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Materials and Methods 

Tumor Samples: 

Brainstem low-grade gliomas (WHO grade I or II) (n= 8 for copy number 

analysis), were resected from patients with median age 4.2 years, range 2-11.4 

years.  Diagnoses were 7 pilocytic astrocytomas and one low-grade astrocytoma.  

Brainstem low-grade gliomas evaluated for expression analyses included 4 of the 

samples above and 2 additional LGG samples.  The age range for this cohort 

was 2-13 years, median age, 9.2 age, diagnoses, 5 pilocytic astrocytomas, 1 

ganglioglioma.   

Non-brainstem low-grade (WHO grade I or II) gliomas (n=66) were resected from 

children or young adults aged 1 - 19 years (mean = 7.9 years; median = 6.5 

years). Tumor site was varied: cerebral cortex - 27; cerebellum - 24, 

diencephalon - 12, spinal cord - 3. Pathological diagnoses were: pilocytic / 

pilomyxoid astrocytoma - 39, diffuse astrocytoma - 14, mixed glioma - 8, 

pleomorphic xanthoastrocytoma - 2, angiocentric glioma - 2, subependymal giant 

cell astrocytoma - 1. 

 

Copy Number Analysis 

The copy number of the tumor samples as well as the available matched normal 

samples was profiled using Affymetrix SNP6.0 arrays.  These arrays were 

analyzed using the following steps: 
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1) Normalization: First CHP files were generated using APT/1.10-64bit 

(Affymetrix) with birdseed algorithm3.  Only normal samples used in this 

study were used to generate the CHP files.  Chip intensities were 

extracted using dChipSNP4,5, and SNP probes and CN probes were 

separated for later use.  SNP probes were used to select a set of diploid 

chromosome(s) for each sample, with consideration of both SNP intensity 

as well as SNP calls.  With the selected diploid chromosomes, SNP 

probes and CN probes were normalized separately using reference-based 

normalization method 6.   

2) Ratio calculation and segmentation: To calculate the ratio for each 

sample, we selected either 1 or 5 nearest normal samples based on 

Euclidean distance of SNP probes.  In detail, for each sample, the 

Euclidean distance between the sample and all the normal samples were 

calculated using the SNP probes only (chrX and chrY were excluded).  

Then we sorted the Euclidean distance from smallest value to largest 

value and calculated the standard deviation among the distances.  Next 

we compared the smallest value and the second smallest value to decide 

if one or 5 normal samples should be used.  If the second smallest value 

is larger than the sum of the smallest value and the standard deviation, we 

chose one sample, which is the matched normal, to calculate the ratio.  

Otherwise, we chose five normal samples with smaller distance to 

calculate the ratio.  This includes tumors with no matched normal samples 

or tumors with matched normal but run in two different batches.  The log2 
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ratios were then calculated for all samples for both SNP probes and CN 

probes, which were then merged together and sorted based on 

chromosomal locations.  Circular binary segmentation (CBS) algorithm 

(DNAcopy, Bioconductor,7) was then applied to the sorted log2 ratio data.  

The segmentation on the smoothed log2 ratios was performed using a p-

value threshold of 0.01 (significance level a = 0.01).  We assigned gain or 

loss status to the segments with at least 8 probes and the absolute log2 

ratios higher than 0.2, with which the normal samples have few gain or 

loss regions. 

3) Copy Number Variant Identification:  Before applying GISTIC analysis 

or focal lesion identification, we first removed the genomic regions which 

are associated with copy-number variations (CNVs).  Identification of 

excluded regions was similar to the approach used by the TCGA.  The 

regions include: 

a. CNVs found in a SNP6.0 analysis of all HapMap normals; 

b. CNVs identified in at least two independent publications listed in the 

Database of Genomic Variants (DGV, 

http://projects.tcga.ca/variation, version 3); 

c. CNVs found in the collected normal samples by manual inspection, 

as described1 ; 

d. CNVs indentified in previous SNP array studies8; 

e. Regions with more than 90% of the bases located in repeat 

regions. 
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4) Global changes: We compared chromosome arm changes between 

pediatric diffuse intrinsic pontine gliomas (DIPGs) and pediatric 

glioblastomas (GBMs) arising outside of the brainstem and adult GBMs. If 

more than half of the markers on a chromosome arm had copy number 

gain or loss, then the entire arm was classified as gain or loss. The 

pediatric supratentorial GBM data are from1 and for adult GBMs we used 

level 3 (segmented) SNP6.0 TCGA data downloaded from the TCGA 

portal (http://cancergenome.nih.gov/dataportal/data/about/) in February 

2009. 

5) Candidate targets of focal gain or loss: We derived minimum common 

regions for recurrent focal gains (copy number > 2.3) or recurrent focal 

deletions (copy number < 1.7) found in at least two tumors or were 

classified as a single focal gain or deletion. Regions associated with 

known CNVs were removed as described earlier1 and above. All 

remaining regions with less than 60 genes were manually inspected for 

cancer/glioma-related genes, and candidate targets of focal gain or 

deletion were selected. Large regions of copy number imbalance were 

determined by merging the segmented data to the neighboring segment if 

the segment loss or gain call was concordant.  Large regions of copy 

number imbalance were defined as larger than 25 Mbp with copy number 

> 2.3 or copy number < 1.7. 
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6) LOH analysis:  LOH analysis was done using dChipSNP 4,5, only for 

samples with paired normal samples. The LOH call was based on the 

paired normal samples.  

 

Expression Profiling 

Expression data was analyzed using Affymetrix Microarray Suite software.  Gene 

expression signals were scaled to a target intensity of 500.  Probe sets lacking 

present calls for any samples were excluded.  Signals were then variance-

stabilized by adding 25 and log2 transformed for subsequent analysis. 

 

Unsupervised Hierarchical Clustering analysis and identification and 

functional annotation of signature genes 

We calculated the median absolute deviation (MAD) score for each probe set 

using the log2 transformed data and selected the top 1000 most variable probe 

sets for unsupervised hierarchical clustering analysis (UHC).  UHC was carried 

out using GeneMaths software (Applied Maths, Inc., Austin, TX), using Pearson 

correlation as the similarity coefficient and Ward as the clustering method.  Three 

major tumor subgroups were identified. 

We then identified probe sets that are most up-regulated in each subgroup by 

comparing one group against the other two.  The limma (Linear Models for 

Microarray Analysis) 9 and empirical Bayes t-test implemented in Bioconductor 10 

(www.bioconductor.org) were used to identify differentially expressed probe sets 
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at Benjamini-Hochberg false discovery rate (q-value) of <0.1 and fold change of 

>2.  The heatmap was generated using 150 probe sets from each group.   

Gene Set Enrichment Analysis (GSEA) of known HGG signature genes in 

pediatric DIPG 

GSEA implemented in R (www.r-projects.org) was used to assess enrichment of 

previously identified adult and pediatric HGG signature genes1,11,12 in pediatric 

DIPG.  The upregulated genes in each subgroup from the supplemental tables 

were used to define the gene sets.  We applied the collected gene sets with 

GSEA to the pediatric DIPG, with one subgroup against the other two.  The 

results of statistical analysis were listed in Table S5, with the gene set showing 

highest significance for each subgroup shown in Figure 3. 

Principal Component Analysis 

The 27 pediatric DIPG samples, 2 pre-treatment DIPGs previously published, 

and 51 non-brainstem pediatric HGGs 1, or with additional 6 brainstem LGGs and 

66 non-brainstem LGGs were pooled together for principal component analysis 

(PCA) using GeneMaths.  Based on the median absolute deviation (MAD) score 

for each probe set using the log2 transformed data, we selected the top 1000 

most variable probe sets for PCA analysis.   

Differentially expressed genes between pediatric DIPG and pediatric 

glioblastomas arising outside the brainstem and functional annotation 

We applied Limma/Bioconductor to identify differentially expressed genes 

between pediatric DIPG and HGG.  We selected 1480 probe sets using a cut-off 

of q-value <0.01 and minimum fold change of 2.  To further characterize the set 
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of genes, we did Gene Ontology analysis using DAVID Bioinformatics Resources 

(http://david.abcc.ncifcrf.gov). 

 

Real-Time Quantitative Polymerase Chain Reaction 

We validated inferred copy number analyses using quantitative real-time 

polymerase chain reaction (PCR) for 10 loci (Table S1). Primers and probes 

(Table S1) were designed using Primer 3 software (http://frodo.wi.mit.edu/cgi-

bin/primer3/primer3_www.cgi). GAPDH was used as internal standard to 

normalize the data. Two nanograms of DNA from the DIPG samples or control 

normal DNA were amplified using a Taqman 7900 Real-Time PCR system and 

7900 System Software (Applied Biosystems). Standard curves for each locus 

tested were generated from three-fold serial dilutions of control human WBC 

DNA. Quantitative real-time PCR for each primer set was performed in triplicate, 

and means are reported. The concordance with the inferred SNP copy number 

was analyzed using Pearsons correlation. For AKT3, BRCA2, CDK6 and MET, a 

Fast SYBR Green kit (Applied Biosystems) was used with the following PCR 

conditions: 95°C for 20 seconds, then 40 cycles of 95°C for 5 seconds and 60°C 

for 30 seconds. At the end of the PCR, samples were subjected to a melting 

analysis to confirm specificity of these amplicons. For CDK4, CDKN2A, DLK1, 

PDGFRA, PTEN and TP53 fast-mode quantitative PCR was performed using 

TaqMan Fast Universal PCR Master Mix from Applied Biosystems (95°C for 20 

seconds, then 40 cycles of 95°C for 5 seconds and 60°C for 30 seconds).    
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Fluorescent In Situ Hybridization 

Where formalin-fixed paraffin-embedded material was available (28 DIPG 

samples), fluorescent in situ hybridization for probes identifying PDGFRA (4q12), 

MET (7q31), EGFR (7p12) and IGF1R (15q26.3), was performed as described 13.  

A probe directed against PDGFRA (a pool of BAC clones RP11-231C18 and 

RP11-601I5) was labeled with rhodamine (Roche) and control probe for 

chromosome 4p (a pool of BAC clones CTD2057N12 and CTD2588A19) was 

labeled with AlexaFluor488 (Invitrogen).  MET and IGF1R probes labeled with 

Platinumbright 550 and SE7 and 15q11 control probes labeled with 

Platinumbright 495 were obtained from Kreatech (Amsterdam, the Netherlands). 

EGFR probe (a pool of BAC clones RP11-148P17 and RP11-1083E20) was 

labeled with AlexaFluor488 and the control probe for chromosome 7q (a pool of 

BAC clones RP11-460J21 and CTB-133K23) was labeled with rhodamine.  An 

additional probe for MET (BAC clone RP11-163C9) was labeled with 

AlexaFluor488 for co-hybridization with the PDGFRA probe labeled with 

rhodamine. Images were captured using the AI Cytovision software (Applied 

Imaging, Santa Clara, CA).  

 

Statistical Analyses 

A Kruskal-Wallis Test was performed to determine if there was an association 

between age at diagnosis or overall survival and the following molecular 

characteristics:  PI3K pathway alterations, RB pathway alterations, PI3K and RB 

pathway alteration, focal gain of PDGFRA, MET, or IGF1R, large scale gain of 
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1q, 2p, 2q, 8q or 9q, large scale loss of 10q, 11p, 13q, 14q, 16q, 17p or 20p, or 

the gene expression subgroups Proliferative, Proneural and Mesenchymal.  

Associations between the same molecular markers and the pattern of disease 

progression at first recurrence (local only versus local plus additional sites) was 

tested by Fisher’s exact test and also by logistic regression with pattern of 

progression set as the dependent variable to explore associations between it and 

each molecular feature.  A Bonferroni adjusted p-value threshold for determining 

statistical significance based on a family-wise error rate of 0.1 would be 

approximately 0.001.  There were no significant associations between molecular 

features and age at diagnosis, overall survival or pattern of disease progression 

at first recurrence based on this threshold.   
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