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ABSTRACT

Computational methods are described which increase the efficiency of the
RNA folding algorthm described by Zuker and Stiegler. Bit addressing has
been used to reduce the memory requirements from 2NxN to NxN/2. The order in
which the nucleotide sequence is examined internally has been altered, and
somoe additional short arrays which carry temporary information have been
introduced. These changes optimize the management of the large data arrays
generated by the algorithm. The methods were developed for use with a UNIVAC
1100/82 computer. They are, however, easily adaptable to other computers;
especially those with vir tual meniory capabilities. The analysis of sequences
up to 1000 nucleotides long are relatively routine, and larger searches are
also feasible. Some limitations and applications of the algorithm are also
discussed.

INTRODUCTION

The rapid proliferation of nucleic acid sequences in recent years has

led to the developmenit of a number of algorithms which attempt to predict the

two dimaensional structure of large single-stranded RNAs (1-13). Although the

published methods do not, as yet, predict any known structures correctly, the

combinatoric method which these algorithms provide, when used in conjunction

with other information provide a powerful tool for the analysis of RNA

structure.

Although the most recent algorithms which have been described

incorporate dynanic programming methods and are therefore computationally

efficient, the nuLmber of alternative possibilities which need to be

considered, even for very short nucleic acid sequences is very large and the

analysis of sequences long enough to be of biological interest quickly

exhaust the core memory of large computers. Thus simple procedures which

optimize the utilization of computer m-,emory are of interest.

The methods described here have been introduced into the algorithm

described by Zuker and Stiegler (8) in order to adapt it to run efficiently
on a Univac 1100/82 computer. The requirement for core memory has been cut by
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a factor of 4. In addition, multibanking techniques have been introduced to

enable us to exchange banks of data to and from main nemory in an efficient

manner. The methods we have used have general application and can be adapted

rather easily to other computers, especially those with virtual memory.

METHODS

The algorithm used in the search for an optimal RNA structure has been

described previously (8). Briefly, dynamic programming methods are used to

identify the optimal structure for each subsequence S from i to j within a

sequence N nucleotides long, where 1<i<j< N. The relative stability of

alternate structural features within S are evaluated using published therno-

dynansic data (14-19). The main working arrays employed ir the search are V

and W. V(i,J) contains the lowest free energy value that can be computed for

the section S when i and j pair with one anotlher. W(i,j) contains the lowest

free energy which can be computed for the section S whether or not i and j

pair with each other. The identification of the optimal structure at each i,j

pair requires a recursive search.

The computer memory requirements for the arrays V and W are both NxN/2.

For large sequences,the entire arrays cannot be stored in directly

addressable core memory,and must therefore be divided into sections. The

methods we have developed optimize the amount of inforuation which can be

stored in each section, and further increase the efficiency with which

sections are "swapped" to and from core memory.

To optimize storage we have used bit addressina to store all arrays

carrying information for a given i,j pair in one word. Further space saving

is achieved by storing all values calculated by by the proorari in integer

formi. The number of bits required for the storage of inforruation in the

arrays V and W can be calculated from the data shown in Tables 1 and 2. Table

1 shows free energy values which can be calculated for GC rich sections, 200

Table 1. Calculated A G values for 200 nucleotide sections of several
different RNAs. Note that the structures that form in regions of similar
base composition can vary significantly in stability.

Sequence Section A G %GC
kcal/mole

MS2 3100-3299 -106.0 57*5
SV40 500-699 -79.6 50.0
Polio 200-399 -87.8 57.5
T4-Gene 32 950-1149 -39.8 39.0
E. coli 23S 800-999 -89.5 55.5
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Table 2. Base pairing energies expressed in tenths of a kilocalorie/mole. The
stacking energies are identical with those described by Salser (18). The loop
destabilizing energies are described in Cech et al., (19). The value 999 has
beers inserted to prohibit the formation of unwanted structures (see discussion).

Stacking Energies (UG = GU)

GU AU UA CG GC

GU -3 -3 -3 -13 -13
AU -3 -12 -18 -21 -21
UA -3 -18 -12 -21 -21
CG -13 -21 -21 -48 -43
GC -13 -21 -21 -30 -48

Loop Destabilizing Energies

siz7e 1 2 3 | 4 5 1 6 7 1 8 1 901 1io 121 141 161 181| 2011 2511 30

Bulge loop 28 61 67 72 74 75 77 78 79 80 81 83 84 85 86 87 89

Hairpin loop

Closed by:
CG 999 999 70 45 41 43 45 46 48 49 50 52 53 54 55 57 59
AU 999 999 70 45 41 43 45 46 48 49 50 52 53 54 55 57 59

Interior loop

Closed by:
CG-CG 999 1 9 16 21 25 26 27 28 29 31 32 33 34 35 37 39
CG-AU 999 10 18 25 30 34 35 36 37 38 39 40 41 42 43 45 47
AU-AU 999 18 26 33 38 42 43 44 45 46 48 49 50 51 52 54 56

nucleotides long, of several different RNAs. Table 2 provides a

compilation of the most recent free energy values for calculating structure

(19) as they are implemented in our prograum. All values for loop free

energies have been rounded to two significant digits and all values are

stored as integers. The rouniding generally has little or no effect on the

structures chosen as optimal by the program.

From the data presented in Table 1 it can be seen that the structures

produced by folding sequences 1000 nucleotides long will generally have a

calculated free energy value greater than -500.0 kilocalories/mole. Since our

energy values are carried in integer form we allocate 13 bits each for the

storage of the arrays V and W. Two additional arrays, C(i,j) and C(j,i), are

used by the progranm. These are bookkeeping arrays which track base

composition of nucleotide pairs, and the properties of multibranch loops. The

value of C(i,j) never exceeds 3 and the value of C(i,i) need not exceed 93.
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Thus these arrays are easily accommodated in the remaining bits of the Univac

1100 36 bit word. Further space saving can be achieved by carrying the values

in V(i,j) as the difference between V(i,j) and W(i,j). This method has not

been implemented, but would be appropriate to computers with smaller word

size.

The most important feature of the new prograni concerns the pattern in

which the arrays V(i,j) and W(i,j) are filled. As discussed previously

(4,6,8), dynamic programming methods proceed in a sequential fashion, solving

the structure for the smallest nucleotide sections first. The exact pattern

that is followed will vary according to the architecture of the computer

used. Figure 1A shows three different search procedures which can be

employed. The first of these is the simplest to visualize. Starting with the

smallest sections first, all sections of equal size are examined

sequentially. This results in a fill in procedure along the diagonal of the

array. This method is most appropriate for computers with array processing

such as the Cray where several intervals of the same size can be evaluated

sirmultaneously. Figures 1B and 1C show alternate, mathematically equivalent

searches. The search shown in Figure 1C is the one used in this program

version. The analysis starts with short sections at the end of the sequence

and procedes backwards. For each value of i, the program evaluates all

sections from i+4 to j in the order of increasing length.

The advantage of this procedure becomes apparent, when one considers the

manner in which sections of the large data arrays are "swapped" to and from

main memory. For our Univac program, the data arrays are divided into 3 large

banks of 200,000 words each. These are indicated schematically in Figure ic.

The fill in pattern minimizes the number of time the banks need to be

exchanged as the analysis proceeds. For any section Si. .J, the values

referenced most frequently are the W and lower C values for the subsections

i..i', i'+1..j, i+1..i', i'+1..j-1, where i' lies anywhere within the section

i..j. With the search procedure shown in figure lc the required values for

i'+1..j are always present in the columns of the appropriate bank. The values

for i'+1..j-1, are always present in the appropriate bank as well, except for

the case where j is located in the first column of the bank. The values

i..i', and i+1..i' are located in a horizontal row across all three banks.

However, the fill in procedure in Figure 1C proceeds in a horizontal and

sequential fashion. This feature enables us to store the required values of i

in two temporary small arrays which are available to the programs regardless

of the bank in which the current i..j values are stored.
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Figure 1. Three graphs showing patterns which can be used in storing data
generated by the RNIA folding algorithm. A) Filling along the diagonal of the
matrix. Sections of the nucleotide sequence of equal size are exalined
sequentially. B) Filling columns in the matrix. C) Filling rows in the
matrix. In each instance the smallest sections of the sequence are evaluated
first, followed by larger sections as required by the algorithm. The
position of the three data banks, Bt, B2, and B3, are indicated schematically
in Figure 1C.

In practice the data banks are allowed to overlap by 31 nucleotides.

This overlap allows a small additional increase in the optimization of the

program. This optimization is not of general use, and is not described in

detail here.

In addition to the features described above, we have employed multi-

bankirig to optimize our program for the Univac environment (20). This method

is used when more than 262K words (18 bit addressing space) of data need to
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be accessed. Multibanking is a technique which allows the user to move banks

of data to and from main memory without incurring I/O overhead. If a bank is

"based" it can be addressed directly by the program. If the bank is "unbased"

it may continue to reside in main memory or be swapped out into secondary

storage at the discretion of the operating system. The use of this method

required the preparation of two very short routines in assembly language

which could be implemented easily on other computers. In general, however,

the virtual memory management systems of many of the large computers will

handle the program adequately without these extra instructions. Recently, a

version of this program has been implemented on a Vax computer with a VMS

operating system. The time required for paging was reduced by a factor of 6.

DISCUSSION

In this paper we have described two computational methods which allow

us to increase our capability of using computers to predict the structure of

large nucleotide sequences. On the Univac 1100 runs of 800 to 1000 nucleo-

tides are routine. When these methods are fully implemented for some of the

smaller computers with virtual memory, runs of this type will become rather

commonplace. It should be noted however, that the information obtained from

computer runs of this type still suffer from a number of limitations.

Computer modeling studies have been performed on a variety of RNA

sequetices for which the two dimensional structure is tihought to be known. In

general, the structures which can be predicted by the modeling are not very

satisfactory. Using the newest energy rules on a class of 92 tRNA mole-

:ules,only 24% of the sequences were were folded into perfect cloverleaf

structures. An additional 27% were folded into structures quite sirtilar to

but not identical with the standard cloverleaf structure. The remait)der of

the sequences appeared in a variety of structures whose calculated free

energy was lower thanl that of the cloverleaf form (unpublished results). The

source of the difficulties which the alogorithms experience ir: predicting

known structures correctly is not fully understood, although it is thought to

lie primarily with the energy rules used in the prediction. In particular, no

inforniation is available for the appropriate treatment of multibranched

loops. Since these structures are a conspicuous feature of transfer RNA

molecules, it is not surprising that the structures are not predicted

correctly by the folding algorithms. Some effort has been directed toward

improving energy rules for structure prediction by direct modeling with tRNA

sequences (5) and viroid RNA (21). These studies have only had limited
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success. Possibly, some consideration of tertiary structure will be required

before the algorithms are able to predict structure reliably.
In addition to the problems discussed above, the dynarnic programming

method itself has an important intrinsic limitation, since it provides only

one optimal structure for each nucleotide sequence. Alternate equivalent

st.ructures, and suboptimal structures are not identified. These alternate

structures may be of particular interest in phylogentic comparisons of re-

lated RNAs, or in situations where alternate coniformations of the RNA may be

implicated in the regulation of gene expression. As with the tRNA structures,

the optimal folding identified by the algorithm need not reflect the struc-

ture of greatest biologJical interest.

Despite these limitations, the folding algorithms provide a powerful

tool which can be used in conjunction with other methods for the analysis of

the two dimensional structure of sinigle-stranded RNAs. A number of sub-

progranis have been developed which can be used in various ways in conjunction
with biochemical, phylogenetic, and/or electron nlicroscopic data. In genrral

these programs identify a particular suboptimal solution which is defined by

local parameters introduced into the program. For example, a simple alter-

ation in the traceback procedure allows us to simulate the folding of an RNA

molecule during its biosynthesis. Specific double-stranded and single-
stranded regions can be introduced into the structure by the appropriate use

of bon-us and penalty weights. It is possible to cut and splice sequences or

to force the folding of particular subsections of the sequence to conform

with known long range interactions. The optimization of short loops can be

achieved by setting limits to the size of loop which is allowed to form

during the calculation. The details of these and other program modifications

will be presented elsewhere ( manuscript in preparation). It is generally

useful to employ several different programs and different constraints in the

analysis of each sequence in order to gain insight into suboptimal structures

which may have functional significance.
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