PKC were separated by 1-D SDS-PAGE and stained with the ProQ Diamond phospho-specific and Sypro Ruby total protein dyes. Wild

type (GST-NH₂ terminal construct), but not mutant forms in which Ser 59 and Ser 62 (GST-NH₂ terminal construct S59A/S62A) or Ser 83 and Thr 84 (GST-NH₂ terminal construct S83A/T84A) were tandemly mutated to Ala, stain positive with ProQ Diamond dye, following treatment with PKA or PKC, respectively, confirming the phosphorylation events identified by mass spectrometry.

SFig 2: A-B: Portions of MyBP-C slow (A, top panel), fast (B, top panel) and GAPDH (A and B, bottom panels) were amplified using RT-PCR analysis and cDNA prepared from wild type and MDX FDB and TA muscles. Densitometry of the amplified fragments was used to calculate the relative amounts of MyBP-C slow and fast transcripts in normal and dystrophic muscles after being normalized to those of GAPDH; percent changes are reported in bar graphs (Students t-test, p<0.01). C-F: Localization of MyBP-C slow and fast in wild type and MDX skeletal muscle. Wild type (C1-C3 and E1-E3) and MDX (D1-D3 and F1-F3) TA muscles were co-stained with antibodies for MyBP-C slow (C1 and D1; green) or MyBP-C fast (E1 and F1; green) and the Rho-GEF domain of obscurin (C2 and D2, and E2 and F2; red), which specifically labels M-bands. The localization of MyBP-C fast is not altered in TA dystrophic muscle; however, MyBP-C slow is moderately affected in ~10% of myofibers.

Supplemental Table 1

Directional Cloning Primers									
Amplicon		Sense Primer	Antisense Primer						
NH ₂ -domain	ATGCCAGAAG	CCCACTAAG	ATCGAGAATTTTTGCAAA						
C7-domain	AGCCCTCCTA	ACTCTTCTG	GGGCTCACTAGCCCCAGC						
COOH-domain	CCCATGTTT	ACTCAACCT	CGACTGTTGCTGCCCCTC						
MyBP-C fast	CCCAAGTTCO	CTGACA	TCACTGCGGCAC						
GAPDH	TGATGACATO	CAAGAAGGTGGTGAAG	TCCTTGGAGGCCATGTGGGCCAT						
Mutagenesis Primers									
Mutation	Template	Sense Primer	Antisense Primer						
NH ₂ -S59A domain	NH ₂ - domain	ATGGAGAGAAAAGATGCAGAATG GTCTCTTGGTGAG	CTCACCAAGAGACCATTCTGCAT CTTTTCTCTCCAG						
NH ₂ -S59A/S62A domain	NH ₂ -S59A domain	GAAAAAGATGCAGAATGGGCTCT TGGTGAGTCACCTGCTG	CAGCAGGTGACTCACCAAGAGCC CATTCTGCATCTTTC						
NH ₂ -S83A domain	NH ₂ - domain	GCCAACTCCCAGCTGGCCACCCT GTTTGTTGAAAAAC	GTTTTTCAACAAACAGGGTGGCC AGCTGGGAGTTGGC						
NH ₂ -S83A/T84A domain	NH ₂ -S83A domain	CAACTCCCAGCTGGCCGCCCTGT TTGTTGAAAAACCTC	GAGGTTTTTCAACAAACAGGGCG GCCAGCTGGGAGTTG						

	•	
	1	Ľ

ProQ Diamond Phosphospecific Dye

D 75_ kDa 25_ kDa	FIG Diamona Filospilospecific Dye							
Treatment:	-	PKA	PKC	-	PKA	PKC	PKA	PKC
GST-NH ₂ terminal construct wild-type: GST-NH ₂ terminal construct S59A/S62A:		-	-	+	+	+	-	-
		-	-	-	-	-	+	-
GST-NH ₂ terminal construct S83A/T84A:	-	-	-	-	-	-	-	+
GST-protein:	+	+	+	-	-	-	-	-
75 _ kDa					_		—	
25 _ kDa		_						

SYPRO Ruby Total Protein Dye

